Piezoelectric biosensors: shedding light on principles and applications
Jazyk angličtina Země Rakousko Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
38451295
PubMed Central
PMC10920441
DOI
10.1007/s00604-024-06257-9
PII: 10.1007/s00604-024-06257-9
Knihovny.cz E-zdroje
- Klíčová slova
- Cellular biosensors, Combined biosensing set-ups, Enzyme activity, Immunosensors, Microbial detection, Quartz crystal microbalance,
- MeSH
- buněčné linie MeSH
- elektrická impedance MeSH
- nukleové kyseliny * MeSH
- oligonukleotidy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- nukleové kyseliny * MeSH
- oligonukleotidy MeSH
The three decades of experience with piezoelectric devices applied in the field of bioanalytical chemistry are shared. After introduction to principles and suitable measuring approaches, active and passive methods based on oscillators and impedance analysis, respectively, the focus is directed towards biosensing approaches. Immunosensing examples are provided, followed by other affinity sensing approaches based on hybridization of nucleic acids, aptamers, monitoring of enzyme activities, and detection of pathogenic microbes. The combination of piezosensors with cell lines and testing of drugs is highlighted, including mechanically active cells. The combination of piezosensors with other measuring techniques providing original hybrid devices is briefly discussed.
Zobrazit více v PubMed
Grate JW, Martin SJ, White RM (1993) Acoustic wave microsensors. Anal Chem 65: A940-A948. 10.1021/ac00069a728
Sauerbrey G. The use of oscillators for weighing thin layers and for microweighing. Z Phys. 1959;155:206–222. doi: 10.1007/BF01337937. DOI
Kanazawa KK, Gordon II, Joseph G. Frequency of a quartz microbalance in contact with liquid. Anal Chem. 1985;57:1770–1771. doi: 10.1021/ac00285a062. DOI
Lucklum R, Hauptmann P. Acoustic microsensors-the challenge behind microgravimetry. Anal Bioanal Chem. 2006;384:667–682. doi: 10.1007/s00216-005-0236-x. PubMed DOI
Kravchenk S, Snopok B. Vanishing mass in the Sauerbrey world: quartz crystal microbalance study of self-assembled monolayers based on a tripod-branched structure with tuneable molecular flexibility. Analyst. 2020;145:656–666. doi: 10.1039/c9an01366k. PubMed DOI
Skládal P, Horáček J. Kinetic studies of affinity interactions: comparison of piezoelectric and resonant mirror-based biosensors. Anal Lett. 1999;32:1519–1529. doi: 10.1080/00032719908542912. DOI
Montagut YJ, García JV, Jiménez Y, March C, Montoya A, Arnau A. Frequency-shift vs phase-shift characterization of in-liquid quartz crystal microbalance applications. Rev Sci Instrum. 2011;82:064702. doi: 10.1063/1.3598340. PubMed DOI
March C, García JV, Sánchez A, Arnau A, Jiménez Y, García P, Manclús JJ, Montoya A. High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors. Biosens Bioelectron. 2015;65:1–8. doi: 10.1016/j.bios.2014.10.001. PubMed DOI
Rodahl M, Höök F, Krozer A, Kasemo B, Brzezinski P. Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev Sci Instrum. 1995;66:3924–3930. doi: 10.1063/1.1145396. DOI
Janshoff A, Wegener J, Sieber M, Galla HJ. Double-mode impedance analysis of epithelial cell monolayers cultured on shear wave resonators. Eur Biophys J. 1996;25:93–103. doi: 10.1007/s002490050021. PubMed DOI
Songkhla SN, Nakamoto T. Overview of quartz crystal microbalance behavior analysis and measurement. Chemosensors. 2021;9:350. doi: 10.3390/chemosensors9120350. DOI
Hermanson GT, Mallia AK, Smith PK. Immobilized affinity ligand techniques. San Diego: Academic Press; 1992.
Suleiman AA, Guilbault GG. Review: recent developments in piezoelectric immunosensors. Analyst. 1994;119:2279–2282. doi: 10.1039/an9941902279. PubMed DOI
Bunde RL, Jarvi EJ, Rosentreter JJ. Piezoelectric quartz crystal biosensors [review] Talanta. 1998;46:1223–1236. doi: 10.1016/S0039-9140(97)00392-5. PubMed DOI
Migon D, Wasilewski T, Suchy D. Application of QCM in peptide and protein-based drug product development. Molecules. 2020;25:3950. doi: 10.3390/molecules25173950. PubMed DOI PMC
Kwak J, Lee SS. Highly sensitive piezoelectric immunosensors employing signal amplification with gold nanoparticles. Nanotech. 2019;30:445502. doi: 10.1088/1361-6528/ab36c9. PubMed DOI
Pohanka M. Piezoelectric biosensor for the determination of tumor necrosis factor alpha. Talanta. 2018;178:970–973. doi: 10.1016/j.talanta.2017.10.031. PubMed DOI
Cervera-Chiner L, Jimenez Y, Montoya A, Juan-Borras M, Pascual N, Arnau A, Escriche I. High fundamental frequency quartz crystal microbalance (HFF-QCMD) immunosensor for detection of sulfathiazole in honey. Food Control. 2020;115:107296. doi: 10.1016/j.foodcont.2020.107296. DOI
Suthar J, Parsons ES, Hoogenboom BW, Williams GR, Guldin S. Acoustic immunosensing of exosomes using a quartz crystal microbalance with dissipation monitoring. Anal Chem. 2020;92:4082–4093. doi: 10.1021/acs.analchem.9b0576. PubMed DOI PMC
Bakhshpour M, Piskin AK, Yavuz H, Denizli A. Quartz crystal microbalance biosensor for label-free MDA MB 231 cancer cell detection via notch-4 receptor. Talanta. 2019;204:840–845. doi: 10.1016/j.talanta.2019.06.060. PubMed DOI
Skládal P, Přibyl J, Šafář B. Antibodies against sulfur mustard and direct piezoelectric immunosensing in an organic solvent. Anal Lett. 2007;40:1347–1359. doi: 10.1080/00032710701326700. DOI
Akgönüllü S, Özgür E, Denizli A. Quartz crystal microbalance-based aptasensors for medical diagnosis. Micromachines. 2022;13:1441. doi: 10.3390/mi13091441. PubMed DOI PMC
Liu M, Yue F, Kong Q, Liu Z, Guo Y, Sun X. Aptamers against pathogenic bacteria: selection strategies and apta-assay/aptasensor application for food safety. J Agric Food Chem. 2022;70:5477–5498. doi: 10.1021/acs.jafc.2c01547. PubMed DOI
Xi XG, Niyonshuti II, Yu NX, Yao L, Fu Y, Chen JY, Li YB. Label-free quartz crystal microbalance biosensor based on aptamer-capped gold nanocages loaded with polyamidoamine for thrombin detection. ACS Appl Nano Materials. 2021;4:10047–10054. doi: 10.1021/acsanm.1c01350. DOI
Scarano S, Dausse E, Crispo F, Toulme JJ, Minunni M. Design of a dual aptamer-based recognition strategy for human matrix metalloproteinase 9 protein by piezoelectric biosensors. Anal Chim Acta. 2015;897:1–9. doi: 10.1016/j.aca.2015.07.009. PubMed DOI
Tian YL, Zhu P, Chen YT, Bai XY, Du LP, Chen W, Wu CS, Wang P. Piezoelectric aptasensor with gold nanoparticle amplification for the label-free detection of okadaic acid. Sens Actuators B Chem. 2021;346:130446. doi: 10.1016/j.snb.2021.130446. DOI
Diltemiz SE, Kecili R, Ersöz A, Say R (2017) Molecular imprinting technology in quartz crystal microbalance (QCM) Sensors 17:454. 10.3390/s17030454 PubMed PMC
Dou Q, Wang SW, Zhang ZF, Wang YX, Zhao ZP, Guo HJ, Liu HL, Dai Q. A highly sensitive quartz crystal microbalance sensor modified with antifouling microgels for saliva glucose monitoring. Nanoscale. 2020;12:19317–19324. doi: 10.1039/d0nr03193c. PubMed DOI
Guo JP, Fang GZ, Wang S, Wang JP. Quartz crystal microbalance sensor based on 11-mercaptoundecanoic acid self-assembly and amidated nano-titanium film for selective and ultrafast detection of phosphoproteins in food. Food Chem. 2021;344:128656. doi: 10.1016/j.foodchem.2020.128656. PubMed DOI
Bonyadi F, Kavruk M, Ucak S, Cetin B, Bayramoglu G, Dursun AD, Arica Y. Ozalp VC (2023) Real-time biosensing bacteria and virus with quartz crystal microbalance: recent advances, opportunities, and challenges. Crit Rev Anal Chem. 2023 doi: 10.1080/10408347.2023.2211164. PubMed DOI
Lim HJ, Saha T, Tey BT, Tan WS, Ooi CW. Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosens Bioelectron. 2020;168:112513. doi: 10.1016/j.bios.2020.112513. PubMed DOI PMC
Farka Z, Kovář D, Přibyl J, Skládal P. Piezoelectric and surface plasmon resonance biosensors for Bacillus atrophaeus spores. Int J Electrochem Sci. 2013;8:100–112. doi: 10.1016/S1452-3981(23)14005-3. DOI
Ramasamy MS, Bhaska R, Han SS. Piezoelectric biosensors and nanomaterials-based therapeutics for coronavirus and other viruses: a mini-review. Curr Topics Med Chem. 2023;23:115–127. doi: 10.2174/1568026623666221226091907. PubMed DOI
Narita F, Wang ZJ, Kurita H, Li Z, Shi Y, Jia Y, Soutis C. A review of piezoelectric and magnetostrictive biosensor materials for detection of COVID-19 and other viruses. Adv Mater. 2021;33:2005448. doi: 10.1002/adma.202005448. PubMed DOI PMC
Wang H, Wang LJ, Hu QQ, Wang RH, Li YB, Kidd M. Rapid and sensitive detection of Campylobacter jejuni in poultry products using a nanoparticle-based piezoelectric immunosensor integrated with magnetic immunoseparation. J Food Protection. 2018;81:1321–1330. doi: 10.4315/0362-028X.JFP-17-381. PubMed DOI
Fulgione A, Cimafonte M, Della Ventura B, Iannaccone M, Ambrosino C, Capuano F, Proroga YTR, Velotta R, Capparelli R. QCM-based immunosensor for rapid detection of Salmonella Typhimurium in food. Sci Rep. 2018;8:16137. doi: 10.1038/s41598-018-34285-y. PubMed DOI PMC
Minunni M, Tombelli S, Fonti J, Spiriti MM, Mascini M, Bogani P, Buiatti M. Detection of fragmented genomic DNA by PCR-free piezoelectric sensing using a denaturation approach. J Am Chem Soc. 2005;127:7966–7967. doi: 10.1021/ja051345q. PubMed DOI
Lim JY, Lee SS. Sensitive detection of microRNA using QCM biosensors: sandwich hybridization and signal amplification by TiO2 nanoparticles. Anal Methods. 2020;12:5103–5109. doi: 10.1039/d0ay01481h. PubMed DOI
Park HJ, Lee SS. QCM sensing of miR-21 by formation of microRNA-DNA hybrid duplexes and intercalation on surface-functionalized pyrene. Analyst. 2019;144:6936–6943. doi: 10.1039/c9an01645g. PubMed DOI
Vazquez-Quesada A, Schofield MM, Tsortos A, Mateos-Gil P, Milioni D, Gizeli E, Delgado-Buscalioni R. Hydrodynamics of quartz-crystal-microbalance dna sensors based on liposome amplifiers. Phys Rev Appl. 2020;13:64059. doi: 10.1103/PhysRevApplied.13.064059. DOI
Skládal P, Santos Ricardi C, Yamanaka H, Costa PI. Piezoelectric biosensors for real-time monitoring of hybridization and detection of hepatitis C virus. J Virol Methods. 2004;117:145–151. doi: 10.1016/j.jviromet.2004.01.005. PubMed DOI
Wachiralurpan S, Phung-On I, Chanlek N, Areekit S, Chansiri K, Lieberzeit PA. In-situ monitoring of real-time loop-mediated isothermal amplification with QCM: detecting Listeria monocytogenes. Biosensors-Basel. 2021;11:308. doi: 10.3390/bios11090308. PubMed DOI PMC
Juřík T, Skládal P. Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface. Chem Papers. 2015;69:167–175. doi: 10.1515/chempap-2015-0003. DOI
Yang HT, Li P, Wang DZ, Liu Y, Wei W, Zhang YJ, Liu SQ. Quartz crystal microbalance detection of poly(ADP-ribose) polymerase-1 based on gold nanorods signal amplification. Anal Chem. 2019;91:11038–11044. doi: 10.1021/acs.analchem.9b01366. PubMed DOI
Yao J, Feng B, Zhang ZQ, Li CY, Zhang W, Guo Z, Zhao HM, Zhou LQ. Blood coagulation testing smartphone platform using quartz crystal microbalance dissipation method. Sensors. 2018;18:3073. doi: 10.3390/s18093073. PubMed DOI PMC
Dong ZM, Jin X, Zhao GC. Amplified QCM biosensor for type IV collagenase based on collagenase-cleavage of gold nanoparticles functionalized peptide. Biosens Bioelectron. 2018;106:111–116. doi: 10.1016/j.bios.2018.01.069. PubMed DOI
Skládal P, Minunni M, Mascini M, Kolář V, Fránek M. Characterization of monoclonal antibodies to 2,4-dichlorophenoxyacetic acid using a piezoelectric quartz crystal microbalance in solution. J Immunol Meth. 1994;176:117–125. doi: 10.1016/0022-1759(94)90356-5. PubMed DOI
O'Shannessy DJ. Determination of kinetic rate and equilibrium binding constants for macromolecular interactions: a critique of the surface plasmon resonance literature. Curr Opin Biotechnol. 1994;5:65–71. doi: 10.1016/S0958-1669(05)80072-2. PubMed DOI
Morton TA, Myszka DG, Chaiken IM. Interpreting complex binding kinetics from optical biosensors: a comparison of analysis by linearization, the integrated rate equation, and numerical integration. Anal Biochem. 1995;227:176–185. doi: 10.1006/abio.1995.1268. PubMed DOI
Horáček J, Skládal P. Characterization of the interactions between immobilized parathion and the corresponding recombinant scFv antibody using a piezoelectric biosensor. Food Agric Immunol. 1998;10:363–374. doi: 10.1080/09540109809354999. DOI
Horáček J, Skládal P. Improved direct piezoelectric biosensors operating in liquid solution for the competitive label-free immunoassay of 2,4-dichlorophenoxyacetic acid. Anal Chim Acta. 1997;347:43–50. doi: 10.1016/S0003-2670(97)00125-6. DOI
Liangsupree T, Multia E, Forssan P, Fornstedt T, Riekkola ML. Kinetics and interaction studies of anti-tetraspanin antibodies and ICAM-1 with extracellular vesicle subpopulations using continuous flow quartz crystal microbalance biosensor. Biosens Bioelectron. 2022;206:114151. doi: 10.1016/j.bios.2022.114151. PubMed DOI
Spagnolo S, Muckley ES, Ivanov IN, Hianik T. Analysis of trypsin activity at casein layers formed on hydrophobic surfaces using a multiharmonic acoustic method. Analyst. 2022;147:461–470. doi: 10.1039/d1an01800k. PubMed DOI
Chen JY, Penn LS, Xi J. Quartz crystal microbalance: sensing cell-substrate adhesion and beyond. Biosens Bioelectron. 2018;99:593–602. doi: 10.1016/j.bios.2017.08.032. PubMed DOI
Fohlerova Z, Skladal P, Turanek J. Adhesion of eukaryotic cell lines on the gold surface modified with extracellular matrix proteins monitored by the piezoelectric sensor. Biosens Bioelectron. 2007;22:1896–1901. doi: 10.1016/j.bios.2006.08.015. PubMed DOI
Li XM, Song QQ, Pei YX, Dong H, Aastrup T, Pei ZC. Direct attachment of suspension cells to PDA surface and its application in suspension-cell QCM biosensor. Sens Actuat B Chem. 2021;326:128823. doi: 10.1016/j.snb.2020.128823. DOI
Johjima A, Noi K, Nishikori S, Ogi H, Esaki M, Ogura T. Microtubule severing by katanin p60 AAA+ATPase requires the C-terminal acidic tails of both α-and β-tubulins and basic amino acid residues in the AAA+ring pore. J Biol Chem. 2015;290:11762–11770. doi: 10.1074/jbc.M114.614768. PubMed DOI PMC
Kerivan EM, Tobin L, Basil M, Reinemann DN. Molecular and cellular level characterization of cytoskeletal mechanics using a quartz crystal microbalance. Cytoskeleton. 2023;80:100–111. doi: 10.1002/cm.21752. PubMed DOI PMC
Pax M, Rieger J, Eibl RH, Thielemann C, Johannsmann D. Measurements of fast fluctuations of viscoelastic properties with the quartz crystal microbalance. Analyst. 2005;130:1474–1477. doi: 10.1039/B504302F. PubMed DOI
Caluori G, Pribyl J, Pesl M, Jelinkova S, Rotrekl V, Skladal P, Raiteri R. Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models. Biosens Bioelectron. 2019;124–125:129–135. doi: 10.1016/j.bios.2018.10.021. PubMed DOI
Čechová Z (2017) Monitoring of mechanical activity of cardiomyocytes using piezoelectric sensors. Bachelor thesis, Masaryk University, Brno, Czech Republic. https://is.muni.cz/auth/th/lxos8/
Bruckenstein S, Shay M. An in situ weighing study of the mechanism for the formation of the adsorbed oxygen monolayer at a gold electrode. J Electroanal Chem Interf Electrochem. 1985;188:131–136. doi: 10.1016/s0022-0728(85)80057. DOI
Hao DN, Hu CX, Grant J, Glidle A, Cumming DRS. Hybrid localized surface plasmon resonance and quartz crystal microbalance sensor for label free biosensing. Biosens Bioelectron. 2018;100:23–27. doi: 10.1016/j.bios.2017.08.038. PubMed DOI
Deng Y, Yue X, Hu H, Zhou X. A new analytical experimental setup combining quartz crystal microbalance with surface enhancement Raman spectroscopy and its application in determination of thrombin. Microchem J. 2017;132:385–390. doi: 10.1016/j.microc.2017.02.025. DOI
Plikusiene I, Maciulis V, Ramanavicius A, Ramanaviciene A. Spectroscopic ellipsometry and quartz crystal microbalance with dissipation for the assessment of polymer layers and for the application in biosensing. Polymers. 2022;14:1056. doi: 10.3390/polym14051056. PubMed DOI PMC
Noi K, Ikenaka K, Mochizuki H, Goto Y, Ogi H. Disaggregation behavior of amyloid Î2 fibrils by anthocyanins studied by total-internal-reflection-fluorescence microscopy coupled with a wireless quartz-crystal microbalance biosensor. Anal Chem. 2021;93:11176–11183. doi: 10.1021/acs.analchem.1c01720. PubMed DOI