Genome rearrangements in host-range mutants of the polyvalent staphylococcal bacteriophage 812
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18062181
DOI
10.1007/bf02932087
Knihovny.cz E-zdroje
- MeSH
- bakteriofágy genetika MeSH
- endopeptidasy chemie genetika MeSH
- genom virový * MeSH
- molekulární sekvence - údaje MeSH
- mutace * MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- polymorfismus délky restrikčních fragmentů MeSH
- proteiny virových bičíků chemie genetika MeSH
- RNA virová chemie genetika MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční seřazení MeSH
- Staphylococcus aureus virologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- endolysin MeSH Prohlížeč
- endopeptidasy MeSH
- proteiny virových bičíků MeSH
- RNA virová MeSH
Mutations extended the host range of the polyvalent bacteriophage 812 of the family Myoviridae in up to 95 % of Staphylococcus aureus strains and 43 % of strains of different coagulase-positive and -negative Staphylococcus species. Mutational changes in the genome of several host-range mutants of phage 812 were identified. Host-range mutant 812F1 harbors a deletion in endolysin gene that arose together with intron excision. Four mutants (812i, 812b, 812p, 812F3) harbor deletion in the structural gene orf8 that results from a genome rearrangement associated with intron insertion. This rearrangement was also detected in the genome of the closely related phages U16 and phi131. Another intron was discovered in the recA812 gene in these four mutants. An insertion was found in a non-coding region of the restriction fragment PstI-O of three mutants (812b, 812F3, 812g) and phages U16 and phi131. The above results contribute to the explanation of genetic factors affecting the host range of polyvalent staphylococcal bacteriophages.
Zobrazit více v PubMed
J Infect Dis. 2003 Feb 15;187(4):613-24 PubMed
Mol Microbiol. 2002 Apr;44(2):335-49 PubMed
Antimicrob Agents Chemother. 2006 Sep;50(9):2912-8 PubMed
Nucleic Acids Res. 2006;34(18):5021-31 PubMed
Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5174-9 PubMed
Virology. 1998 Jul 5;246(2):241-52 PubMed
FEMS Microbiol Lett. 1998 May 15;162(2):265-74 PubMed
Appl Environ Microbiol. 2006 Apr;72(4):3036-41 PubMed
Microbiol Mol Biol Rev. 1999 Dec;63(4):751-813, table of contents PubMed
Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7005-10 PubMed
Folia Microbiol (Praha). 2005;50(3):187-94 PubMed
Microbiology (Reading). 2002 Apr;148(Pt 4):985-1001 PubMed
J Bacteriol. 2004 May;186(9):2862-71 PubMed
Antimicrob Agents Chemother. 2005 Mar;49(3):1220-1 PubMed
Clin Exp Dermatol. 2005 Jan;30(1):23-6 PubMed
J Bacteriol. 2005 Oct;187(20):7161-4 PubMed
Folia Microbiol (Praha). 2006;51(3):236-8 PubMed
Antimicrob Agents Chemother. 2006 Apr;50(4):1268-75 PubMed
J Mol Biol. 1996 May 24;258(5):726-31 PubMed
Microbiol Rev. 1983 Sep;47(3):345-60 PubMed
Int J Dermatol. 2002 Jul;41(7):453-8 PubMed
Proteomics. 2007 Jan;7(1):64-72 PubMed
Z Med Mikrobiol Immunol. 1966;152(4):332-41 PubMed
GENBANK
AY842850, AY842851, EF136581, EF136582, EF136583, EF136584, EF136585, EF136586, EF136587, EF136588, EF136589