Genome rearrangements in host-range mutants of the polyvalent staphylococcal bacteriophage 812
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
18062181
DOI
10.1007/bf02932087
Knihovny.cz E-resources
- MeSH
- Bacteriophages genetics MeSH
- Endopeptidases chemistry genetics MeSH
- Genome, Viral * MeSH
- Molecular Sequence Data MeSH
- Mutation * MeSH
- Reverse Transcriptase Polymerase Chain Reaction MeSH
- Polymorphism, Restriction Fragment Length MeSH
- Viral Tail Proteins chemistry genetics MeSH
- RNA, Viral chemistry genetics MeSH
- Amino Acid Sequence MeSH
- Base Sequence MeSH
- Sequence Alignment MeSH
- Staphylococcus aureus virology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- endolysin MeSH Browser
- Endopeptidases MeSH
- Viral Tail Proteins MeSH
- RNA, Viral MeSH
Mutations extended the host range of the polyvalent bacteriophage 812 of the family Myoviridae in up to 95 % of Staphylococcus aureus strains and 43 % of strains of different coagulase-positive and -negative Staphylococcus species. Mutational changes in the genome of several host-range mutants of phage 812 were identified. Host-range mutant 812F1 harbors a deletion in endolysin gene that arose together with intron excision. Four mutants (812i, 812b, 812p, 812F3) harbor deletion in the structural gene orf8 that results from a genome rearrangement associated with intron insertion. This rearrangement was also detected in the genome of the closely related phages U16 and phi131. Another intron was discovered in the recA812 gene in these four mutants. An insertion was found in a non-coding region of the restriction fragment PstI-O of three mutants (812b, 812F3, 812g) and phages U16 and phi131. The above results contribute to the explanation of genetic factors affecting the host range of polyvalent staphylococcal bacteriophages.
See more in PubMed
J Infect Dis. 2003 Feb 15;187(4):613-24 PubMed
Mol Microbiol. 2002 Apr;44(2):335-49 PubMed
Antimicrob Agents Chemother. 2006 Sep;50(9):2912-8 PubMed
Nucleic Acids Res. 2006;34(18):5021-31 PubMed
Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5174-9 PubMed
Virology. 1998 Jul 5;246(2):241-52 PubMed
FEMS Microbiol Lett. 1998 May 15;162(2):265-74 PubMed
Appl Environ Microbiol. 2006 Apr;72(4):3036-41 PubMed
Microbiol Mol Biol Rev. 1999 Dec;63(4):751-813, table of contents PubMed
Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7005-10 PubMed
Folia Microbiol (Praha). 2005;50(3):187-94 PubMed
Microbiology (Reading). 2002 Apr;148(Pt 4):985-1001 PubMed
J Bacteriol. 2004 May;186(9):2862-71 PubMed
Antimicrob Agents Chemother. 2005 Mar;49(3):1220-1 PubMed
Clin Exp Dermatol. 2005 Jan;30(1):23-6 PubMed
J Bacteriol. 2005 Oct;187(20):7161-4 PubMed
Folia Microbiol (Praha). 2006;51(3):236-8 PubMed
Antimicrob Agents Chemother. 2006 Apr;50(4):1268-75 PubMed
J Mol Biol. 1996 May 24;258(5):726-31 PubMed
Microbiol Rev. 1983 Sep;47(3):345-60 PubMed
Int J Dermatol. 2002 Jul;41(7):453-8 PubMed
Proteomics. 2007 Jan;7(1):64-72 PubMed
Z Med Mikrobiol Immunol. 1966;152(4):332-41 PubMed
GENBANK
AY842850, AY842851, EF136581, EF136582, EF136583, EF136584, EF136585, EF136586, EF136587, EF136588, EF136589