A new intelligent control strategy for CSTH temperature regulation based on the starfish optimization algorithm
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.10.03.01/00/22_003/0000048
European Union
TN02000025
National Centre for Energy II
101139527
European Union (Horizon Mission Programme)
PubMed
40210920
PubMed Central
PMC11985496
DOI
10.1038/s41598-025-96621-3
PII: 10.1038/s41598-025-96621-3
Knihovny.cz E-zdroje
- Klíčová slova
- Nonlinear continuous stirred-tank heater (CSTH), Starfish optimization algorithm (SFOA), Temperature control of highly nonlinear system, Two degrees of freedom-PID acceleration (2DOF-PIDA) controller,
- Publikační typ
- časopisecké články MeSH
Temperature regulation in nonlinear and highly dynamic processes such as the continuous stirred-tank heater (CSTH) is a challenging task due to the inherent system nonlinearities and disturbances. This study proposes a novel metaheuristic-driven control strategy, combining the two degrees of freedom-PID acceleration (2DOF-PIDA) controller with the recently developed starfish optimization algorithm (SFOA) for temperature control of the CSTH process. The 2DOF-PIDA controller enhances system performance by decoupling setpoint tracking and disturbance rejection, while the SFOA ensures optimal tuning of controller parameters by leveraging its powerful exploration and exploitation capabilities. Simulation results validate the effectiveness of the proposed approach, demonstrating improved tracking accuracy, disturbance rejection, and robustness compared to conventional methods. The combination of 2DOF-PIDA and SFOA provides a flexible and efficient solution for controlling highly nonlinear systems, with significant implications for industrial temperature regulation applications.
Applied Science Research Center Applied Science Private University Amman 11931 Jordan
College of Engineering University of Business and Technology Jeddah 21448 Saudi Arabia
Department of Computer Engineering Batman University Batman 72100 Turkey
Department of Electrical and Electronics Engineering Bursa Uludag University Bursa 16059 Turkey
Department of Electrical Engineering Graphic Era Dehradun 248002 India
Department of Mechanical Engineering Bursa Uludag University Bursa 16059 Turkey
ENET Centre CEET VSB Technical University of Ostrava Ostrava 708 00 Czech Republic
Faculty of Electrical Engineering Sahand University of Technology Tabriz Iran
Graphic Era Hill University Dehradun 248002 India
Jadara University Research Center Jadara University Irbid Jordan
University Research and Innovation Center Obuda University Budapest 1034 Hungary
Zobrazit více v PubMed
Song, Y., Zhang, B., Wen, C., Wang, D. & Wei, G. Model predictive control for complicated dynamic systems: a survey. Int. J. Syst. Sci.2025, 1–26 (2025).
Dhanasekar, R. & Vijayachitra, S. Modeling and control of non-linear CSTH process using hybrid optimized technique: optimal control of the csth process. J. Sci. Ind. Res. (JSIR)83(1), 34–45 (2024).
Jabari, M., Izci, D., Ekinci, S., Bajaj, M. & Zaitsev, I. Performance analysis of DC-DC Buck converter with innovative multi-stage PIDn (1 + PD) controller using GEO algorithm. Sci. Rep.14(1), 25612 (2024). PubMed PMC
Abdel-hamed, A. M., Abdelaziz, A. Y. & El-Shahat, A. Design of a 2DOF-PID control scheme for frequency/power regulation in a two-area power system using dragonfly algorithm with integral-based weighted goal objective. Energies16(1), 486 (2023).
Bhat, V. S., Indiran, T., Selvanathan, S. P. & Bhat, S. Designing multivariable PI controller with multi-response optimization for a pilot plant binary distillation column: a robust design approach. J. Eng. Des. Technol.23(1), 207–227 (2025).
Xiao, Y., Cui, H., Khurma, R. A. & Castillo, P. A. Artificial lemming algorithm: a novel bionic meta-heuristic technique for solving real-world engineering optimization problems. Artif. Intell. Rev.58(3), 84 (2025).
Zhong, C. et al. Starfish optimization algorithm (SFOA): a bio-inspired metaheuristic algorithm for global optimization compared with 100 optimizers. Neural Comput. Appl.2024, 1–43 (2024).
Agushaka, J. O. et al. Greater cane rat algorithm (GCRA): a nature-inspired metaheuristic for optimization problems, Heliyon (2024). PubMed PMC
Hashim, F. A., Houssein, E. H., Hussain, K., Mabrouk, M. S. & Al-Atabany, W. Honey Badger algorithm: new metaheuristic algorithm for solving optimization problems. Math. Comput. Simul.192, 84–110 (2022).
Abualigah, L. et al. Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput. Ind. Eng.157, 107250 (2021).
Ekinci, S., Izci, D., Abualigah, L. & Zitar, R. A. A modified oppositional chaotic local search strategy based Aquila optimizer to design an effective controller for vehicle cruise control system. J. Bionic Eng.20(4), 1828–1851 (2023).
Gao, T., Luo, H., Yin, S. & Kaynak, O. A recursive modified partial least square aided data-driven predictive control with application to continuous stirred tank heater. J. Process Control89, 108–118 (2020).
Mahmood, Q. A. & Nawaf, A. T. Performance analysis of continuous stirred tank heater by using PID-cascade controller. Mater. Today: Proc.42, 2545–2552 (2021).
Tao, M., Gao, T., Li, X. & Li, K. Broad learning aided model predictive control with application to continuous stirred tank heater. Front. Control Eng.2, 788492 (2021).
Wu, X. & Yang, X. A nonlinear subspace predictive control approach based on locally weighted projection regression, Electronics13(9), 1670 (2024).
Ang, G. J. N., Huang, L. & Lim, C. M. Artificial neural network-based controllers for a continuous stirred tank heater process. In 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV) 1414–1419 (IEEE, 2018).
Ahmed, J., Amin, S. H. & Fang, L. A multi-objective approach for designing a tire closed-loop supply chain network considering producer responsibility. Appl. Math. Model.115, 616–644 (2023).
Li, X. & Jiang, X. Teaching process control using the CSTH model. In 2018 International Conference on Advanced Control, Automation and Artificial Intelligence (ACAAI 2018) 163–167 (Atlantis Press, 2018).
Rojas, J. D., Arrieta, O. & Vilanova, R. Industrial PID Controller Tuning (Springer, 2021).
Alfaro, V. M. & Vilanova, R. Model-Reference Robust Tuning of PID Controllers (Springer, 2016).
Thornhill, N. F., Patwardhan, S. C. & Shah, S. L. A continuous stirred tank heater simulation model with applications. J. Process Control18, 3–4 (2008).
Eibeck, A., Shaocong, Z., Mei Qi, L. & Kraft, M. Research data supporting: A Simple and Efficient Approach to Unsupervised Instance Matching and its Application to Linked Data of Power Plants (2024).
Mann, G., Hu, B. G. & Gosine, R. Analysis and development of new PID controller tuning rules for first-order processes. IFAC Proc. Vol.30(25), 169–175 (1997).
Åström, K. J. & Hägglund, T. The future of PID control. Control Eng. Pract.9(11), 1163–1175 (2001).
Izci, D., Hekimoğlu, B. & Ekinci, S. A new artificial ecosystem-based optimization integrated with Nelder-Mead method for PID controller design of Buck converter. Alexandria Eng. J.61(3), 2030–2044 (2022).
Abdel-Basset, M., Mohamed, R., Zidan, M., Jameel, M. & Abouhawwash, M. Mantis search algorithm: a novel bio-inspired algorithm for global optimization and engineering design problems. Comput. Methods Appl. Mech. Eng.415, 116200 (2023).