Natural Alkaloids as Multi-Target Compounds towards Factors Implicated in Alzheimer's Disease
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/18_069/0010046
Ministry of Education Youth and Sports
PubMed
36901826
PubMed Central
PMC10003045
DOI
10.3390/ijms24054399
PII: ijms24054399
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, marine alkaloids, multi-target compounds, plant alkaloids,
- MeSH
- acetylcholinesterasa MeSH
- alkaloidy * farmakologie MeSH
- Alzheimerova nemoc * farmakoterapie MeSH
- cholinesterasové inhibitory farmakologie MeSH
- galantamin terapeutické užití MeSH
- lidé MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- alkaloidy * MeSH
- cholinesterasové inhibitory MeSH
- galantamin MeSH
Alzheimer's disease (AD) is the most common cause of dementia in elderly people; currently, there is no efficient treatment. Considering the increase in life expectancy worldwide AD rates are predicted to increase enormously, and thus the search for new AD drugs is urgently needed. A great amount of experimental and clinical evidence indicated that AD is a complex disorder characterized by widespread neurodegeneration of the CNS, with major involvement of the cholinergic system, causing progressive cognitive decline and dementia. The current treatment, based on the cholinergic hypothesis, is only symptomatic and mainly involves the restoration of acetylcholine (ACh) levels through the inhibition of acetylcholinesterase (AChE). Since the introduction of the Amaryllidaceae alkaloid galanthamine as an antidementia drug in 2001, alkaloids have been one of the most attractive groups for searching for new AD drugs. The present review aims to comprehensively summarize alkaloids of various origins as multi-target compounds for AD. From this point of view, the most promising compounds seem to be the β-carboline alkaloid harmine and several isoquinoline alkaloids since they can simultaneously inhibit several key enzymes of AD's pathophysiology. However, this topic remains open for further research on detailed mechanisms of action and the synthesis of potentially better semi-synthetic analogues.
Zobrazit více v PubMed
Erkkinen M.G., Kim M.O., Geschwind M.D. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol. 2018;10:a033118. doi: 10.1101/cshperspect.a033118. PubMed DOI PMC
Guo J., Cheng M., Liu P., Cao D., Luo J., Wan Y., Fang Y., Jin Y., Xie S.-S., Liu J. A multi-target directed ligands strategy for the treatment of Alzheimer’s disease: Dimethyl fumarate plus Tranilast modified Dithiocarbate as AChE inhibitor and Nrf2 activator. Eur. J. Med. Chem. 2022;242:114630. doi: 10.1016/j.ejmech.2022.114630. PubMed DOI
Wattmo C., Wallin Å.K. Early- versus late-onset Alzheimer’s disease in clinical practice: Cognitive and global outcomes over 3 years. Alzheimer’s Res. Ther. 2017;9:70. doi: 10.1186/s13195-017-0294-2. PubMed DOI PMC
Twohig D., Nielsen H.M. α-synuclein in the pathophysiology of Alzheimer’s disease. Mol. Neurodegener. 2019;14:23. doi: 10.1186/s13024-019-0320-x. PubMed DOI PMC
Alzheimer’s Association 2020 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2020;16:391–460. doi: 10.1002/alz.12068. DOI
Yiannopoulou K.G., Papageorgiou S.G. Current and Future Treatments in Alzheimer Disease: An Update. J. Cent. Nerv. Syst. Dis. 2020;12:1–12. doi: 10.1177/1179573520907397. PubMed DOI PMC
Cahlíková L., Vrabec R., Pidaný F., Peřinová R., Maafi N., Mamun A.A., Ritomská A., Wijaya V., Blunden G. Recent Progress on Biological Activity of Amaryllidaceae and Further Isoquinoline Alkaloids in Connection with Alzheimer’s Disease. Molecules. 2021;26:5240. doi: 10.3390/molecules26175240. PubMed DOI PMC
Forest K.H., Nichols R.A. Assessing Neuroprotective Agents for Aβ-Induced Neurotoxicity. Trends Mol. Med. 2019;25:685–695. doi: 10.1016/j.molmed.2019.05.013. PubMed DOI
Cahlíková L., Macáková K., Benešová N., Chlebek J., Hošťálková A., Opletal L. Chapter 6—Natural Compounds (Small Molecules) as Potential and Real Drugs of Alzheimer’s Disease: A Critical Review. In: Atta ur R., editor. Studies in Natural Products Chemistry. Volume 42. Elsevier; Amsterdam, The Netherlands: 2014. pp. 153–194. DOI
Selkoe D.J., Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016;8:595–608. doi: 10.15252/emmm.201606210. PubMed DOI PMC
Du X., Wang X., Geng M. Alzheimer’s disease hypothesis and related therapies. Transl. Neurodegener. 2018;7:2. doi: 10.1186/s40035-018-0107-y. PubMed DOI PMC
Hasselmo M.E., Anderson B.P., Bower J.M. Cholinergic modulation of cortical associative memory function. J. Neurophysiol. 1992;67:1230–1246. doi: 10.1152/jn.1992.67.5.1230. PubMed DOI
Hampel H., Mesulam M.M., Cuello A.C., Farlow M.R., Giacobini E., Grossberg G.T., Khachaturian A.S., Vergallo A., Cavedo E., Snyder P.J., et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141:1917–1933. doi: 10.1093/brain/awy132. PubMed DOI PMC
Silva T., Reis J., Teixeira J., Borges F. Alzheimer’s disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Res. Rev. 2014;15:116–145. doi: 10.1016/j.arr.2014.03.008. PubMed DOI
de Almeida J.P., Saldanha C. Nonneuronal cholinergic system in human erythrocytes: Biological role and clinical relevance. J. Membr. Biol. 2010;234:227–234. doi: 10.1007/s00232-010-9250-9. PubMed DOI
Ciro A., Park J., Burkhard G., Yan N., Geula C. Biochemical differentiation of cholinesterases from normal and Alzheimer’s disease cortex. Curr. Alzheimer Res. 2012;9:138–143. doi: 10.2174/156720512799015127. PubMed DOI PMC
García-Ayllón M.S., Silveyra M.X., Sáez-Valero J. Association between acetylcholinesterase and beta-amyloid peptide in Alzheimer’s cerebrospinal fluid. Chem. Biol. Interact. 2008;175:209–215. doi: 10.1016/j.cbi.2008.04.047. PubMed DOI
Sridhar G.R., Nirmala G., Apparao A., Madhavi A.S., Sreelatha S., Rani J.S., Vijayalakshmi P. Serum butyrylcholinesterase in type 2 diabetes mellitus: A biochemical and bioinformatics approach. Lipids Health Dis. 2005;4:18. doi: 10.1186/1476-511X-4-18. PubMed DOI PMC
Liston D.R., Nielsen J.A., Villalobos A., Chapin D., Jones S.B., Hubbard S.T., Shalaby I.A., Ramirez A., Nason D., White W.F. Pharmacology of selective acetylcholinesterase inhibitors: Implications for use in Alzheimer’s disease. Eur. J. Pharmacol. 2004;486:9–17. doi: 10.1016/j.ejphar.2003.11.080. PubMed DOI
Amat-ur-Rasool H., Ahmed M., Hasnain S., Carter W.G. Anti-Cholinesterase Combination Drug Therapy as a Potential Treatment for Alzheimer’s Disease. Brain Sci. 2021;11:184. doi: 10.3390/brainsci11020184. PubMed DOI PMC
Cheung J., Rudolph M.J., Burshteyn F., Cassidy M.S., Gary E.N., Love J., Franklin M.C., Height J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012;55:10282–10286. doi: 10.1021/jm300871x. PubMed DOI
Wang X.-J., Wu H.-X., Ye S.-S., Pan L., Qian Y. Expression of recombinant human acetylcholinesterase and its application in screening its inhibitors. Acta Pharm. Sin. 2014;49:50–54. PubMed
Wu C., Zhang G., Zhang Z.-W., Jiang X., Zhang Z., Li H., Qin H.-L., Tang W. Structure–activity relationship, in vitro and in vivo evaluation of novel dienyl sulphonyl fluorides as selective BuChE inhibitors for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem. 2021;36:1860–1873. doi: 10.1080/14756366.2021.1959571. PubMed DOI PMC
Murphy M.P., LeVine H., III Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis. 2010;19:311–323. doi: 10.3233/JAD-2010-1221. PubMed DOI PMC
Jin X., Wang M., Shentu J., Huang C., Bai Y., Pan H., Zhang D., Yuan Z., Zhang H., Xiao X., et al. Inhibition of acetylcholinesterase activity and β-amyloid oligomer formation by 6-bromotryptamine A, a multi-target anti-Alzheimer’s molecule. Oncol. Lett. 2020;19:1593–1601. doi: 10.3892/ol.2019.11226. PubMed DOI PMC
Soares C., das Ros L.U., da Rocha A.S., Machado L.S., Bellaver B., Zimmer E.R. The Glutamatergic System in Alzheimer’s Disease: A Systematic Review with Meta-Analysis. Alzheimer’s Dement. 2022;18:e064821. doi: 10.1002/alz.064821. DOI
Butterfield D.A., Pocernich C.B. The Glutamatergic System and Alzheimer’s Disease. CNS Drugs. 2003;17:641–652. doi: 10.2165/00023210-200317090-00004. PubMed DOI
Bukke V.N., Archana M., Villani R., Romano A.D., Wawrzyniak A., Balawender K., Orkisz S., Beggiato S., Serviddio G., Cassano T. The Dual Role of Glutamatergic Neurotransmission in Alzheimer’s Disease: From Pathophysiology to Pharmacotherapy. Int. J. Mol. Sci. 2020;21:7452. doi: 10.3390/ijms21207452. PubMed DOI PMC
O’Brien R.J., Wong P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 2011;34:185–204. doi: 10.1146/annurev-neuro-061010-113613. PubMed DOI PMC
de Paula V.J.R., Guimarães F.M., Diniz B.S., Forlenza O.V. Neurobiological pathways to Alzheimer’s disease: Amyloid-beta, TAU protein or both? Dement. Neuropsychol. 2009;3:188–194. doi: 10.1590/S1980-57642009DN30300003. PubMed DOI PMC
Chen G.-F., Xu T.-H., Yan Y., Zhou Y.-R., Jiang Y., Melcher K., Xu H.E. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 2017;38:1205–1235. doi: 10.1038/aps.2017.28. PubMed DOI PMC
Agis-Torres A., Sölhuber M., Fernandez M., Sanchez-Montero J.M. Multi-Target-Directed Ligands and other Therapeutic Strategies in the Search of a Real Solution for Alzheimer’s Disease. Curr. Neuropharmacol. 2014;12:2–36. doi: 10.2174/1570159X113116660047. PubMed DOI PMC
Medeiros R., Baglietto-Vargas D., LaFerla F.M. The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci. Ther. 2011;17:514–524. doi: 10.1111/j.1755-5949.2010.00177.x. PubMed DOI PMC
Li H.L., Wang H.H., Liu S.J., Deng Y.Q., Zhang Y.J., Tian Q., Wang X.C., Chen X.Q., Yang Y., Zhang J.Y., et al. Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc. Natl. Acad. Sci. USA. 2007;104:3591–3596. doi: 10.1073/pnas.0609303104. PubMed DOI PMC
Muralidar S., Ambi S.V., Sekaran S., Thirumalai D., Palaniappan B. Role of tau protein in Alzheimer’s disease: The prime pathological player. Int. J. Biol. Macromol. 2020;163:1599–1617. doi: 10.1016/j.ijbiomac.2020.07.327. PubMed DOI
Sabbagh J.J., Dickey C.A. The Metamorphic Nature of the Tau Protein: Dynamic Flexibility Comes at a Cost. Front. Neurosci. 2016;10:3. doi: 10.3389/fnins.2016.00003. PubMed DOI PMC
Woodgett J.R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 1990;9:2431–2438. doi: 10.1002/j.1460-2075.1990.tb07419.x. PubMed DOI PMC
Lee S.J., Chung Y.H., Joo K.M., Lim H.C., Jeon G.S., Kim D., Lee W.B., Kim Y.S., Cha C.I. Age-related changes in glycogen synthase kinase 3β (GSK3β) immunoreactivity in the central nervous system of rats. Neurosci. Lett. 2006;409:134–139. doi: 10.1016/j.neulet.2006.09.026. PubMed DOI
Lauretti E., Dincer O., Praticò D. Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Cell Res. 2020;1867:118664. doi: 10.1016/j.bbamcr.2020.118664. PubMed DOI PMC
Hooper C., Killick R., Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem. 2008;104:1433–1439. doi: 10.1111/j.1471-4159.2007.05194.x. PubMed DOI PMC
Liu S.L., Wang C., Jiang T., Tan L., Xing A., Yu J.T. The Role of Cdk5 in Alzheimer’s Disease. Mol. Neurobiol. 2016;53:4328–4342. doi: 10.1007/s12035-015-9369-x. PubMed DOI
Plattner F., Angelo M., Giese K.P. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J. Biol. Chem. 2006;281:25457–25465. doi: 10.1074/jbc.M603469200. PubMed DOI
Martinez A., Perez D.I. GSK-3 inhibitors: A ray of hope for the treatment of Alzheimer’s disease? J. Alzheimers Dis. 2008;15:181–191. doi: 10.3233/JAD-2008-15204. PubMed DOI
Cho H., Hah J.M. A Perspective on the Development of c-Jun N-terminal Kinase Inhibitors as Therapeutics for Alzheimer’s Disease: Investigating Structure through Docking Studies. Biomedicines. 2021;9:1431. doi: 10.3390/biomedicines9101431. PubMed DOI PMC
Yarza R., Vela S., Solas M., Ramirez M.J. c-Jun N-terminal Kinase (JNK) Signaling as a Therapeutic Target for Alzheimer’s Disease. Front. Pharmacol. 2015;6:321. doi: 10.3389/fphar.2015.00321. PubMed DOI PMC
Behl T., Kaur D., Sehgal A., Singh S., Sharma N., Zengin G., Andronie-Cioara F.L., Toma M.M., Bungau S., Bumbu A.G. Role of Monoamine Oxidase Activity in Alzheimer’s Disease: An Insight into the Therapeutic Potential of Inhibitors. Molecules. 2021;26:3724. doi: 10.3390/molecules26123724. PubMed DOI PMC
Schedin-Weiss S., Inoue M., Hromadkova L., Teranishi Y., Yamamoto N.G., Wiehager B., Bogdanovic N., Winblad B., Sandebring-Matton A., Frykman S., et al. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimer’s Res. Ther. 2017;9:57. doi: 10.1186/s13195-017-0279-1. PubMed DOI PMC
Adolfsson R., Gottfries C.G., Oreland L., Wiberg A., Winblad B. Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci. 1980;27:1029–1034. doi: 10.1016/0024-3205(80)90025-9. PubMed DOI
Zemek F., Drtinová L., Nepovimová E., Sepsova V., Korábečný J., Klimeš J., Kuča K. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf. 2014;13:759–774. doi: 10.1517/14740338.2014.914168. PubMed DOI
Marucci G., Buccioni M., Ben D.D., Lambertucci C., Volpini R., Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology. 2021;190:108352. doi: 10.1016/j.neuropharm.2020.108352. PubMed DOI
Woloshin S., Kesselheim A.S. What to Know About the Alzheimer Drug Aducanumab (Aduhelm) JAMA Intern. Med. 2022;182:892. doi: 10.1001/jamainternmed.2022.1039. PubMed DOI
Lalli G., Schott J.M., Hardy J., De Strooper B. Aducanumab: A new phase in therapeutic development for Alzheimer’s disease? EMBO Mol. Med. 2021;13:e14781. doi: 10.15252/emmm.202114781. PubMed DOI PMC
Mahase E. Three FDA advisory panel members resign over approval of Alzheimer’s drug. BMJ. 2021;373:n1503. doi: 10.1136/bmj.n1503. PubMed DOI
Gujral S.S., Shakeri A., Hejazi L., Rao P.P.N. Design, synthesis and structure-activity relationship studies of 3-phenylpyrazino [1,2-a]indol-1(2H)-ones as amyloid aggregation and cholinesterase inhibitors with antioxidant activity. Eur. J. Med. Chem. Rep. 2022;6:100075. doi: 10.1016/j.ejmcr.2022.100075. DOI
Reardon S. FDA approves Alzheimer’s drug lecanemab amid safety concerns. Nature. 2023;613:227–228. doi: 10.1038/d41586-023-00030-3. PubMed DOI
van Dyck C.H., Swanson C.J., Aisen P., Bateman R.J., Chen C., Gee M., Kanekiyo M., Li D., Reyderman L., Cohen S., et al. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023;388:9–21. doi: 10.1056/NEJMoa2212948. PubMed DOI
Panda S.S., Jhanji N. Natural Products as Potential Anti-Alzheimer Agents. Curr. Med. Chem. 2020;27:5887–5917. doi: 10.2174/0929867326666190618113613. PubMed DOI
Ahmed S., Khan T.S., Zargaham M.K., Khan A.U., Khan S., Hussain A., Uddin J., Khan A., Al-Harrasi A. Potential therapeutic natural products against Alzheimer’s disease with Reference of Acetylcholinesterase. Biomed. Pharmacother. 2021;139:111609. doi: 10.1016/j.biopha.2021.111609. PubMed DOI
Kong Y.R., Tay K.C., Su Y.X., Wong C.K., Tan W.N., Khaw K.Y. Potential of Naturally Derived Alkaloids as Multi-Targeted Therapeutic Agents for Neurodegenerative Diseases. Molecules. 2021;26:728. doi: 10.3390/molecules26030728. PubMed DOI PMC
Hügel H.M., de Silva N.H., Siddiqui A., Blanch E., Lingham A. Natural spirocyclic alkaloids and polyphenols as multi target dementia leads. Bioorg. Med. Chem. 2021;43:116270. doi: 10.1016/j.bmc.2021.116270. PubMed DOI
Roy A. A review on the alkaloids an important therapeutic compound from plants. Int. J. Plant Biotechnol. 2017;3:1–9.
Heinrich M., Mah J., Amirkia V. Alkaloids Used as Medicines: Structural Phytochemistry Meets Biodiversity—An Update and Forward Look. Molecules. 2021;26:1836. doi: 10.3390/molecules26071836. PubMed DOI PMC
Lima J.A., Hamerski L. Chapter 8—Alkaloids as Potential Multi-Target Drugs to Treat Alzheimer’s Disease. In: Atta ur R., editor. Studies in Natural Products Chemistry. Volume 61. Elsevier; Amsterdam, The Netherlands: 2019. pp. 301–334. DOI
Mondal A., Gandhi A., Fimognari C., Atanasov A.G., Bishayee A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur. J. Pharmacol. 2019;858:172472. doi: 10.1016/j.ejphar.2019.172472. PubMed DOI
Tilaoui M., Ait Mouse H., Zyad A. Update and New Insights on Future Cancer Drug Candidates From Plant-Based Alkaloids. Front. Pharmacol. 2021;12:719694. doi: 10.3389/fphar.2021.719694. PubMed DOI PMC
Yarnell E., Abascal K. Treating Hypertension Botanically. Altern. Complement. Ther. 2001;7:284–290. doi: 10.1089/107628001753312121. DOI
Dey P., Kundu A., Kumar A., Gupta M., Lee B., Bhakta T., Dash S., Kim N.-H. Chapter 15—Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids) In: Silva A.S., Nabavi S.F., Saeedi M., Nabavi S.M., editors. Recent Advances in Natural Products Analysis. Elsevier; Amsterdam, The Netherlands: 2020. pp. 505–567. DOI
Kashyap P., Kalaiselvan V., Kumar R., Kumar S. Ajmalicine and Reserpine: Indole Alkaloids as Multi-Target Directed Ligands Towards Factors Implicated in Alzheimer’s Disease. Molecules. 2020;25:1609. doi: 10.3390/molecules25071609. PubMed DOI PMC
Wiatrak B., Kubis-Kubiak A., Piwowar A., Barg E. PC12 Cell Line: Cell Types, Coating of Culture Vessels, Differentiation and Other Culture Conditions. Cells. 2020;9:958. doi: 10.3390/cells9040958. PubMed DOI PMC
Jiang B., Meng L., Zou N., Wang H., Li S., Huang L., Cheng X., Wang Z., Chen W., Wang C. Mechanism-based pharmacokinetics-pharmacodynamics studies of harmine and harmaline on neurotransmitters regulatory effects in healthy rats: Challenge on monoamine oxidase and acetylcholinesterase inhibition. Phytomedicine. 2019;62:152967. doi: 10.1016/j.phymed.2019.152967. PubMed DOI
Liu W., Liu X., Tian L., Gao Y., Liu W., Chen H., Jiang X., Xu Z., Ding H., Zhao Q. Design, synthesis and biological evaluation of harmine derivatives as potent GSK-3β/DYRK1A dual inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2021;222:113554. doi: 10.1016/j.ejmech.2021.113554. PubMed DOI
Zhao T., Ding K.-M., Zhang L., Cheng X.-M., Wang C.-H., Wang Z.-T. Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activities of β-Carboline and Quinoline Alkaloids Derivatives from the Plants of Genus Peganum. J. Chem. 2013;2013:717232. doi: 10.1155/2013/717232. DOI
Wang J., Shi Z.-Q., Zhang M., Xin G.-Z., Pang T., Zhou P., Chen J., Qi L.-W., Yang H., Xu X., et al. Camptothecin and its Analogs Reduce Amyloid-β Production and Amyloid-β42-Induced IL-1β Production. J. Alzheimer’s Dis. 2015;43:465–477. doi: 10.3233/JAD-140078. PubMed DOI
Song Y., Kesuma D., Wang J., Deng Y., Duan J., Wang J.H., Qi R.Z. Specific inhibition of cyclin-dependent kinases and cell proliferation by harmine. Biochem. Biophys. Res. Commun. 2004;317:128–132. doi: 10.1016/j.bbrc.2004.03.019. PubMed DOI
Vucicevic J., Nikolic K., Dobričić V., Agbaba D. Prediction of blood–brain barrier permeation of α-adrenergic and imidazoline receptor ligands using PAMPA technique and quantitative-structure permeability relationship analysis. Eur. J. Pharm. Sci. 2015;68:94–105. doi: 10.1016/j.ejps.2014.12.014. PubMed DOI
Yang Y., Cheng X., Liu W., Chou G., Wang Z., Wang C. Potent AChE and BChE inhibitors isolated from seeds of Peganum harmala Linn by a bioassay-guided fractionation. J. Ethnopharmacol. 2015;168:279–286. doi: 10.1016/j.jep.2015.03.070. PubMed DOI
Song Y., Wang J., Teng S.F., Kesuma D., Deng Y., Duan J., Wang J.H., Qi R.Z., Sim M.M. β-Carbolines as specific inhibitors of cyclin-Dependent kinases. Bioorg. Med. Chem. Lett. 2002;12:1129–1132. doi: 10.1016/S0960-894X(02)00094-X. PubMed DOI
Pharmaceutical Formulations and Compounds Such as Harmine, Harmaline, Harmane or Harmalol for Use in Alleviating Conditions Related to Down’s Syndrome. Intellectual Property Office; Newport, UK: 2008.
Vijayalakshmi V., Lele J.V., Daginawala H.F. Effect of reserpine on the monoamine oxidase (MAO) activity in rat liver and brain. Biochem. Pharmacol. 1978;27:1985–1986. doi: 10.1016/0006-2952(78)90020-5. PubMed DOI
Mak S., Luk W.W.K., Cui W., Hu S., Tsim K.W.K., Han Y. Synergistic Inhibition on Acetylcholinesterase by the Combination of Berberine and Palmatine Originally Isolated from Chinese Medicinal Herbs. J. Mol. Neurosci. 2014;53:511–516. doi: 10.1007/s12031-014-0288-5. PubMed DOI
Jung H.A., Min B.-S., Yokozawa T., Lee J.-H., Kim Y.S., Choi J.S. Anti-Alzheimer and antioxidant activities of coptidis Rhizoma alkaloids. Biol. Pharm. Bull. 2009;32:1433–1438. doi: 10.1248/bpb.32.1433. PubMed DOI
Brunhofer G., Fallarero A., Karlsson D., Batista-Gonzalez A., Shinde P., Gopi Mohan C., Vuorela P. Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: The case of chelerythrine. Bioorg. Med. Chem. 2012;20:6669–6679. doi: 10.1016/j.bmc.2012.09.040. PubMed DOI
Hošťálková A., Maříková J., Opletal L., Korábečný J., Hulcová D., Kuneš J., Nováková L., Perez D.I., Jun D., Kučera T., et al. Isoquinoline Alkaloids from Berberis vulgaris as Potential Lead Compounds for the Treatment of Alzheimer’s Disease. J. Nat. Prod. 2019;82:239–248. doi: 10.1021/acs.jnatprod.8b00592. PubMed DOI
Carradori S., D’Ascenzio M., Chimenti P., Secci D., Bolasco A. Selective MAO-B inhibitors: A lesson from natural products. Mol. Divers. 2014;18:219–243. doi: 10.1007/s11030-013-9490-6. PubMed DOI
Fischer H., Kansy M., Avdeef A., Senner F. Permeation of permanently positive charged molecules through artificial membranes—Influence of physico-chemical properties. Eur. J. Pharm. Sci. 2007;31:32–42. doi: 10.1016/j.ejps.2007.02.001. PubMed DOI
Plazas E., Hagenow S., Avila Murillo M., Stark H., Cuca L.E. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorg. Chem. 2020;98:103722. doi: 10.1016/j.bioorg.2020.103722. PubMed DOI
Zhang Y., Wang Q., Liu R., Zhou H., Crommen J., Moaddel R., Jiang Z., Zhang T. Rapid screening and identification of monoamine oxidase-A inhibitors from Corydalis Rhizome using enzyme-immobilized magnetic beads based method. J. Chromatogr. A. 2019;1592:1–8. doi: 10.1016/j.chroma.2019.01.062. PubMed DOI
Baek S.C., Ryu H.W., Kang M.G., Lee H., Park D., Cho M.L., Oh S.R., Kim H. Selective inhibition of monoamine oxidase A by chelerythrine, an isoquinoline alkaloid. Bioorg. Med. Chem. Lett. 2018;28:2403–2407. doi: 10.1016/j.bmcl.2018.06.023. PubMed DOI
Davies S.P., Reddy H., Caivano M., Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 2000;351:95–105. doi: 10.1042/bj3510095. PubMed DOI PMC
Arya U., Dwivedi H., Subramaniam J.R. Reserpine ameliorates Aβ toxicity in the Alzheimer’s disease model in Caenorhabditis elegans. Exp. Gerontol. 2009;44:462–466. doi: 10.1016/j.exger.2009.02.010. PubMed DOI
Link C.D. Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA. 1995;92:9368–9372. doi: 10.1073/pnas.92.20.9368. PubMed DOI PMC
Herraiz T., González D., Ancín-Azpilicueta C., Arán V.J., Guillén H. beta-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO) Food Chem. Toxicol. 2010;48:839–845. doi: 10.1016/j.fct.2009.12.019. PubMed DOI
Zhang L., Li D., Yu S. Pharmacological effects of harmine and its derivatives: A review. Arch. Pharm. Res. 2020;43:1259–1275. doi: 10.1007/s12272-020-01283-6. PubMed DOI
He D., Wu H., Wei Y., Liu W., Huang F., Shi H., Zhang B., Wu X., Wang C. Effects of harmine, an acetylcholinesterase inhibitor, on spatial learning and memory of APP/PS1 transgenic mice and scopolamine-induced memory impairment mice. Eur. J. Pharmacol. 2015;768:96–107. doi: 10.1016/j.ejphar.2015.10.037. PubMed DOI
Li S.-P., Wang Y.-W., Qi S.-L., Zhang Y.-P., Deng G., Ding W.-Z., Ma C., Lin Q.-Y., Guan H.-D., Liu W., et al. Analogous β-Carboline Alkaloids Harmaline and Harmine Ameliorate Scopolamine-Induced Cognition Dysfunction by Attenuating Acetylcholinesterase Activity, Oxidative Stress, and Inflammation in Mice. Front. Pharmacol. 2018;9:346. doi: 10.3389/fphar.2018.00346. PubMed DOI PMC
Ai X., Yu P., Peng L., Luo L., Liu J., Li S., Lai X., Luan F., Meng X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front. Pharmacol. 2021;12:762654. doi: 10.3389/fphar.2021.762654. PubMed DOI PMC
Neag M.A., Mocan A., Echeverría J., Pop R.M., Bocsan C.I., Crişan G., Buzoianu A.D. Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders. Front. Pharmacol. 2018;9:557. doi: 10.3389/fphar.2018.00557. PubMed DOI PMC
Imenshahidi M., Hosseinzadeh H. Berberis vulgaris and Berberine: An Update Review. Phytother. Res. 2016;30:1745–1764. doi: 10.1002/ptr.5693. PubMed DOI
Imenshahidi M., Hosseinzadeh H. Berberine and barberry (Berberis vulgaris): A clinical review. Phytother. Res. 2019;33:504–523. doi: 10.1002/ptr.6252. PubMed DOI
Shang X.-F., Yang C.-J., Morris-Natschke S.L., Li J.-C., Yin X.-D., Liu Y.-Q., Guo X., Peng J.-W., Goto M., Zhang J.-Y., et al. Biologically active isoquinoline alkaloids covering 2014–2018. Med. Res. Rev. 2020;40:2212–2289. doi: 10.1002/med.21703. PubMed DOI PMC
Cheng Z., Kang C., Che S., Su J., Sun Q., Ge T., Guo Y., Lv J., Sun Z., Yang W., et al. Berberine: A Promising Treatment for Neurodegenerative Diseases. Front. Pharmacol. 2022;13:845591. doi: 10.3389/fphar.2022.845591. PubMed DOI PMC
Akbar M., Shabbir A., Rehman K., Akash M.S.H., Shah M.A. Neuroprotective potential of berberine in modulating Alzheimer’s disease via multiple signaling pathways. J. Food Biochem. 2021;45:e13936. doi: 10.1111/jfbc.13936. PubMed DOI
Cai Z., Wang C., Yang W. Role of berberine in Alzheimer’s disease. Neuropsychiatr. Dis. Treat. 2016;12:2509–2520. doi: 10.2147/NDT.S114846. PubMed DOI PMC
Yuan N.N., Cai C.Z., Wu M.Y., Su H.X., Li M., Lu J.H. Neuroprotective effects of berberine in animal models of Alzheimer’s disease: A systematic review of pre-clinical studies. BMC Complement. Altern. Med. 2019;19:109. doi: 10.1186/s12906-019-2510-z. PubMed DOI PMC
Ji H.-F., Shen L. Berberine: A Potential Multipotent Natural Product to Combat Alzheimer’s Disease. Molecules. 2011;16:6732–6740. doi: 10.3390/molecules16086732. PubMed DOI PMC
Singh K.A., Singh K.S., Nandi K.M., Mishra G., Maurya A., Rai A., Rai K.G., Awasthi R., Sharma B., Kulkarni T.G. Berberine: A Plant-derived Alkaloid with Therapeutic Potential to Combat Alzheimer’s disease. Cent. Nerv. Syst. Agents Med. Chem. 2019;19:154–170. doi: 10.2174/1871524919666190820160053. PubMed DOI
Durairajan S.S., Liu L.F., Lu J.H., Chen L.L., Yuan Q., Chung S.K., Huang L., Li X.S., Huang J.D., Li M. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol. Aging. 2012;33:2903–2919. doi: 10.1016/j.neurobiolaging.2012.02.016. PubMed DOI
Zhu F., Qian C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer’s disease. BMC Neurosci. 2006;7:78. doi: 10.1186/1471-2202-7-78. PubMed DOI PMC
Kalalian-Moghaddam H., Baluchnejadmojarad T., Roghani M., Goshadrou F., Ronaghi A. Hippocampal synaptic plasticity restoration and anti-apoptotic effect underlie berberine improvement of learning and memory in streptozotocin-diabetic rats. Eur. J. Pharmacol. 2013;698:259–266. doi: 10.1016/j.ejphar.2012.10.020. PubMed DOI
Ghareeb D.A., Khalil S., Hafez H.S., Bajorath J., Ahmed H.E.A., Sarhan E., Elwakeel E., El-Demellawy M.A. Berberine Reduces Neurotoxicity Related to Nonalcoholic Steatohepatitis in Rats. Evid.-Based Complement. Altern. Med. 2015;2015:361847. doi: 10.1155/2015/361847. PubMed DOI PMC
Lee B., Sur B., Shim I., Lee H., Hahm D.-H. Phellodendron amurense and Its Major Alkaloid Compound, Berberine Ameliorates Scopolamine-Induced Neuronal Impairment and Memory Dysfunction in Rats. Korean J. Physiol. Pharmacol. 2012;16:79–89. doi: 10.4196/kjpp.2012.16.2.79. PubMed DOI PMC
Bhutada P., Mundhada Y., Bansod K., Tawari S., Patil S., Dixit P., Umathe S., Mundhada D. Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin-induced diabetes. Behav. Brain Res. 2011;220:30–41. doi: 10.1016/j.bbr.2011.01.022. PubMed DOI
Huang M., Jiang X., Liang Y., Liu Q., Chen S., Guo Y. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer’s disease. Exp. Gerontol. 2017;91:25–33. doi: 10.1016/j.exger.2017.02.004. PubMed DOI
Ye C., Liang Y., Chen Y., Xiong Y., She Y., Zhong X., Chen H., Huang M. Berberine Improves Cognitive Impairment by Simultaneously Impacting Cerebral Blood Flow and β-Amyloid Accumulation in an APP/tau/PS1 Mouse Model of Alzheimer’s Disease. Cells. 2021;10:1161. doi: 10.3390/cells10051161. PubMed DOI PMC
Shaker F.H., El-Derany M.O., Wahdan S.A., El-Demerdash E., El-Mesallamy H.O. Berberine ameliorates doxorubicin-induced cognitive impairment (chemobrain) in rats. Life Sci. 2021;269:119078. doi: 10.1016/j.lfs.2021.119078. PubMed DOI
Panahi N., Mahmoudian M., Mortazavi P., Hashjin G.S. Effects of berberine on β-secretase activity in a rabbit model of Alzheimer’s disease. Arch. Med. Sci. 2013;9:146–150. doi: 10.5114/aoms.2013.33354. PubMed DOI PMC
Zhang H., Zhao C., Cao G., Guo L., Zhang S., Liang Y., Qin C., Su P., Li H., Zhang W. Berberine modulates amyloid-β peptide generation by activating AMP-activated protein kinase. Neuropharmacology. 2017;125:408–417. doi: 10.1016/j.neuropharm.2017.08.013. PubMed DOI
Zhu F., Wu F., Ma Y., Liu G., Li Z., Sun Y.A., Pei Z. Decrease in the production of beta-amyloid by berberine inhibition of the expression of beta-secretase in HEK293 cells. BMC Neurosci. 2011;12:125. doi: 10.1186/1471-2202-12-125. PubMed DOI PMC
He W., Wang C., Chen Y., He Y., Cai Z. Berberine attenuates cognitive impairment and ameliorates tau hyperphosphorylation by limiting the self-perpetuating pathogenic cycle between NF-κB signaling, oxidative stress and neuroinflammation. Pharmacol. Rep. 2017;69:1341–1348. doi: 10.1016/j.pharep.2017.06.006. PubMed DOI
Chen Y., Chen Y., Liang Y., Chen H., Ji X., Huang M. Berberine mitigates cognitive decline in an Alzheimer’s Disease Mouse Model by targeting both tau hyperphosphorylation and autophagic clearance. Biomed. Pharmacother. 2020;121:109670. doi: 10.1016/j.biopha.2019.109670. PubMed DOI
Yu G., Li Y., Tian Q., Liu R., Wang Q., Wang J.-Z., Wang X. Berberine Attenuates Calyculin A-Induced Cytotoxicity and Tau Hyperphosphorylation in HEK293 Cells. J. Alzheimer’s Dis. 2011;24:525–535. doi: 10.3233/JAD-2011-101779. PubMed DOI
Zhang Z., Li X., Li F., An L. Berberine alleviates postoperative cognitive dysfunction by suppressing neuroinflammation in aged mice. Int. Immunopharmacol. 2016;38:426–433. doi: 10.1016/j.intimp.2016.06.031. PubMed DOI
Deng H., Jia Y., Pan D., Ma Z. Berberine alleviates rotenone-induced cytotoxicity by antioxidation and activation of PI3K/Akt signaling pathway in SH-SY5Y cells. Neuroreport. 2020;31:41–47. doi: 10.1097/WNR.0000000000001365. PubMed DOI
Wang X., Wang R., Xing D., Su H., Ma C., Ding Y., Du L. Kinetic difference of berberine between hippocampus and plasma in rat after intravenous administration of Coptidis rhizoma extract. Life Sci. 2005;77:3058–3067. doi: 10.1016/j.lfs.2005.02.033. PubMed DOI
Meng F.-C., Wu Z.-F., Yin Z.-Q., Lin L.-G., Wang R., Zhang Q.-W. Coptidis rhizoma and its main bioactive components: Recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin. Med. 2018;13:13. doi: 10.1186/s13020-018-0171-3. PubMed DOI PMC
Kim D.K., Lee K.T., Baek N.-I., Kim S.-H., Park H.W., Lim J.P., Shin T.Y., Eom D.O., Yang J.H., Eun J.S. Acetylcholinesterase inhibitors from the aerial parts of Corydalis speciosa. Arch. Pharm. Res. 2004;27:1127–1131. doi: 10.1007/BF02975117. PubMed DOI
Xiao H.-T., Peng J., Liang Y., Yang J., Bai X., Hao X.-Y., Yang F.-M., Sun Q.-Y. Acetylcholinesterase inhibitors from Corydalis yanhusuo. Nat. Prod. Res. 2011;25:1418–1422. doi: 10.1080/14786410802496911. PubMed DOI
Dhingra D., Kumar V. Memory-Enhancing Activity of Palmatine in Mice Using Elevated Plus Maze and Morris Water Maze. Adv. Pharmacol. Sci. 2012;2012:357368. doi: 10.1155/2012/357368. PubMed DOI PMC
Kiris I., Kukula-Koch W., Karayel-Basar M., Gurel B., Coskun J., Baykal A.T. Proteomic alterations in the cerebellum and hippocampus in an Alzheimer’s disease mouse model: Alleviating effect of palmatine. Biomed. Pharmacother. 2023;158:114111. doi: 10.1016/j.biopha.2022.114111. PubMed DOI
Jia W., Su Q., Cheng Q., Peng Q., Qiao A., Luo X., Zhang J., Wang Y. Neuroprotective Effects of Palmatine via the Enhancement of Antioxidant Defense and Small Heat Shock Protein Expression in Aβ-Transgenic Caenorhabditis elegans. Oxid. Med. Cell. Longev. 2021;2021:9966223. doi: 10.1155/2021/9966223. PubMed DOI PMC
Jeon S.J., Kwon K.J., Shin S., Lee S.H., Rhee S.Y., Han S.-H., Lee J., Kim H.Y., Cheong J.H., Ryu J.H., et al. Inhibitory effects of Coptis japonica alkaloids on the LPS-induced activation of BV2 microglial cells. Biomol. Ther. 2009;17:70–78. doi: 10.4062/biomolther.2009.17.1.70. DOI
Long J., Song J., Zhong L., Liao Y., Liu L., Li X. Palmatine: A review of its pharmacology, toxicity and pharmacokinetics. Biochimie. 2019;162:176–184. doi: 10.1016/j.biochi.2019.04.008. PubMed DOI
Wianowska D., Garbaczewska S., Cieniecka–Roslonkiewicz A., Typek R., Dawidowicz A.L. Chemical composition and antifungal activity of Chelidonium majus extracts—Antagonistic action of chelerythrine and sanguinarine against Botrytis cinerea. Chem. Ecol. 2018;34:582–594. doi: 10.1080/02757540.2018.1462345. DOI
Rouleau J., Iorga B.I., Guillou C. New potent human acetylcholinesterase inhibitors in the tetracyclic triterpene series with inhibitory potency on amyloid β aggregation. Eur. J. Med. Chem. 2011;46:2193–2205. doi: 10.1016/j.ejmech.2011.02.073. PubMed DOI
Catto M., Aliano R., Carotti A., Cellamare S., Palluotto F., Purgatorio R., De Stradis A., Campagna F. Design, synthesis and biological evaluation of indane-2-arylhydrazinylmethylene-1,3-diones and indol-2-aryldiazenylmethylene-3-ones as β-amyloid aggregation inhibitors. Eur. J. Med. Chem. 2010;45:1359–1366. doi: 10.1016/j.ejmech.2009.12.029. PubMed DOI
Mayer A.M.S., Glaser K.B., Cuevas C., Jacobs R.S., Kem W., Little R.D., McIntosh J.M., Newman D.J., Potts B.C., Shuster D.E. The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends Pharmacol. Sci. 2010;31:255–265. doi: 10.1016/j.tips.2010.02.005. PubMed DOI
Huyck T.K., Gradishar W., Manuguid F., Kirkpatrick P. Eribulin mesylate. Nat. Rev. Drug Discov. 2011;10:173–174. doi: 10.1038/nrd3389. PubMed DOI
Gribble G.W. Biological Activity of Recently Discovered Halogenated Marine Natural Products. Mar. Drugs. 2015;13:4044–4136. doi: 10.3390/md13074044. PubMed DOI PMC
Sakai R., Swanson G.T. Recent progress in neuroactive marine natural products. Nat. Prod. Rep. 2014;31:273–309. doi: 10.1039/c3np70083f. PubMed DOI PMC
Hafez Ghoran S., Kijjoa A. Marine-Derived Compounds with Anti-Alzheimer’s Disease Activities. Mar. Drugs. 2021;19:410. doi: 10.3390/md19080410. PubMed DOI PMC
Turk T., Maček P., Šuput D. Inhibition of acetylcholinesterase by a pseudozoanthoxanthin-like compound isolated from the zoanthid Parazoanthus axinellae (O. Schmidt) Toxicon. 1995;33:133–142. doi: 10.1016/0041-0101(94)00153-Y. PubMed DOI
Stachel S.J., Coburn C.A., Rush D., Jones K.L.G., Zhu H., Rajapakse H., Graham S.L., Simon A., Katharine Holloway M., Allison T.J., et al. Discovery of aminoheterocycles as a novel beta-secretase inhibitor class: pH dependence on binding activity part 1. Bioorg. Med. Chem. Lett. 2009;19:2977–2980. doi: 10.1016/j.bmcl.2009.04.033. PubMed DOI
Vitale R.M., Rispoli V., Desiderio D., Sgammato R., Thellung S., Canale C., Vassalli M., Carbone M., Ciavatta M.L., Mollo E., et al. In Silico Identification and Experimental Validation of Novel Anti-Alzheimer’s Multitargeted Ligands from a Marine Source Featuring a “2-Aminoimidazole plus Aromatic Group” Scaffold. ACS Chem. Neurosci. 2018;9:1290–1303. doi: 10.1021/acschemneuro.7b00416. PubMed DOI
Galante D., Ruggeri F.S., Dietler G., Pellistri F., Gatta E., Corsaro A., Florio T., Perico A., D’Arrigo C. A critical concentration of N-terminal pyroglutamylated amyloid beta drives the misfolding of Ab1-42 into more toxic aggregates. Int. J. Biochem. Cell Biol. 2016;79:261–270. doi: 10.1016/j.biocel.2016.08.037. PubMed DOI
Galante D., Corsaro A., Florio T., Vella S., Pagano A., Sbrana F., Vassalli M., Perico A., D’Arrigo C. Differential toxicity, conformation and morphology of typical initial aggregation states of Aβ1-42 and Aβpy3-42 beta-amyloids. Int. J. Biochem. Cell Biol. 2012;44:2085–2093. doi: 10.1016/j.biocel.2012.08.010. PubMed DOI
Bartolini M., Naldi M., Fiori J., Valle F., Biscarini F., Nicolau D.V., Andrisano V. Kinetic characterization of amyloid-beta 1-42 aggregation with a multimethodological approach. Anal. Biochem. 2011;414:215–225. doi: 10.1016/j.ab.2011.03.020. PubMed DOI
Rispoli V., Rotiroti D., Carelli V., Liberatore F., Scipione L., Marra R., Tortorella S., Di Rienzo B. Electroencephalographic effects induced by choline pivaloyl esters in scopolamine-treated or nucleus basalis magnocellularis lesioned rats. Pharmacol. Biochem. Behav. 2004;78:667–673. doi: 10.1016/j.pbb.2004.04.031. PubMed DOI
Rispoli V., Ragusa S., Nisticò R., Marra R., Russo E., Leo A., Felicitá V., Rotiroti D. Huperzine A restores cortico-hippocampal functional connectivity after bilateral AMPA lesion of the nucleus basalis of Meynert. J. Alzheimer’s Dis. 2013;35:833–846. doi: 10.3233/JAD-130278. PubMed DOI
Loaëc N., Attanasio E., Villiers B., Durieu E., Tahtouh T., Cam M., Davis R.A., Alencar A., Roué M., Bourguet-Kondracki M.-L., et al. Marine-Derived 2-Aminoimidazolone Alkaloids. Leucettamine B-Related Polyandrocarpamines Inhibit Mammalian and Protozoan DYRK & CLK Kinases. Mar. Drugs. 2017;15:316. doi: 10.3390/md15100316. PubMed DOI PMC
Cheng Z.Q., Song J.L., Zhu K., Zhang J., Jiang C.S., Zhang H. Total Synthesis of Pulmonarin B and Design of Brominated Phenylacetic Acid/Tacrine Hybrids: Marine Pharmacophore Inspired Discovery of New ChE and Aβ Aggregation Inhibitors. Mar. Drugs. 2018;16:293. doi: 10.3390/md16090293. PubMed DOI PMC
Meijer L., Thunnissen A.M., White A.W., Garnier M., Nikolic M., Tsai L.H., Walter J., Cleverley K.E., Salinas P.C., Wu Y.Z., et al. Inhibition of cyclin-dependent kinases, GSK-3β and CK1 by hymenialdisine, a marine sponge constituent. Chem. Biol. 2000;7:51–63. doi: 10.1016/S1074-5521(00)00063-6. PubMed DOI
Alonso D., Castro A., Martinez A. Marine compounds for the therapeutic treatment of neurological disorders. Expert Opin. Ther. Pat. 2005;15:1377–1386. doi: 10.1517/13543776.15.10.1377. DOI
Gompel M., Leost M., De Kier Joffe E.B., Puricelli L., Franco L.H., Palermo J., Meijer L. Meridianins, a new family of protein kinase inhibitors isolated from the ascidian Aplidium meridianum. Bioorg. Med. Chem. Lett. 2004;14:1703–1707. doi: 10.1016/j.bmcl.2004.01.050. PubMed DOI
Núñez-Pons L., Carbone M., Vázquez J., Rodríguez J., Nieto R.M., Varela M.M., Gavagnin M., Avila C. Natural products from Antarctic colonial ascidians of the genera Aplidium and Synoicum: Variability and defensive role. Mar. Drugs. 2012;10:1741–1764. doi: 10.3390/md10081741. PubMed DOI PMC
Llorach-Pares L., Rodriguez-Urgelles E., Nonell-Canals A., Alberch J., Avila C., Sanchez-Martinez M., Giralt A. Meridianins and Lignarenone B as Potential GSK3β Inhibitors and Inductors of Structural Neuronal Plasticity. Biomolecules. 2020;10:639. doi: 10.3390/biom10040639. PubMed DOI PMC
Rodríguez-Urgellés E., Sancho-Balsells A., Chen W., López-Molina L., Ballasch I., Del Castillo I., Avila C., Alberch J., Giralt A. Meridianins Rescue Cognitive Deficits, Spine Density and Neuroinflammation in the 5xFAD Model of Alzheimer’s Disease. Front. Pharmacol. 2022;13:791666. doi: 10.3389/fphar.2022.791666. PubMed DOI PMC
Tadesse M., Svenson J., Sepčić K., Trembleau L., Engqvist M., Andersen J.H., Jaspars M., Stensvåg K., Haug T. Isolation and Synthesis of Pulmonarins A and B, Acetylcholinesterase Inhibitors from the Colonial Ascidian Synoicum pulmonaria. J. Nat. Prod. 2014;77:364–369. doi: 10.1021/np401002s. PubMed DOI
Rahbæk L., Breinholt J. Circumdatins D, E, and F: Further Fungal Benzodiazepine Analogues from Aspergillus ochraceus. J. Nat. Prod. 1999;62:904–905. doi: 10.1021/np980495u. PubMed DOI
Cui C.-M., Li X.-M., Li C.-S., Sun H.-F., Gao S.-S., Wang B.-G. Benzodiazepine Alkaloids from Marine-Derived Endophytic Fungus Aspergillus ochraceus. Helv. Chim. Acta. 2009;92:1366–1370. doi: 10.1002/hlca.200900084. DOI
Zhang C., Hu L., Liu D., Huang J., Lin W. Circumdatin D Exerts Neuroprotective Effects by Attenuating LPS-Induced Pro-Inflammatory Responses and Downregulating Acetylcholinesterase Activity In Vitro and In Vivo. Front. Pharmacol. 2020;11:760. doi: 10.3389/fphar.2020.00760. PubMed DOI PMC
Xin L., Yamujala R., Wang Y., Wang H., Wu W.H., Lawton M.A., Long C., Di R. Acetylcholinestarase-inhibiting alkaloids from Lycoris radiata delay paralysis of amyloid beta-expressing transgenic C. elegans CL4176. PLoS ONE. 2013;8:e63874. doi: 10.1371/journal.pone.0063874. PubMed DOI PMC