Recent Progress on Biological Activity of Amaryllidaceae and Further Isoquinoline Alkaloids in Connection with Alzheimer's Disease

. 2021 Aug 29 ; 26 (17) : . [epub] 20210829

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34500673

Grantová podpora
GA UK 328121; SVV UK 260 548 Grantová Agentura, Univerzita Karlova
reg. No. CZ.02.1.01/0.0/0.0/18_069/0010046 Ministerstvo Školství, Mládeže a Tělovýchovy

Alzheimer's disease (AD) is a progressive age-related neurodegenerative disease recognized as the most common form of dementia among elderly people. Due to the fact that the exact pathogenesis of AD still remains to be fully elucidated, the treatment is only symptomatic and available drugs are not able to modify AD progression. Considering the increase in life expectancy worldwide, AD rates are predicted to increase enormously, and thus the search for new AD drugs is urgently needed. Due to their complex nitrogen-containing structures, alkaloids are considered to be promising candidates for use in the treatment of AD. Since the introduction of galanthamine as an antidementia drug in 2001, Amaryllidaceae alkaloids (AAs) and further isoquinoline alkaloids (IAs) have been one of the most studied groups of alkaloids. In the last few years, several compounds of new structure types have been isolated and evaluated for their biological activity connected with AD. The present review aims to comprehensively summarize recent progress on AAs and IAs since 2010 up to June 2021 as potential drugs for the treatment of AD.

Zobrazit více v PubMed

Marešová P., Klímová B., Novotný M., Kuča K. Alzheimer’s and Parkinson’s diseases: Expected economic impact on Europe—A call for a Uniform European Strategy. J. Alzheimers Dis. 2016;54:1123–1133. doi: 10.3233/JAD-160484. PubMed DOI

Silva T., Reis J., Teixeira J., Borges F. Alzheimer’s disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Res. Rev. 2014;15:116–145. doi: 10.1016/j.arr.2014.03.008. PubMed DOI

Ballard C., Gauthier S., Corbett A., Brayne C., Aarsland D., Jones E. Alzheimer’s disease. Lancet. 2011;377:1019–1031. doi: 10.1016/S0140-6736(10)61349-9. PubMed DOI

Nichols E., Szoeke C., Vollset S., Abbasi N., Abd-Allah F., Ebro J., Aichour M., Akinyemi R., Alahdab F., Asgedom S., et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:88–106. doi: 10.1016/S1474-4422(18)30403-4. PubMed DOI PMC

Hardy J., Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science. 2002;297:353–356. doi: 10.1126/science.1072994. PubMed DOI

Mehta D.C., Short J.L., Hilmer S.N., Nicolazzo J.A. Drug access to the central nervous system in Alzheimer’s disease: Preclinical and clinical insights. Pharm. Res. 2015;32:819–839. doi: 10.1007/s11095-014-1522-0. PubMed DOI

Anand R., Gill K.D., Mahdi A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology. 2014;76:27–50. doi: 10.1016/j.neuropharm.2013.07.004. PubMed DOI

Dubey H., Gulati K., Ray A. Recent studies on cellular and molecular mechanisms in Alzheimer’s disease: Focus on epigenetic factors and histone deacetylase. Rev. Neurosci. 2018;29:241–260. doi: 10.1515/revneuro-2017-0049. PubMed DOI

Hampel H., Schneider L.S., Giacobini E., Kivipelto M., Sindi S., Dubois B., Broich K., Nisticò R., Aisen P.S., Lista S. Advances in the therapy of Alzheimer’s disease: Targeting amyloid beta and tau and perspectives for the future. Expert Rev. Neurother. 2015;15:83–105. doi: 10.1586/14737175.2015.995637. PubMed DOI

Garcia M.L., Cleveland D.W. Going new places using an old MAP: Tau, microtubules and human neurodegenerative disease. Curr. Opin. Cell Biol. 2001;13:41–48. doi: 10.1016/S0955-0674(00)00172-1. PubMed DOI

Hampel H., Mesulam M.M., Cuello A.C., Farlow M.R., Giacobini E., Grossberg G.T., Khachaturian A.S., Vergallo A., Cavedo E., Snyder P.J., et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141:1917–1933. doi: 10.1093/brain/awy132. PubMed DOI PMC

De Almeida J.P., Saldanha C. Nonneuronal cholinergic system in human erythrocytes: Biological role and clinical relevance. J. Membr. Biol. 2010;234:227–234. doi: 10.1007/s00232-010-9250-9. PubMed DOI

Cahlíková L., Macáková K., Benešová N., Chlebek J., Hošťálková A., Opletal L. Chapter 6—Natural compounds (small molecules) as potential and real drugs of Alzheimer’s disease: A critical review. In: Rahman A., editor. Studies in Natural Products Chemistry. 1st ed. Volume 42. Elsevier; Oxford, UK: 2014. pp. 153–194.

Ciro A., Park J., Burkhard G., Yan N., Geula C. Biochemical differentiation of cholinesterases from normal and Alzheimer’s disease cortex. Curr. Alzheimer Res. 2012;9:138–143. doi: 10.2174/156720512799015127. PubMed DOI PMC

García-Ayllón M.S., Silveyra M.X., Sáez-Valero J. Association between acetylcholinesterase and beta-amyloid peptide in Alzheimer’s cerebrospinal fluid. Chem. Biol. Interact. 2008;175:209–215. doi: 10.1016/j.cbi.2008.04.047. PubMed DOI

Sridhar G.R., Nirmala G., Apparao A., Madhavi A.S., Sreelatha S., Rani J.S., Vijayalakshmi P. Serum butyrylcholinesterase in type 2 diabetes mellitus: A biochemical and bioinformatics approach. Lipids Health Dis. 2005;4:18. doi: 10.1186/1476-511X-4-18. PubMed DOI PMC

Paz M.L., Barrantes F.J. Autoimmune attack of the neuromuscular junction in myasthenia gravis: Nicotinic acetylcholine receptors and other targets. ACS Chem. Neurosci. 2019;10:2186–2194. doi: 10.1021/acschemneuro.9b00041. PubMed DOI

Bajgar J. Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004;38:151–216. doi: 10.1016/s0065-2423(04)38006-6. PubMed DOI

Wang R., Reddy P.H. Role of glutamate and NMDA receptors in Alzheimer’s disease. J. Alzheimers Dis. 2017;57:1041–1048. doi: 10.3233/JAD-160763. PubMed DOI PMC

Kornhuber J., Wiltfang J. The role of glutamate in dementia. J. Neural. Transm. Suppl. 1998;53:277–287. doi: 10.1007/978-3-7091-6467-9_24. PubMed DOI

Hernández F., Avila J. The role of glycogen synthase kinase 3 in the early stages of Alzheimer’s disease. FEBS Lett. 2008;582:3848–3854. doi: 10.1016/j.febslet.2008.10.026. PubMed DOI

Hooper C., Killick R., Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem. 2008;104:1433–1439. doi: 10.1111/j.1471-4159.2007.05194.x. PubMed DOI PMC

Plattner F., Angelo M., Giese K.P. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J. Biol. Chem. 2006;281:25457–25465. doi: 10.1074/jbc.M603469200. PubMed DOI

Martinez A., Perez D.I. GSK-3 inhibitors: A ray of hope for the treatment of Alzheimer’s disease? J. Alzheimers Dis. 2008;15:181–191. doi: 10.3233/JAD-2008-15204. PubMed DOI

Cai Z. Monoamine oxidase inhibitors: Promising therapeutic agents for Alzheimer’s disease (Review) Mol. Med. Rep. 2014;9:1533–1541. doi: 10.3892/mmr.2014.2040. PubMed DOI

Ramsay R.R., Popovic-Nikolic M.R., Nikolic K., Uliassi E., Bolognesi M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 2018;7:3. doi: 10.1186/s40169-017-0181-2. PubMed DOI PMC

Schedin-Weiss S., Inoue M., Hromádková L., Teranishi Y., Yamamoto N.G., Wiehager B., Bogdanovic N., Winblad B., Sandebring-Matton A., Frykman S., et al. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers Res. Ther. 2017;9:57. doi: 10.1186/s13195-017-0279-1. PubMed DOI PMC

Svarcbahs R., Jäntti M., Kilpeläinen T., Julku U.H., Urvas L., Kivioja S., Norrbacka S., Myöhänen T.T. Prolyl oligopeptidase inhibition activates autophagy via protein phosphatase 2A. Pharmacol. Res. 2020;151:104558. doi: 10.1016/j.phrs.2019.104558. PubMed DOI

Szeltner Z., Polgár L. Structure, function and biological relevance of prolyl oligopeptidase. Curr. Protein Pept. Sci. 2008;9:96–107. doi: 10.2174/138920308783565723. PubMed DOI

Laitinen K.S., van Groen T., Tanila H., Venäläinen J., Männistö P.T., Alafuzoff I. Brain prolyl oligopeptidase activity is associated with neuronal damage rather than beta-amyloid accumulation. Neuroreport. 2001;12:3309–3312. doi: 10.1097/00001756-200110290-00032. PubMed DOI

García-Horsman J.A., Männistö P.T., Venäläinen J.I. On the role of prolyl oligopeptidase in health and disease. Neuropeptides. 2007;41:1–24. doi: 10.1016/j.npep.2006.10.004. PubMed DOI

Zemek F., Drtinová L., Nepovimová E., Šepsová V., Korábečný J., Klimeš J., Kuča K. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf. 2014;13:759–774. doi: 10.1517/14740338.2014.914168. PubMed DOI

Matsunaga S., Kishi T., Iwata N. Combination therapy with cholinesterase inhibitors and memantine for Alzheimer’s disease: A systematic review and meta-analysis. Int. J. Neuropsychopharmacol. 2014;18:pyu115. doi: 10.1016/j.jalz.2014.05.1710. PubMed DOI PMC

Lalli G., Schott J.M., Hardy J., De Strooper B. Aducanumab: A new phase in therapeutic development for Alzheimer’s disease? EMBO Mol. Med. 2021;13:e14781. doi: 10.15252/emmm.202114781. PubMed DOI PMC

Mahase E. Three FDA advisory panel members resign over approval of Alzheimer’s drug. BMJ. 2021;373:n1503. doi: 10.1136/bmj.n1503. PubMed DOI

Servick K. Alzheimer’s drug approval spotlights blood tests. Science. 2021;373:373–374. doi: 10.1126/science.373.6553.373. PubMed DOI

Wang S., Dong G., Sheng C. Structural simplification of natural products. Chem. Rev. 2019;119:4180–4220. doi: 10.1021/acs.chemrev.8b00504. PubMed DOI

Konrath E.L., Passos Cdos S., Klein L.C., Jr., Henriques A.T. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol. 2013;65:1701–1725. doi: 10.1111/jphp.12090. PubMed DOI

Murray A., Faraoni M., Castro M., Alza N., Cavallaro V. Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Curr. Neuropharmacol. 2013;11:388–413. doi: 10.2174/1570159X11311040004. PubMed DOI PMC

Dos Santos T.C., Gomes T.M., Pinto B.A.S., Camara A.L., Paes A.M.D.A. Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Front. Pharmacol. 2018;9:1192. doi: 10.3389/fphar.2018.01192. PubMed DOI PMC

Moodie L.W.K., Sepčić K., Turk T., Frangež R., Svenson J. Natural cholinesterase inhibitors from marine organisms. Nat. Prod. Rep. 2019;36:1053–1092. doi: 10.1039/C9NP00010K. PubMed DOI

Panda S.S., Jhanji N. Natural products as potential anti-Alzheimer agents. Curr. Med. Chem. 2020;27:5887–5917. doi: 10.2174/0929867326666190618113613. PubMed DOI

Svendsen A.B., Verpoorte R., editors. Chromatography of Alkaloids. Volume 23A. Elsevier; Amsterdam, The Netherlands: 1983. Chapter 4—Isolation of alkaloids; pp. 51–58.

Lee K.T. Quantitative isolation of alkaloids from plant materials. Nature. 1960;188:65–66. doi: 10.1038/188065a0. PubMed DOI

Sasidharan S., Chen Y., Saravanan D., Sundram K.M., Latha L.Y. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med. 2011;8:1–10. doi: 10.4314/ajtcam.v8i1.60483. PubMed DOI PMC

Maldoni B. Alkaloids: Isolation and purification. J. Chem. Educ. 1991;68:700–703. doi: 10.1021/ed068p700. DOI

Kornienko A., Evidente A. Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chem. Rev. 2008;108:1982–2014. doi: 10.1021/cr078198u. PubMed DOI PMC

Cahlíková L., Breiterová K., Opletal L. Chemistry and biological activity of alkaloids from the genus Lycoris (Amaryllidaceae) Molecules. 2020;25:4797. doi: 10.3390/molecules25204797. PubMed DOI PMC

Berkov S., Osorio E., Viladomat F., Bastida J. Chapter Two—Chemodiversity, chemotaxonomy and chemoecology of Amaryllidaceae alkaloids. In: Knölker H.J., editor. The Alkaloids: Chemistry and Biology. Volume 83. Academic Press; Cambridge, MA, USA: 2020. pp. 113–185. PubMed

Xu T., Chen W., Zhou J., Dai J., Li Y., Zhao Y. Virtual screening for reactive natural products and their probable artifacts of solvolysis and oxidation. Biomolecules. 2020;10:1486. doi: 10.3390/biom10111486. PubMed DOI PMC

Jin A., Li X., Zhu Y.Y., Yu H.Y., Pi H.F., Zhang P., Ruan H.L. Four new compounds from the bulbs of Lycoris aurea with neuroprotective effects against CoCl₂ and H₂O₂-induced SH-SY5Y cell injuries. Arch. Pharm. Res. 2014;37:315–323. doi: 10.1007/s12272-013-0188-1. PubMed DOI

Maltese F., van der Kooy F., Verpoorte R. Solvent derived artifacts in natural products chemistry. Nat. Prod. Commun. 2009;4:447–454. doi: 10.1177/1934578X0900400326. PubMed DOI

Miana G.A. Tertiary dihydroprotoberberine alkaloids of Berberis lycium. Phytochemistry. 1973;12:1822–1823. doi: 10.1016/0031-9422(73)80415-7. DOI

Kilgore M.B., Kutchan T.M. The Amaryllidaceae alkaloids: Biosynthesis and methods for enzyme discovery. Phytochem. Rev. 2016;15:317–337. doi: 10.1007/s11101-015-9451-z. PubMed DOI PMC

Nair J.J., Wilhelm A., Bonnet S.L., van Staden J. Antibacterial constituents of the plant family Amaryllidaceae. Bioorg. Med. Chem. Lett. 2017;27:4943–4951. doi: 10.1016/j.bmcl.2017.09.052. PubMed DOI

Al Mamun A., Maříková J., Hulcová D., Janoušek J., Šafratová M., Nováková L., Kučera T., Hrabinová M., Kuneš J., Korábečný J., et al. Amaryllidaceae alkaloids of belladine-type from Narcissus pseudonarcissus cv. carlton as new selective inhibitors of butyrylcholinesterase. Biomolecules. 2020;10:800. doi: 10.3390/biom10050800. PubMed DOI PMC

Fulton B., Benfield P. Galanthamine. Drugs Aging. 1996;9:60–65. doi: 10.2165/00002512-199609010-00006. PubMed DOI

Raskind M.A., Peskind E.R., Wessel T., Yuan W. Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 Study Group. Neurology. 2000;54:2261–2268. doi: 10.1212/WNL.54.12.2261. PubMed DOI

Kotra L.P., Park J. 5.14—Therapeutic approaches to MS and other neurodegenerative diseases. In: Chackalamannil S., Rotella D., Ward S.E., editors. Comprehensive Medicinal Chemistry III. Elsevier; Oxford, UK: 2017. pp. 439–473.

López S., Bastida J., Viladomat F., Codina C. Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts. Life Sci. 2002;71:2521–2529. doi: 10.1016/S0024-3205(02)02034-9. PubMed DOI

Šafratová M., Hošťálková A., Hulcová D., Breiterová K., Hrabcová V., Machado M., Fontinha D., Prudêncio M., Kuneš J., Chlebek J., et al. Alkaloids from Narcissus poeticus cv. Pink Parasol of various structural types and their biological activity. Arch. Pharm. Res. 2018;41:208–218. doi: 10.1007/s12272-017-1000-4. PubMed DOI

Hulcová D., Maříková J., Korábečný J., Hošťálková A., Jun D., Kuneš J., Chlebek J., Opletal L., De Simone A., Nováková L., et al. Amaryllidaceae alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as potential drugs in treatment of Alzheimer’s disease. Phytochemistry. 2019;165:112055. doi: 10.1016/j.phytochem.2019.112055. PubMed DOI

Kohelová E., Maříková J., Korábečný J., Hulcová D., Kučera T., Jun D., Chlebek J., Jenčo J., Šafratová M., Hrabinová M., et al. Alkaloids of Zephyranthes citrina (Amaryllidaceae) and their implication to Alzheimer’s disease: Isolation, structural elucidation and biological activity. Bioorg. Chem. 2021;107:104567. doi: 10.1016/j.bioorg.2020.104567. PubMed DOI

Maříková J., Mamun A.A., Shammari L.A., Korábečný J., Kučera T., Hulcová D., Kuneš J., Malaník M., Vašková M., Kohelová E., et al. Structure elucidation and cholinesterase inhibition activity of two new minor Amaryllidaceae alkaloids. Molecules. 2021;26:1279. doi: 10.3390/molecules26051279. PubMed DOI PMC

Sibanyoni M.N., Chaudhary S.K., Chen W., Adhami H.-R., Combrinck S., Maharaj V., Schuster D., Viljoen A. Isolation, in vitro evaluation and molecular docking of acetylcholinesterase inhibitors from South African Amaryllidaceae. Fitoterapia. 2020;146:104650. doi: 10.1016/j.fitote.2020.104650. PubMed DOI

Vaněčková N., Hošťálková A., Šafratová M., Kuneš J., Hulcová D., Hrabinová M., Doskočil I., Štěpánková Š., Opletal L., Nováková L., et al. Isolation of Amaryllidaceae alkaloids from Nerine bowdenii W. Watson and their biological activities. RSC Adv. 2016;6:80114–80120. doi: 10.1039/C6RA20205E. DOI

Elgorashi E.E., Stafford G.I., van Staden J. Acetylcholinesterase enzyme inhibitory effects of Amaryllidaceae alkaloids. Planta Med. 2004;70:260–262. doi: 10.1055/s-2004-818919. PubMed DOI

Nair J.J., Aremu A.O., van Staden J. Isolation of narciprimine from Cyrtanthus contractus (Amaryllidaceae) and evaluation of its acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 2011;137:1102–1106. doi: 10.1016/j.jep.2011.07.028. PubMed DOI

Orhan I.E., Senol Deniz F.S., Eren G., Sener B. Molecular approach to promising cholinesterase inhibitory effect of several Amaryllidaceae alkaloids: Further re-investigation. S. Afr. J. Bot. 2021;136:175–181. doi: 10.1016/j.sajb.2020.03.017. DOI

Zhu Y.Y., Li X., Yu H.Y., Xiong Y.F., Zhang P., Pi H.F., Ruan H.L. Alkaloids from the bulbs of Lycoris longituba and their neuroprotective and acetylcholinesterase inhibitory activities. Arch. Pharm. Res. 2015;38:604–613. doi: 10.1007/s12272-014-0397-2. PubMed DOI

Cahlíková L., Hrabinová M., Kulhánková A., Benešová N., Chlebek J., Jun D., Novák Z., Macáková K., Kuneš J., Kuča K., et al. Alkaloids from Chlidanthus fragrans and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase activities. Nat. Prod. Commun. 2013;8:1541–1544. doi: 10.1177/1934578X1300801110. PubMed DOI

Hulcová D., Breiterová K., Siatka T., Klímová K., Davani L., Šafratová M., Hošťálková A., De Simone A., Andrisano V., Cahlíková L. Amaryllidaceae alkaloids as potential glycogen synthase kinase-3β inhibitors. Molecules. 2018;23:719. doi: 10.3390/molecules23040719. PubMed DOI PMC

Al Shammari L., Hulcová D., Maříková J., Kučera T., Šafratová M., Nováková L., Schmidt M., Pulkrábková L., Janoušek J., Soukup O., et al. Amaryllidaceae alkaloids from Hippeastrum X hybridum cv. Ferrari, and preparation of vittatine derivatives as potential ligands for Alzheimer’s disease. S. Afr. J. Bot. 2020:137–146. doi: 10.1016/j.sajb.2020.06.024. DOI

Šafratová M., Novák Z., Kulhánková A., Kuneš J., Hrabinová M., Jun D., Macákova K., Opletal L., Cahlíková L. Revised NMR data for 9-O-demethylgalanthine: An alkaloid from Zephyranthes robusta (Amaryllidaceae) and its biological activity. Nat. Prod. Commun. 2014;9:787–788. doi: 10.1177/1934578X1400900614. PubMed DOI

Tarrago T., Kichik N., Seguí J., Giralt E. The natural product berberine is a human prolyl oligopeptidase inhibitor. ChemMedChem. 2007;2:354–359. doi: 10.1002/cmdc.200600303. PubMed DOI

Muehlbacher M., Spitzer G.M., Liedl K.R., Kornhuber J. Qualitative prediction of blood-brain barrier permeability on a large and refined dataset. J. Comput. Aided Mol. Des. 2011;25:1095–1106. doi: 10.1007/s10822-011-9478-1. PubMed DOI PMC

Di L., Kerns E.H., Fan K., McConnell O.J., Carter G.T. High throughput artificial membrane permeability assay for blood–brain barrier. Eur. J. Med. Chem. 2003;38:223–232. doi: 10.1016/S0223-5234(03)00012-6. PubMed DOI

Zenaro E., Piacentino G., Constantin G. The blood-brain barrier in Alzheimer’s disease. Neurobiol. Dis. 2017;107:41–56. doi: 10.1016/j.nbd.2016.07.007. PubMed DOI PMC

Carmona-Viglianco F., Zaragoza-Puchol D., Parravicini O., Garro A., Enriz R.D., Feresin G.E., Kurina-Sanz M., Orden A.A. Synthesis, biological evaluation and molecular modeling studies of substituted N-benzyl-2-phenylethanamines as cholinesterase inhibitors. N. J. Chem. 2020;44:9466–9476. doi: 10.1039/D0NJ00282H. DOI

Mamun A.A., Pidaný F., Hulcová D., Maříková J., Kučera T., Schmidt M., Catapano M.C., Hrabinová M., Jun D., Múčková L., et al. Amaryllidaceae alkaloids of norbelladine-type as inspiration for development of highly selective butyrylcholinesterase inhibitors: Synthesis, biological activity evaluation, and docking studies. Int. J. Mol. Sci. 2021;22:8308. doi: 10.3390/ijms22158308. PubMed DOI PMC

Wu W.M., Zhu Y.Y., Li H.R., Yu H.Y., Zhang P., Pi H.F., Ruan H.L. Two new alkaloids from the bulbs of Lycoris sprengeri. J. Asian Nat. Prod. Res. 2014;16:192–199. doi: 10.1080/10286020.2013.864639. PubMed DOI

Trujillo-Chacón L.M., Alarcón-Enos J.E., Céspedes-Acuña C.L., Bustamante L., Baeza M., López M.G., Fernández-Mendívil C., Cabezas F., Pastene-Navarrete E.R. Neuroprotective activity of isoquinoline alkaloids from of Chilean Amaryllidaceae plants against oxidative stress-induced cytotoxicity on human neuroblastoma SH-SY5Y cells and mouse hippocampal slice culture. Food Chem. Toxicol. 2019;132:110665. doi: 10.1016/j.fct.2019.110665. PubMed DOI

Cortes N., Posada-Duque R.A., Alvarez R., Alzate F., Berkov S., Cardona-Gómez G.P., Osorio E. Neuroprotective activity and acetylcholinesterase inhibition of five Amaryllidaceae species: A comparative study. Life Sci. 2015;122:42–50. doi: 10.1016/j.lfs.2014.12.011. PubMed DOI

Ibrakaw A.S., Omoruyi S.I., Ekpo O.E., Hussein A.A. Neuroprotective activities of Boophone haemanthoides (Amaryllidaceae) extract and its chemical constituents. Molecules. 2020;25:5376. doi: 10.3390/molecules25225376. PubMed DOI PMC

Yang E.J., Park G.H., Song K.S. Neuroprotective effects of liquiritigenin isolated from licorice roots on glutamate-induced apoptosis in hippocampal neuronal cells. Neurotoxicology. 2013;39:114–123. doi: 10.1016/j.neuro.2013.08.012. PubMed DOI

Niedzielska E., Smaga I., Gawlik M., Moniczewski A., Stankowicz P., Pera J., Filip M. Oxidative stress in neurodegenerative diseases. Mol. Neurobiol. 2016;53:4094–4125. doi: 10.1007/s12035-015-9337-5. PubMed DOI PMC

Traykova M., Traykov T., Hadjimitova V., Krikorian K., Bojadgieva N. Antioxidant properties of galantamine hydrobromide. Z. Naturforsch. C J. Biosci. 2003;58:361–365. doi: 10.1515/znc-2003-5-613. PubMed DOI

Bakhtiari M., Panahi Y., Ameli J., Darvishi B. Protective effects of flavonoids against Alzheimer’s disease-related neural dysfunctions. Biomed. Pharmacother. 2017;93:218–229. doi: 10.1016/j.biopha.2017.06.010. PubMed DOI

Cortes N., Castañeda C., Osorio E.H., Cardona-Gomez G.P., Osorio E. Amaryllidaceae alkaloids as agents with protective effects against oxidative neural cell injury. Life Sci. 2018;203:54–65. doi: 10.1016/j.lfs.2018.04.026. PubMed DOI

Hoang T.H.X., Ho D.V., Van Phan K., Le Q.V., Raal A., Nguyen H.T. Effects of Hippeastrum reticulatum on memory, spatial learning and object recognition in a scopolamine-induced animal model of Alzheimer’s disease. Pharm. Biol. 2020;58:1107–1113. doi: 10.1080/13880209.2020.1841810. PubMed DOI PMC

Cortes N., Sabogal-Guaqueta A.M., Cardona-Gomez G.P., Osorio E. Neuroprotection and improvement of the histopathological and behavioral impairments in a murine Alzheimer’s model treated with Zephyranthes carinata alkaloids. Biomed. Pharmacother. 2019;110:482–492. doi: 10.1016/j.biopha.2018.12.013. PubMed DOI

Bisset N.G. Plants as a source of isoquinoline alkaloids. In: Phillipson J.D., Roberts M.F., Zenk M.H., editors. The Chemistry and Biology of Isoquinoline Alkaloids. Proceedings in Life Sciences. Springer; Berlin/Heidelberg, Germany: 1985. pp. 1–22.

Kukula-Koch W.A., Widelski J. Chapter 9—Alkaloids. In: Badal S., Delgoda R., editors. Pharmacognosy: Fundamentals, Applications and Strategies. Academic Press; Cambridge, MA, USA: 2017. pp. 163–198.

Ingkaninan K., Phengpa P., Yuenyongsawad S., Khorana N. Acetylcholinesterase inhibitors from Stephania venosa tuber. J. Pharm. Pharmacol. 2006;58:695–700. doi: 10.1211/jpp.58.5.0015. PubMed DOI

Hung T.M., Nguyen H.D., Kim J.C., Jang H.S., Ryoo S.W., Lee J.H., Choi J.S., Bae K.H., Min B.S. Alkaloids from roots of Stephania rotunda and their cholinesterase inhibitory activity. Planta Med. 2010;76:1762–1764. doi: 10.1055/s-0030-1249814. PubMed DOI

Huang Q.Q., Bi J.L., Sun Q.Y., Yang F.M., Wang Y.H., Tang G.H., Zhao F.W., Wang H., Xu J.J., Kennelly E.J., et al. Bioactive isoquinoline alkaloids from Corydalis saxicola. Planta Med. 2012;78:65–70. doi: 10.1055/s-0031-1280126. PubMed DOI

Hošťálková A., Maříková J., Opletal L., Korábečná J., Hulcová D., Kuneš J., Nováková L., Perez D.I., Jun D., Kučera T., et al. Isoquinoline alkaloids from Berberis vulgaris as potential lead compounds for the treatment of Alzheimer’s disease. J. Nat. Prod. 2019;82:239–248. doi: 10.1021/acs.jnatprod.8b00592. PubMed DOI

Nachon F., Carletti E., Ronco C., Trovaslet M., Nicolet Y., Jean L., Renard P.Y. Crystal structures of human cholinesterases in complex with huprine W and tacrine: Elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyryl-cholinesterase. Biochem. J. 2013;453:393–399. doi: 10.1042/BJ20130013. PubMed DOI

Zhao C., Su P., Lv C., Guo L., Cao G., Qin C., Zhang W. Berberine alleviates amyloid β-induced mitochondrial dysfunction and synaptic loss. Oxid. Med. Cell. Longev. 2019;2019:7593608. doi: 10.1155/2019/7593608. PubMed DOI PMC

Wai A., Yeung A.W.K., Erdogan Orhan I., Aggarwal B., Battino M., Belwal T., Bishayee A., Daglia M., Devkota H., El-Demerdash A., et al. Berberine, a popular dietary supplement for human and animal health: Quantitative research literature analysis—A review. Anim. Sci. Pap. Rep. 2020;38:5–19.

Chen Y., Chen Y., Liang Y., Chen H., Ji X., Huang M. Berberine mitigates cognitive decline in an Alzheimer’s Disease Mouse Model by targeting both tau hyperphosphorylation and autophagic clearance. Biomed. Pharmacother. 2020;121:109670. doi: 10.1016/j.biopha.2019.109670. PubMed DOI

Dahua F., Liping L., Zhengzhi W., Meiqun C. Combating neurodegenerative diseases with the plant alkaloid berberine: Molecular mechanisms and therapeutic potential. Curr. Neuropharmacol. 2019;17:563–579. doi: 10.2174/1570159X16666180419141613. PubMed DOI PMC

Cai Z., Wang C., Yang W. Role of berberine in Alzheimer’s disease. Neuropsychiatr. Dis. Treat. 2016;12:2509–2520. doi: 10.2147/NDT.S114846. PubMed DOI PMC

Liang Y., Huang M., Jiang X., Liu Q., Chang X., Guo Y. The neuroprotective effects of Berberine against amyloid β-protein-induced apoptosis in primary cultured hippocampal neurons via mitochondria-related caspase pathway. Neurosci. Lett. 2017;655:46–53. doi: 10.1016/j.neulet.2017.06.048. PubMed DOI

Huang M., Jiang X., Liang Y., Liu Q., Chen S., Guo Y. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer’s disease. Exp. Gerontol. 2017;91:25–33. doi: 10.1016/j.exger.2017.02.004. PubMed DOI

Ahmed T., Gilani A.H., Abdollahi M., Daglia M., Nabavi S.F., Nabavi S.M. Berberine and neurodegeneration: A review of literature. Pharmacol. Rep. 2015;67:970–979. doi: 10.1016/j.pharep.2015.03.002. PubMed DOI

Ji H.F., Shen L. Berberine: A potential multipotent natural product to combat Alzheimer’s disease. Molecules. 2011;16:6732–6740. doi: 10.3390/molecules16086732. PubMed DOI PMC

Long J., Song J., Zhong L., Liao Y., Liu L., Li X. Palmatine: A review of its pharmacology, toxicity and pharmacokinetics. Biochimie. 2019;162:176–184. doi: 10.1016/j.biochi.2019.04.008. PubMed DOI

Zhang J., Zhang C., Xu F.C., Quesheng, Zhang Q.Y., Tu P.F., Liang H. Cholinesterase inhibitory isoquinoline alkaloids from Corydalis mucronifera. Phytochemistry. 2019;159:199–207. doi: 10.1016/j.phytochem.2018.11.019. PubMed DOI

Zhang J., Zhang Q.Y., Tu P.F., Xu F.C., Liang H. Mucroniferanines A–G, isoquinoline alkaloids from Corydalis mucronifera. J. Nat. Prod. 2018;81:364–370. doi: 10.1021/acs.jnatprod.7b00847. PubMed DOI

Plazas E., Hagenow S., Avila Murillo M., Stark H., Cuca L.E. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorg. Chem. 2020;98:103722. doi: 10.1016/j.bioorg.2020.103722. PubMed DOI

Cahlíková L., Opletal L., Kurfürst M., Macáková K., Kulhánková A., Hošťálková A. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Chelidonium majus (Papaveraceae) Nat. Prod. Commun. 2010;5:1751–1754. doi: 10.1177/1934578X1000501110. PubMed DOI

Baek S.C., Ryu H.W., Kang M.G., Lee H., Park D., Cho M.L., Oh S.R., Kim H. Selective inhibition of monoamine oxidase A by chelerythrine, an isoquinoline alkaloid. Bioorg. Med. Chem. Lett. 2018;28:2403–2407. doi: 10.1016/j.bmcl.2018.06.023. PubMed DOI

Brunhofer G., Fallarero A., Karlsson D., Batista-Gonzalez A., Shinde P., Gopi Mohan C., Vuorela P. Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: The case of chelerythrine. Bioorg. Med. Chem. 2012;20:6669–6679. doi: 10.1016/j.bmc.2012.09.040. PubMed DOI

Chlebek J., Simone A., Hošťálková A., Opletal L., Perez C., Perez D., Havlíková L., Cahlíková L., Andrisano V. Application of BACE1 immobilized enzyme reactor for the characterization of multifunctional alkaloids from Corydalis cava (Fumariaceae) as Alzheimer’s disease targets. Fitoterapia. 2016;109:241–247. doi: 10.1016/j.fitote.2016.01.008. PubMed DOI

Chlebek J., Macáková K., Cahlíková L., Kurfürst M., Kuneš J., Opletal L. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava (Fumariaceae) Nat. Prod. Commun. 2011;6:607–610. doi: 10.1177/1934578X1100600507. PubMed DOI

Siatka T., Adamcová M., Opletal L., Cahlíková L., Jun D., Hrabinová M., Kuneš J., Chlebek J. Cholinesterase and prolyl oligopeptidase inhibitory activities of alkaloids from Argemone platyceras (Papaveraceae) Molecules. 2017;22:1181. doi: 10.3390/molecules22071181. PubMed DOI PMC

Cahlíková L., Macáková K., Kuneš J., Kurfürst M., Opletal L., Cvačka J., Chlebek J., Blunden G. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Eschscholzia californica (Papaveraceae) Nat. Prod. Commun. 2010;5:1035–1038. doi: 10.1177/1934578X1000500710. PubMed DOI

Hošťálková A., Opletal L., Kuneš J., Novák Z., Hrabinová M., Chlebek J., Čegan L., Cahlíková L. Alkaloids from Peumus boldus and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase inhibition activity. Nat. Prod. Commun. 2015;10:577–580. doi: 10.1177/1934578X1501000410. PubMed DOI

Chlebek J., Novák Z., Kassemová D., Šafratová M., Kostelník J., Malý L., Ločárek M., Opletal L., Hošťálková A., Hrabinová M., et al. Isoquinoline alkaloids from Fumaria officinalis L. and their biological activities related to Alzheimer’s disease. Chem. Biodivers. 2016;13:91–99. doi: 10.1002/cbdv.201500033. PubMed DOI

Cahlíková L., Hulová L., Hrabinová M., Chlebek J., Hošťálková A., Adamcová M., Šafratová M., Jun D., Opletal L., Ločárek M., et al. Isoquinoline alkaloids as prolyl oligopeptidase inhibitors. Fitoterapia. 2015;103:192–196. doi: 10.1016/j.fitote.2015.04.004. PubMed DOI

Toušek J., Dommisse R., Dostál J., Žák Z., Pieters L., Marek R. Configurations and conformations of sanguinarine and chelerythrine free bases stereoisomers. J. Mol. Struct. 2002;613:103–113. doi: 10.1016/S0022-2860(02)00138-2. DOI

Marasco D., Vicidomini C., Krupa P., Cioffi F., Huy P.D.Q., Li M.S., Florio D., Broersen K., de Pandis M.F., Roviello G.N. Plant isoquinoline alkaloids as potential neurodrugs: A comparative study of the effects of benzo[c]phenanthridine and berberine-based compounds on β-amyloid aggregation. Chem. Biol. Interact. 2021;334:109300. doi: 10.1016/j.cbi.2020.109300. PubMed DOI PMC

Sugimoto Y., Yoshida A., Uchida S., Inanaga S., Yamada Y. Dauricine production in cultured roots of Menispermum dauricum. Phytochemistry. 1994;36:679–683. doi: 10.1016/S0031-9422(00)89796-4. DOI

Liu P., Chen X., Zhou H., Wang L., Zhang Z., Ren X., Zhu F., Guo Y., Huang X., Liu J., et al. The isoquinoline alkaloid dauricine targets multiple molecular pathways to ameliorate Alzheimer-like pathological changes in vitro. Oxid. Med. Cell. Longev. 2018;2018:2025914. doi: 10.1155/2018/2025914. PubMed DOI PMC

Thinakaran G., Teplow D.B., Siman R., Greenberg B., Sisodia S.S. Metabolism of the “Swedish” amyloid precursor protein variant in neuro2a (N2a) cells. Evidence that cleavage at the “beta-secretase” site occurs in the golgi apparatus. J. Biol. Chem. 1996;271:9390–9397. doi: 10.1074/jbc.271.16.9390. PubMed DOI

Chen J., Liu J., Wang T., Xiao H., Yin C. Effects of tetrandrine on cAMP and cGMP levels in rabbit corpus cavernosum in vitro. Nat. Prod. Res. 2010;24:1095–1103. doi: 10.1080/14786410802433971. PubMed DOI

He F.Q., Qiu B.Y., Zhang X.H., Li T.K., Xie Q., Cui D.J., Huang X.L., Gan H.T. Tetrandrine attenuates spatial memory impairment and hippocampal neuroinflammation via inhibiting NF-κB activation in a rat model of Alzheimer’s disease induced by amyloid-β(1-42) Brain Res. 2011;1384:89–96. doi: 10.1016/j.brainres.2011.01.103. PubMed DOI

Fajardo V., Araya M., Cuadra P., Oyarzun A., Gallardo A., Cueto M., Diaz-Marrero A.R., Darias J., Villarroel L., Álvarez C., et al. Pronuciferine N-oxide, a proaporphine N-oxide alkaloid from Berberis coletioides. J. Nat. Prod. 2009;72:1355–1356. doi: 10.1021/np9000976. PubMed DOI

Bayazeid O., Nemutlu E., Eylem C.C., Yalçın F.N. Neuroactivity of naturally occurring proaporphine alkaloid, pronuciferine. J. Biochem. Mol. Toxicol. 2020;34:e22601. doi: 10.1002/jbt.22601. PubMed DOI

Kohelová E., Peřinová R., Maafi N., Korábečný J., Hulcová D., Maříková J., Kučera T., Martínez González L., Hrabinová M., Vorčáková K., et al. Derivatives of the β-crinane Amaryllidaceae alkaloid haemanthamine as multi-target directed ligands for Alzheimer’s disease. Molecules. 2019;24:1307. doi: 10.3390/molecules24071307. PubMed DOI PMC

Peřinová R., Maafi N., Korábečný J., Kohelová E., De Simone A., Al Mamun A., Hulcová D., Marková J., Kučera T., Jun D., et al. Functionalized aromatic esters of the Amaryllidaceae alkaloid haemanthamine and their in vitro and in silico biological activity connected to Alzheimer’s disease. Bioorg. Chem. 2020;100:103928. doi: 10.1016/j.bioorg.2020.103928. PubMed DOI

Maříková J., Ritomská A., Korábečný J., Peřinová R., Al Mamun A., Kučera T., Kohelová E., Hulcová D., Kobrlová T., Kuneš J., et al. Aromatic esters of the crinane Amaryllidaceae alkaloid ambelline as selective inhibitors of butyrylcholinesterase. J. Nat. Prod. 2020;83:1359–1367. doi: 10.1021/acs.jnatprod.9b00561. PubMed DOI

Sobolová K., Hrabinová M., Hepnarová V., Kučera T., Kobrlová T., Benková M., Janočková J., Doležal R., Prchal L., Benek O., et al. Discovery of novel berberine derivatives with balanced cholinesterase and prolyl oligopeptidase inhibition profile. Eur. J. Med. Chem. 2020;203:112593. doi: 10.1016/j.ejmech.2020.112593. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...