Structure Elucidation and Cholinesterase Inhibition Activity of Two New Minor Amaryllidaceae Alkaloids
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV UK 260 548, SVV UK 260 547
Grantová Agentura, Univerzita Karlova
VT2019-2021
University Hradec Králové
00179906
University Hospital Hradec Kralove
CZ.02.1.01/0.0/0.0/16_019/0000841
European Regional Development Fund
PubMed
33652925
PubMed Central
PMC7956344
DOI
10.3390/molecules26051279
PII: molecules26051279
Knihovny.cz E-zdroje
- Klíčová slova
- 9-O-demethyllycorenine, Alzheimer’s disease, Amaryllidaceae, narciabduliine,
- MeSH
- alkaloidy amarylkovitých chemie farmakologie MeSH
- alkaloidy chemie farmakologie MeSH
- Alzheimerova nemoc MeSH
- butyrylcholinesterasa chemie ultrastruktura MeSH
- cholinesterasové inhibitory chemie farmakologie MeSH
- cholinesterasy chemie ultrastruktura MeSH
- cirkulární dichroismus MeSH
- katalytická doména účinky léků MeSH
- lidé MeSH
- molekulární struktura MeSH
- simulace molekulového dockingu MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkaloidy amarylkovitých MeSH
- alkaloidy MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- cholinesterasy MeSH
Two new minor Amaryllidaceae alkaloids were isolated from Hippeastrum × hybridum cv. Ferrari and Narcissus pseudonarcissus cv. Carlton. The chemical structures were identified by various spectroscopic (one- and two-dimensional (1D and 2D) NMR, circular dichroism (CD), high-resolution mass spectrometry (HRMS) and by comparison with literature data of similar compounds. Both isolated alkaloids were screened for their human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE) inhibition activity. One of the new compounds, a heterodimer alkaloid of narcikachnine-type, named narciabduliine (2), showed balanced inhibition potency for both studied enzymes, with IC50 values of 3.29 ± 0.73 µM for hAChE and 3.44 ± 0.02 µM for hBuChE. The accommodation of 2 into the active sites of respective enzymes was predicted using molecular modeling simulation.
Zobrazit více v PubMed
Cahlíková L., Kawano I., Řezáčová M., Blunden G., Hulcová D., Havelek R. The Amaryllidaceae Alkaloids Haemanthamine, Haemanthidine and Their Semisynthetic Derivatives as Potential Drugs. Phytochem. Rev. 2020 doi: 10.1007/s11101-020-09675-8. DOI
Dalecká M., Havelek R., Královec K., Brůčková L., Cahlíková L. Amaryllidaceae Family Alkaloids as Potential Drugs for Cancer Treatment. Chem. Listy. 2013;107:701–708.
Jin Z. Amaryllidaceae and Sceletium Alkaloids. Nat. Prod. Rep. 2016;33:1318–1343. doi: 10.1039/C6NP00068A. PubMed DOI
Nair J.J., Wilhelm A., Bonnet S.L., van Staden J. Antibacterial Constituents of the Plant Family Amaryllidaceae. Bioorg. Med. Chem. Lett. 2017;27:4943–4951. doi: 10.1016/j.bmcl.2017.09.052. PubMed DOI
Nair J.J., van Staden J. Antifungal Activity Based Studies of Amaryllidaceae Plant Extracts. Nat. Prod. Commun. 2017;12:1953–1956. doi: 10.1177/1934578X1701201235. DOI
Konrath E.L., Passos C.D., Klein L.C., Henriques A.T. Alkaloids as a Source of Potential Anticholinesterase Inhibitors for the Treatment of Alzheimer’s Disease. J. Pharm. Pharmacol. 2013;65:1701–1725. doi: 10.1111/jphp.12090. PubMed DOI
Al Mamun A., Maříková J., Hulcová D., Janoušek J., Šafratová M., Nováková L., Kučera T., Hrabinová M., Kuneš J., Korábečný J., et al. Amaryllidaceae Alkaloids of Belladine-Type from Narcissus pseudonarcissus cv. Carlton as New Selective Inhibitors of Butyrylcholinesterase. Biomolecules. 2020;10:800. doi: 10.3390/biom10050800. PubMed DOI PMC
Kohelová E., Maříková J., Korábečný J., Hulcová D., Kučera T., Jun D., Chlebek J., Jenčo J., Šafratová M., Hrabinová M., et al. Alkaloids of Zephyranthes citrina (Amaryllidaceae) and Their Implication to Alzheimer’s Disease: Isolation, Structural Elucidation and Biological Activity. Bioorg. Chem. 2021;107:104567. doi: 10.1016/j.bioorg.2020.104567. PubMed DOI
Clardy J., Chan J.A., Wildman W.C. The Structure of Lycorenine and the 7-Hydroxy Alkaloids Derived from the [2]Benzopyrano[3,4-g]indole Nucleus. J. Org. Chem. 1972;37:49–51. doi: 10.1021/jo00966a013. DOI
Hulcová D., Maříková J., Korábečný J., Hošťálková A., Jun D., Kuneš J., Chlebek J., Opletal L., De Simone A., Nováková L., et al. Amaryllidaceae Alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as Potential Drugs in Treatment of Alzheimer’s Disease. Phytochemistry. 2019;165:112055. doi: 10.1016/j.phytochem.2019.112055. PubMed DOI
Šafratová M., Hošťálková A., Hulcová D., Breiterová K., Hrabcová V., Machado M., Fontinha D., Prudêncio M., Kuneš J., Chlebek J., et al. Alkaloids from Narcissus poeticus cv. Pink Parasol of Various Structural Types and Their Biological Activity. Arch. Pharmacal. Res. 2018;41:208–218. doi: 10.1007/s12272-017-1000-4. PubMed DOI
Cheung J., Rudolph M.J., Burshteyn F., Cassidy M.S., Gary E.G., Love J., Franklin M.C., Height J.J. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J. Med. Chem. 2012;55:10282–10286. doi: 10.1021/jm300871x. PubMed DOI
Nachon F., Carletti E., Ronco C., Trovaslet M., Nicolet Y., Jean L., Renard P.Y. Crystal Structures of Human Cholinesterases in Complex with Huprine W and Tacrine: Elements of Specificity for Anti-Alzheimer’s Drugs Targeting Acetyl- and Butyryl-Cholinesterase. Biochem. J. 2013;453:393–399. doi: 10.1042/BJ20130013. PubMed DOI
Saxena A., Redman A.M.G., Jiang X., Lockridge O., Doctor B.P. Differences in Active Site Gorge Dimensions of Cholinesterases Revealed by Binding of Inhibitors to Human Butyrylcholinesterase. Biochemistry. 1997;36:14642–14651. doi: 10.1021/bi971425+. PubMed DOI
Muehlbacher M., Spitzer G.M., Liedl K.R., Kornhuber J. Qualitative Prediction of Blood-brain Barrier Permeability on a Large and Refined Dataset. J. Comput.-Aided Mol. Des. 2011;25:1095–1106. doi: 10.1007/s10822-011-9478-1. PubMed DOI PMC
Al Shammari L., Hulcová D., Maříková J., Kučera T., Šafratová M., Nováková L., Schmidt M., Pulkrábková L., Janoušek J., Soukup O., et al. Amaryllidaceae Alkaloids from Hippeastrum X hybridum CV. Ferrari, and Preparation of Vittatine Derivatives as Potential Ligands for Alzheimer´s Disease. S. Afr. J. Bot. 2021;136:137–146. doi: 10.1016/j.sajb.2020.06.024. DOI
Maříková J., Ritomská A., Korábečný J., Peřinová R., Al Mamun A., Kučera T., Kohelová E., Hulcová D., Kobrlová T., Kuneš J., et al. Aromatic Esters of the Crinane Amaryllidaceae Alkaloid Ambelline as Selective Inhibitors of Butyrylcholinesterase. J. Nat. Prod. 2020;83:1359–1367. doi: 10.1021/acs.jnatprod.9b00561. PubMed DOI
Hostalkova A., Marikova J., Opletal L., Korabecny J., Hulcova D., Kunes J., Novakova L., Perez D.I., Jun D., Kucera T., et al. Isoquinoline Alkaloids from Berberis vulgaris as Potential Lead Compounds for the Treatment of Alzheimer’s Disease. J. Nat. Prod. 2019;82:239–248. doi: 10.1021/acs.jnatprod.8b00592. PubMed DOI
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Panek D., Więckowska A., Wichur T., Bajda M., Godyń J., Jończyk J., Mika K., Janockova J., Soukup O., Knez D., et al. Design, Synthesis and Biological Evaluation of new Phthalimide and Saccharin Derivatives with Alicyclic Amines Targeting Cholinesterases, Beta-secretase and Amyloid Beta Aggregation. Eur. J. Med. Chem. 2017;125:676–695. doi: 10.1016/j.ejmech.2016.09.078. PubMed DOI
Svobodova B., Mezeiova E., Hepnarova V., Hrabinova M., Muckova L., Kobrlova T., Jun D., Soukup O., Jimeno M.L., Marco-Contelles J., et al. Exploring Structure-Activity Relationship in Tacrine-Squaramide Derivatives as Potent Cholinesterase Inhibitors. Biomolecules. 2019;9:379. doi: 10.3390/biom9080379. PubMed DOI PMC
O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. Open Babel: An Open Chemical Toolbox. J. Cheminf. 2011;3:33. doi: 10.1186/1758-2946-3-33. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC