Structure Elucidation and Cholinesterase Inhibition Activity of Two New Minor Amaryllidaceae Alkaloids

. 2021 Feb 26 ; 26 (5) : . [epub] 20210226

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33652925

Grantová podpora
SVV UK 260 548, SVV UK 260 547 Grantová Agentura, Univerzita Karlova
VT2019-2021 University Hradec Králové
00179906 University Hospital Hradec Kralove
CZ.02.1.01/0.0/0.0/16_019/0000841 European Regional Development Fund

Two new minor Amaryllidaceae alkaloids were isolated from Hippeastrum × hybridum cv. Ferrari and Narcissus pseudonarcissus cv. Carlton. The chemical structures were identified by various spectroscopic (one- and two-dimensional (1D and 2D) NMR, circular dichroism (CD), high-resolution mass spectrometry (HRMS) and by comparison with literature data of similar compounds. Both isolated alkaloids were screened for their human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE) inhibition activity. One of the new compounds, a heterodimer alkaloid of narcikachnine-type, named narciabduliine (2), showed balanced inhibition potency for both studied enzymes, with IC50 values of 3.29 ± 0.73 µM for hAChE and 3.44 ± 0.02 µM for hBuChE. The accommodation of 2 into the active sites of respective enzymes was predicted using molecular modeling simulation.

Zobrazit více v PubMed

Cahlíková L., Kawano I., Řezáčová M., Blunden G., Hulcová D., Havelek R. The Amaryllidaceae Alkaloids Haemanthamine, Haemanthidine and Their Semisynthetic Derivatives as Potential Drugs. Phytochem. Rev. 2020 doi: 10.1007/s11101-020-09675-8. DOI

Dalecká M., Havelek R., Královec K., Brůčková L., Cahlíková L. Amaryllidaceae Family Alkaloids as Potential Drugs for Cancer Treatment. Chem. Listy. 2013;107:701–708.

Jin Z. Amaryllidaceae and Sceletium Alkaloids. Nat. Prod. Rep. 2016;33:1318–1343. doi: 10.1039/C6NP00068A. PubMed DOI

Nair J.J., Wilhelm A., Bonnet S.L., van Staden J. Antibacterial Constituents of the Plant Family Amaryllidaceae. Bioorg. Med. Chem. Lett. 2017;27:4943–4951. doi: 10.1016/j.bmcl.2017.09.052. PubMed DOI

Nair J.J., van Staden J. Antifungal Activity Based Studies of Amaryllidaceae Plant Extracts. Nat. Prod. Commun. 2017;12:1953–1956. doi: 10.1177/1934578X1701201235. DOI

Konrath E.L., Passos C.D., Klein L.C., Henriques A.T. Alkaloids as a Source of Potential Anticholinesterase Inhibitors for the Treatment of Alzheimer’s Disease. J. Pharm. Pharmacol. 2013;65:1701–1725. doi: 10.1111/jphp.12090. PubMed DOI

Al Mamun A., Maříková J., Hulcová D., Janoušek J., Šafratová M., Nováková L., Kučera T., Hrabinová M., Kuneš J., Korábečný J., et al. Amaryllidaceae Alkaloids of Belladine-Type from Narcissus pseudonarcissus cv. Carlton as New Selective Inhibitors of Butyrylcholinesterase. Biomolecules. 2020;10:800. doi: 10.3390/biom10050800. PubMed DOI PMC

Kohelová E., Maříková J., Korábečný J., Hulcová D., Kučera T., Jun D., Chlebek J., Jenčo J., Šafratová M., Hrabinová M., et al. Alkaloids of Zephyranthes citrina (Amaryllidaceae) and Their Implication to Alzheimer’s Disease: Isolation, Structural Elucidation and Biological Activity. Bioorg. Chem. 2021;107:104567. doi: 10.1016/j.bioorg.2020.104567. PubMed DOI

Clardy J., Chan J.A., Wildman W.C. The Structure of Lycorenine and the 7-Hydroxy Alkaloids Derived from the [2]Benzopyrano[3,4-g]indole Nucleus. J. Org. Chem. 1972;37:49–51. doi: 10.1021/jo00966a013. DOI

Hulcová D., Maříková J., Korábečný J., Hošťálková A., Jun D., Kuneš J., Chlebek J., Opletal L., De Simone A., Nováková L., et al. Amaryllidaceae Alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as Potential Drugs in Treatment of Alzheimer’s Disease. Phytochemistry. 2019;165:112055. doi: 10.1016/j.phytochem.2019.112055. PubMed DOI

Šafratová M., Hošťálková A., Hulcová D., Breiterová K., Hrabcová V., Machado M., Fontinha D., Prudêncio M., Kuneš J., Chlebek J., et al. Alkaloids from Narcissus poeticus cv. Pink Parasol of Various Structural Types and Their Biological Activity. Arch. Pharmacal. Res. 2018;41:208–218. doi: 10.1007/s12272-017-1000-4. PubMed DOI

Cheung J., Rudolph M.J., Burshteyn F., Cassidy M.S., Gary E.G., Love J., Franklin M.C., Height J.J. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J. Med. Chem. 2012;55:10282–10286. doi: 10.1021/jm300871x. PubMed DOI

Nachon F., Carletti E., Ronco C., Trovaslet M., Nicolet Y., Jean L., Renard P.Y. Crystal Structures of Human Cholinesterases in Complex with Huprine W and Tacrine: Elements of Specificity for Anti-Alzheimer’s Drugs Targeting Acetyl- and Butyryl-Cholinesterase. Biochem. J. 2013;453:393–399. doi: 10.1042/BJ20130013. PubMed DOI

Saxena A., Redman A.M.G., Jiang X., Lockridge O., Doctor B.P. Differences in Active Site Gorge Dimensions of Cholinesterases Revealed by Binding of Inhibitors to Human Butyrylcholinesterase. Biochemistry. 1997;36:14642–14651. doi: 10.1021/bi971425+. PubMed DOI

Muehlbacher M., Spitzer G.M., Liedl K.R., Kornhuber J. Qualitative Prediction of Blood-brain Barrier Permeability on a Large and Refined Dataset. J. Comput.-Aided Mol. Des. 2011;25:1095–1106. doi: 10.1007/s10822-011-9478-1. PubMed DOI PMC

Al Shammari L., Hulcová D., Maříková J., Kučera T., Šafratová M., Nováková L., Schmidt M., Pulkrábková L., Janoušek J., Soukup O., et al. Amaryllidaceae Alkaloids from Hippeastrum X hybridum CV. Ferrari, and Preparation of Vittatine Derivatives as Potential Ligands for Alzheimer´s Disease. S. Afr. J. Bot. 2021;136:137–146. doi: 10.1016/j.sajb.2020.06.024. DOI

Maříková J., Ritomská A., Korábečný J., Peřinová R., Al Mamun A., Kučera T., Kohelová E., Hulcová D., Kobrlová T., Kuneš J., et al. Aromatic Esters of the Crinane Amaryllidaceae Alkaloid Ambelline as Selective Inhibitors of Butyrylcholinesterase. J. Nat. Prod. 2020;83:1359–1367. doi: 10.1021/acs.jnatprod.9b00561. PubMed DOI

Hostalkova A., Marikova J., Opletal L., Korabecny J., Hulcova D., Kunes J., Novakova L., Perez D.I., Jun D., Kucera T., et al. Isoquinoline Alkaloids from Berberis vulgaris as Potential Lead Compounds for the Treatment of Alzheimer’s Disease. J. Nat. Prod. 2019;82:239–248. doi: 10.1021/acs.jnatprod.8b00592. PubMed DOI

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Panek D., Więckowska A., Wichur T., Bajda M., Godyń J., Jończyk J., Mika K., Janockova J., Soukup O., Knez D., et al. Design, Synthesis and Biological Evaluation of new Phthalimide and Saccharin Derivatives with Alicyclic Amines Targeting Cholinesterases, Beta-secretase and Amyloid Beta Aggregation. Eur. J. Med. Chem. 2017;125:676–695. doi: 10.1016/j.ejmech.2016.09.078. PubMed DOI

Svobodova B., Mezeiova E., Hepnarova V., Hrabinova M., Muckova L., Kobrlova T., Jun D., Soukup O., Jimeno M.L., Marco-Contelles J., et al. Exploring Structure-Activity Relationship in Tacrine-Squaramide Derivatives as Potent Cholinesterase Inhibitors. Biomolecules. 2019;9:379. doi: 10.3390/biom9080379. PubMed DOI PMC

O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. Open Babel: An Open Chemical Toolbox. J. Cheminf. 2011;3:33. doi: 10.1186/1758-2946-3-33. PubMed DOI PMC

Trott O., Olson A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...