Developmental variability channels mouse molar evolution
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
ANR-11-BSV7-008
Agence Nationale de la Recherche
SPF20140129165
Fondation pour la Recherche Médicale
14-37368G
Grant Agency of the Czech Republic
8J19FR032
Czech Ministry of Education, Youth and Sports
18-04859S
Grant Agency of the Czech Republic
8J19FR032
Ministerstvo Školství, Mládeže a T?lovýchovy
Salary
Centre National de la Recherche Scientifique
Salary
École Normale Superieure de Lyon
PubMed
32048989
PubMed Central
PMC7182435
DOI
10.7554/elife.50103
PII: 50103
Knihovny.cz E-zdroje
- Klíčová slova
- developmental biology, developmental constraint, evo-devo, evolutionary biology, line of least resistance, molar, mouse, rodent,
- MeSH
- biologická evoluce MeSH
- biologická variabilita populace fyziologie MeSH
- embryo savčí MeSH
- fenotyp MeSH
- moláry anatomie a histologie růst a vývoj MeSH
- myši MeSH
- prořezávání zubů fyziologie MeSH
- signální transdukce MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Do developmental systems preferentially produce certain types of variation that orient phenotypic evolution along preferred directions? At different scales, from the intra-population to the interspecific, the murine first upper molar shows repeated anterior elongation. Using a novel quantitative approach to compare the development of two mouse strains with short or long molars, we identified temporal, spatial and functional differences in tooth signaling center activity, that arise from differential tuning of the activation-inhibition mechanisms underlying tooth patterning. By tracing their fate, we could explain why only the upper first molar reacts via elongation of its anterior part. Despite a lack of genetic variation, individuals of the elongated strain varied in tooth length and the temporal dynamics of their signaling centers, highlighting the intrinsic instability of the upper molar developmental system. Collectively, these results reveal the variational properties of murine molar development that drive morphological evolution along a line of least resistance.
Over time species develop random mutations in their genetic sequence that causes their form to change. If this new form increases the survival of a species it will become favored through natural selection and is more likely to get passed on to future generations. But, the evolution of these new traits also depends on what happens during development. Developmental mechanisms control how an embryo progresses from a single cell to an adult organism made of many cells. Mutations that alter these processes can influence the physical outcome of development, and cause a new trait to form. This means that if many different mutations alter development in a similar way, this can lead to the same physical change, making it ‘easy’ for a new trait to repeatedly occur. Most of the research has focused on finding the mutations that underlie repeated evolution, but rarely on identifying the role of the underlying developmental mechanisms. To bridge this gap, Hayden et al. investigated how changes during development influence the shape and size of molar teeth in mice. In some wild species of mice, the front part of the first upper molar is longer than in other species. This elongation, which is repeatedly found in mice from different islands, likely came from developmental mechanisms. Tooth development in mice has been well-studied in the laboratory, and Hayden et al. started by identifying two strains of laboratory mice that mimic the teeth seen in their wild cousins, one with elongated upper first molars and another with short ones. Comparing how these two strains of mice developed their elongated or short teeth revealed key differences in the embryonic structures that form the upper molar and cause it to elongate. Further work showed that variations in these embryonic structures can even cause mice that are genetically identical to have longer or shorter upper first molars. These findings show how early differences during development can lead to small variations in form between adult species of mice. This study highlights how studying developmental differences as well as genetic sequences can further our understanding of how different species evolved.
Zobrazit více v PubMed
Abzhanov A. Von Baer's law for the ages: lost and found principles of developmental evolution. Trends in Genetics. 2013;29:712–722. doi: 10.1016/j.tig.2013.09.004. PubMed DOI
Ahn Y, Sanderson BW, Klein OD, Krumlauf R. Inhibition of wnt signaling by wise (Sostdc1) and negative feedback from shh controls tooth number and patterning. Development. 2010;137:3221–3231. doi: 10.1242/dev.054668. PubMed DOI PMC
Ahnfelt-Rønne J, Jørgensen MC, Hald J, Madsen OD, Serup P, Hecksher-Sørensen J. An improved method for three-dimensional reconstruction of protein expression patterns in intact mouse and chicken embryos and organs. Journal of Histochemistry & Cytochemistry. 2007;55:925–930. doi: 10.1369/jhc.7A7226.2007. PubMed DOI
Alberch P, Gale EA. A developmental analysis of an evolutionary trend: digital reduction in amphibians. Evolution. 1985;39:8–23. doi: 10.2307/2408513. PubMed DOI
Balic A, Thesleff I. Tissue interactions regulating tooth development and renewal. Current Topics in Developmental Biology. 2015;115:157–186. doi: 10.1016/bs.ctdb.2015.07.006. PubMed DOI
Brakefield PM. Evo-devo and constraints on selection. Trends in Ecology & Evolution. 2006;21:362–368. doi: 10.1016/j.tree.2006.05.001. PubMed DOI
Brakefield PM. Evo-devo and accounting for Darwin's endless forms. Philosophical Transactions of the Royal Society B: Biological Sciences. 2011;366:2069–2075. doi: 10.1098/rstb.2011.0007. PubMed DOI PMC
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology. 2016;34:525–527. doi: 10.1038/nbt.3519. PubMed DOI
Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics. 1998;7:434–455. doi: 10.1080/10618600.1998.10474787. DOI
Bünger L, Schüler L, Renne U, Kupatz B. Selection and growth of laboratory mice under synchronized estrus conditions direct selection success and correlated selection effect on litter size. Archiv Fur Experimentelle Veterinarmedizin. 1982;36:641–646. PubMed
Bünger L, Herrendörfer G. Analysis of a long-term selection experiment with an exponential model. Journal of Animal Breeding and Genetics. 1994;111:1–13. doi: 10.1111/j.1439-0388.1994.tb00432.x. PubMed DOI
Cho SW, Kwak S, Woolley TE, Lee MJ, Kim EJ, Baker RE, Kim HJ, Shin JS, Tickle C, Maini PK, Jung HS. Interactions between shh, Sostdc1 and wnt signaling and a new feedback loop for spatial patterning of the teeth. Development. 2011;138:1807–1816. doi: 10.1242/dev.056051. PubMed DOI
Cobourne MT, Sharpe PT. Making up the numbers: the molecular control of mammalian dental formula. Seminars in Cell & Developmental Biology. 2010;21:314–324. doi: 10.1016/j.semcdb.2010.01.007. PubMed DOI
Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell. 1993;75:1417–1430. doi: 10.1016/0092-8674(93)90627-3. PubMed DOI
Gómez Cano AR, Hernández Fernández M, Alvarez-Sierra MÁ. Dietary ecology of murinae (Muridae, rodentia): A geometric morphometric approach. PLOS ONE. 2013;8:e79080. doi: 10.1371/journal.pone.0079080. PubMed DOI PMC
Gould SJ, Lewontin RC. The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B, Biological Sciences. 1979;205:581–598. doi: 10.1098/rspb.1979.0086. PubMed DOI
Grüneberg H. Genes and genotypes affecting the teeth of the mouse. Journal of Embryology and Experimental Morphology. 1965;14:137–159. PubMed
Häärä O, Harjunmaa E, Lindfors PH, Huh SH, Fliniaux I, Åberg T, Jernvall J, Ornitz DM, Mikkola ML, Thesleff I. Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling. Development. 2012;139:3189–3199. doi: 10.1242/dev.079558. PubMed DOI PMC
Harjunmaa E, Kallonen A, Voutilainen M, Hämäläinen K, Mikkola ML, Jernvall J. On the difficulty of increasing dental complexity. Nature. 2012;483:324–327. doi: 10.1038/nature10876. PubMed DOI
Harjunmaa E, Seidel K, Häkkinen T, Renvoisé E, Corfe IJ, Kallonen A, Zhang Z-Q, Evans AR, Mikkola ML, Salazar-Ciudad I, Klein OD, Jernvall J. Replaying evolutionary transitions from the dental fossil record. Nature. 2014;512:44–48. doi: 10.1038/nature13613. PubMed DOI PMC
Hayashi S, McMahon AP. Efficient recombination in diverse tissues by a tamoxifen-inducible form of cre: a tool for temporally regulated gene activation/inactivation in the mouse. Developmental Biology. 2002;244:305–318. doi: 10.1006/dbio.2002.0597. PubMed DOI
Hayden L. dvpap. 37cf9fdGitHub. 2020 https://github.com/luke-hayden/dvpap
Hendrikse JL, Parsons TE, Hallgrímsson B. Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development. 2007;9:393–401. doi: 10.1111/j.1525-142X.2007.00176.x. PubMed DOI
Irie N, Kuratani S. The developmental hourglass model: a predictor of the basic body plan? Development. 2014;141:4649–4655. doi: 10.1242/dev.107318. PubMed DOI
Järvinen E, Shimomura-Kuroki J, Balic A, Jussila M, Thesleff I. Mesenchymal wnt/β-catenin signaling limits tooth number. Development. 2018;145:dev158048. doi: 10.1242/dev.158048. PubMed DOI
Jernvall J, Kettunen P, Karavanova I, Martin LB, Thesleff I. Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. The International Journal of Developmental Biology. 1994;38:463–469. PubMed
Kavanagh KD, Evans AR, Jernvall J. Predicting evolutionary patterns of mammalian teeth from development. Nature. 2007;449:427–432. doi: 10.1038/nature06153. PubMed DOI
Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H, Peterka M, Jernvall J, Martin GR. Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Developmental Cell. 2006;11:181–190. doi: 10.1016/j.devcel.2006.05.014. PubMed DOI PMC
Lagronova-Churava S, Spoutil F, Vojtechova S, Lesot H, Peterka M, Klein OD, Peterkova R. The dynamics of supernumerary tooth development are differentially regulated by sprouty genes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 2013;320:307–320. doi: 10.1002/jez.b.22502. PubMed DOI
Laland K, Uller T, Feldman M, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J, Wray GA, Hoekstra HE, Futuyma DJ, Lenski RE, Mackay TF, Schluter D, Strassmann JE. Does evolutionary theory need a rethink? Nature. 2014;514:161–164. doi: 10.1038/514161a. PubMed DOI
Lecompte E, Aplin K, Denys C, Catzeflis F, Chades M, Chevret P. Phylogeny and biogeography of african murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evolutionary Biology. 2008;8:199. doi: 10.1186/1471-2148-8-199. PubMed DOI PMC
Ledevin R, Chevret P, Ganem G, Britton-Davidian J, Hardouin EA, Chapuis J-L, Pisanu B, da Luz Mathias M, Schlager S, Auffray J-C, Renaud S. Phylogeny and adaptation shape the teeth of insular mice. Proceedings of the Royal Society B: Biological Sciences. 2016;283:20152820. doi: 10.1098/rspb.2015.2820. PubMed DOI PMC
Lesot H, Peterková R, Viriot L, Vonesch JL, Turecková J, Peterka M, Ruch JV. Early stages of tooth morphogenesis in mouse analyzed by 3D reconstructions. European Journal of Oral Sciences. 1998;106:64–70. doi: 10.1111/j.1600-0722.1998.tb02155.x. PubMed DOI
Lochovska K, Peterkova R, Pavlikova Z, Hovorakova M. Sprouty gene dosage influences temporal-spatial dynamics of primary enamel knot formation. BMC Developmental Biology. 2015;15:1553. doi: 10.1186/s12861-015-0070-0. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Miner JH, Patton BL, Lentz SI, Gilbert DJ, Snider WD, Jenkins NA, Copeland NG, Sanes JR. The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1-5, identification of heterotrimeric laminins 8-11, and cloning of a novel alpha3 isoform. The Journal of Cell Biology. 1997;137:685–701. doi: 10.1083/jcb.137.3.685. PubMed DOI PMC
Misonne X. African and Indo-Australian Muridae Evolutionary Trends. Musée royal de l'Afrique centrale; 1969.
Navarro N, Murat Maga A. Genetic mapping of molar size relations identifies inhibitory locus for third molars in mice. Heredity. 2018;121:1–11. doi: 10.1038/s41437-017-0033-2. PubMed DOI PMC
O'Connell DJ, Ho JWK, Mammoto T, Turbe-Doan A, O'Connell JT, Haseley PS, Koo S, Kamiya N, Ingber DE, Park PJ, Maas RL. A Wnt-Bmp feedback circuit controls intertissue signaling dynamics in tooth organogenesis. Science Signaling. 2012;5:ra4. doi: 10.1126/scisignal.2002414. PubMed DOI PMC
Oster GF, Shubin N, Murray JD, Alberch P. Evolution and morphogenetic rules: the shape of the vertebrate limb in ontogeny and phylogeny. Evolution. 1988;42:862–884. doi: 10.1111/j.1558-5646.1988.tb02508.x. PubMed DOI
Pantalacci S, Sémon M, Martin A, Chevret P, Laudet V. Heterochronic shifts explain variations in a sequentially developing repeated pattern: palatal ridges of muroid rodents. Evolution & Development. 2009;11:422–433. doi: 10.1111/j.1525-142X.2009.00348.x. PubMed DOI
Peterka M, Lesot H, Peterková R. Body weight in mouse embryos specifies staging of tooth development. Connective Tissue Research. 2002;43:186–190. doi: 10.1080/03008200290000673. PubMed DOI
Peterková R, Lesot H, Vonesch JL, Peterka M, Ruch JV. Mouse molar morphogenesis revisited by three dimensional reconstruction I analysis of initial stages of the first upper molar development revealed two transient buds. The International Journal of Developmental Biology. 1996;40:1009–1016. PubMed
Peterková R, Peterka M, Viriot L, Lesot H. Development of the vestigial tooth primordia as part of mouse odontogenesis. Connective Tissue Research. 2002;43:120–128. doi: 10.1080/03008200290000745. PubMed DOI
Peterková R, Lesot H, Viriot L, Peterka M. The supernumerary cheek tooth in tabby/EDA mice-a reminiscence of the premolar in mouse ancestors. Archives of Oral Biology. 2005;50:219–225. doi: 10.1016/j.archoralbio.2004.10.020. PubMed DOI
Peterkova R, Lesot H, Peterka M. Phylogenetic memory of developing mammalian dentition. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 2006;306B:234–250. doi: 10.1002/jez.b.21093. PubMed DOI
Peterkova R, Churava S, Lesot H, Rothova M, Prochazka J, Peterka M, Klein OD. Revitalization of a diastemal tooth primordium in Spry2 null mice results from increased proliferation and decreased apoptosis. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 2009;312B:292–308. doi: 10.1002/jez.b.21266. PubMed DOI PMC
Peterkova R, Hovorakova M, Peterka M, Lesot H. Three-dimensional analysis of the early development of the dentition. Australian Dental Journal. 2014;59:55–80. doi: 10.1111/adj.12130. PubMed DOI PMC
Plummer M. Rjags: bayesian graphical models using MCMC. 4-6R Package. 2016
Prochazka J, Pantalacci S, Churava S, Rothova M, Lambert A, Lesot H, Klein O, Peterka M, Laudet V, Peterkova R. Patterning by heritage in mouse molar row development. PNAS. 2010;107:15497–15502. doi: 10.1073/pnas.1002784107. PubMed DOI PMC
R Development Core Team . Vienna, Austria: 2014. http://www.R-project.org/
Renaud S, Auffray J-C, Michaux J. Conserved phenotypic variation patterns, evolution along lines of least resistance, and departure due to selection in fossil rodents. Evolution. 2006;60:1701–1717. doi: 10.1111/j.0014-3820.2006.tb00514.x. PubMed DOI
Renaud S, Pantalacci S, Quéré JP, Laudet V, Auffray JC. Developmental constraints revealed by co-variation within and among molar rows in two murine rodents. Evolution & Development. 2009;11:590–602. doi: 10.1111/j.1525-142X.2009.00365.x. PubMed DOI
Renaud S, Pantalacci S, Auffray JC. Differential evolvability along lines of least resistance of upper and lower molars in island house mice. PLOS ONE. 2011;6:e18951. doi: 10.1371/journal.pone.0018951. PubMed DOI PMC
Renaud S, Ledevin R, Souquet L, Gomes Rodrigues H, Ginot S, Agret S, Claude J, Herrel A, Hautier L. Evolving teeth within a stable masticatory apparatus in orkney mice. Evolutionary Biology. 2018;45:405–424. doi: 10.1007/s11692-018-9459-6. DOI
Renaud S, Auffray J-C. The direction of main phenotypic variance as a channel to evolution: cases in murine rodents hystrix ital. Hystrix, the Italian Journal of Mammalogy. 2013;24:85–93. doi: 10.4404/hystrix-24.1-6296. DOI
Revell LJ. Phytools: an R package for phylogenetic comparative biology (and other things) Methods in Ecology and Evolution. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI
Sadier A, Twarogowska M, Steklikova K, Hayden L, Lambert A, Schneider P, Laudet V, Hovorakova M, Calvez V, Pantalacci S. Modeling edar expression reveals the hidden dynamics of tooth signaling center patterning. PLOS Biology. 2019;17:e3000064. doi: 10.1371/journal.pbio.3000064. PubMed DOI PMC
Salazar-Ciudad I, Jernvall J. A computational model of teeth and the developmental origins of morphological variation. Nature. 2010;464:583–586. doi: 10.1038/nature08838. PubMed DOI
Schluter D. Adaptive radiation along genetic lines of least resistance. Evolution. 1996;50:1766–1774. doi: 10.2307/2410734. PubMed DOI
Sears KE. Quantifying the impact of development on phenotypic variation and evolution: development and phenotypic variation. J. Exp. Zoolog. B Mol. Dev. Evol. 2014;322:643–653. doi: 10.1002/jez.b.22592. PubMed DOI
Sémon M. Bayesian method to estimate embryonic age for mouse embryos. 5a68149GitHub. 2020a https://github.com/msemon/cdpc
Sémon M. Comparison of the genes expressed in lower and upper first molar germs in DUHi and FVB. 93de5dfGitHub. 2020b https://github.com/msemon/trDUHi_FVB
Smith JM, Burian R, Kauffman S, Alberch P, Campbell J, Goodwin B, Lande R, Raup D, Wolpert L. Developmental constraints and evolution: a perspective from the mountain lake conference on development and evolution. The Quarterly Review of Biology. 1985;60:265–287. doi: 10.1086/414425. DOI
Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016;4:1521. doi: 10.12688/f1000research.7563.2. PubMed DOI PMC
Stoetzel E, Denys C, Michaux J, Renaud S. Mus in Morocco: a Quaternary sequence of intraspecific evolution. Biological Journal of the Linnean Society. 2013;109:599–621. doi: 10.1111/bij.12065. DOI
Viriot L, Lesot H, Vonesch JL, Ruch JV, Peterka M, Peterková R. The presence of rudimentary odontogenic structures in the mouse embryonic mandible requires reinterpretation of developmental control of first lower molar histomorphogenesis. The International Journal of Developmental Biology. 2000;44:233–240. PubMed
Wickham H. Reshaping data with the reshape package. Journal of Statistical Software. 2007;21:1–20. doi: 10.18637/jss.v021.i12. DOI
Wickham H. ggplot2 Elegant Graphics for Data Analysis 2009
Yokomizo T, Dzierzak E. Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos. Development. 2010;137:3651–3661. doi: 10.1242/dev.051094. PubMed DOI PMC
Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C, Gall A, Girón CG, Gil L, Gordon L, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann T, To JK, Laird MR, Lavidas I, Liu Z, Loveland JE, Maurel T, McLaren W, Moore B, Mudge J, Murphy DN, Newman V, Nuhn M, Ogeh D, Ong CK, Parker A, Patricio M, Riat HS, Schuilenburg H, Sheppard D, Sparrow H, Taylor K, Thormann A, Vullo A, Walts B, Zadissa A, Frankish A, Hunt SE, Kostadima M, Langridge N, Martin FJ, Muffato M, Perry E, Ruffier M, Staines DM, Trevanion SJ, Aken BL, Cunningham F, Yates A, Flicek P. Ensembl 2018. Nucleic Acids Research. 2018;46:D754–D761. doi: 10.1093/nar/gkx1098. PubMed DOI PMC
GEO
GSE135432