Developmental variability channels mouse molar evolution

. 2020 Feb 12 ; 9 () : . [epub] 20200212

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32048989

Grantová podpora
ANR-11-BSV7-008 Agence Nationale de la Recherche
SPF20140129165 Fondation pour la Recherche Médicale
14-37368G Grant Agency of the Czech Republic
8J19FR032 Czech Ministry of Education, Youth and Sports
18-04859S Grant Agency of the Czech Republic
8J19FR032 Ministerstvo Školství, Mládeže a T?lovýchovy
Salary Centre National de la Recherche Scientifique
Salary École Normale Superieure de Lyon

Do developmental systems preferentially produce certain types of variation that orient phenotypic evolution along preferred directions? At different scales, from the intra-population to the interspecific, the murine first upper molar shows repeated anterior elongation. Using a novel quantitative approach to compare the development of two mouse strains with short or long molars, we identified temporal, spatial and functional differences in tooth signaling center activity, that arise from differential tuning of the activation-inhibition mechanisms underlying tooth patterning. By tracing their fate, we could explain why only the upper first molar reacts via elongation of its anterior part. Despite a lack of genetic variation, individuals of the elongated strain varied in tooth length and the temporal dynamics of their signaling centers, highlighting the intrinsic instability of the upper molar developmental system. Collectively, these results reveal the variational properties of murine molar development that drive morphological evolution along a line of least resistance.

Over time species develop random mutations in their genetic sequence that causes their form to change. If this new form increases the survival of a species it will become favored through natural selection and is more likely to get passed on to future generations. But, the evolution of these new traits also depends on what happens during development. Developmental mechanisms control how an embryo progresses from a single cell to an adult organism made of many cells. Mutations that alter these processes can influence the physical outcome of development, and cause a new trait to form. This means that if many different mutations alter development in a similar way, this can lead to the same physical change, making it ‘easy’ for a new trait to repeatedly occur. Most of the research has focused on finding the mutations that underlie repeated evolution, but rarely on identifying the role of the underlying developmental mechanisms. To bridge this gap, Hayden et al. investigated how changes during development influence the shape and size of molar teeth in mice. In some wild species of mice, the front part of the first upper molar is longer than in other species. This elongation, which is repeatedly found in mice from different islands, likely came from developmental mechanisms. Tooth development in mice has been well-studied in the laboratory, and Hayden et al. started by identifying two strains of laboratory mice that mimic the teeth seen in their wild cousins, one with elongated upper first molars and another with short ones. Comparing how these two strains of mice developed their elongated or short teeth revealed key differences in the embryonic structures that form the upper molar and cause it to elongate. Further work showed that variations in these embryonic structures can even cause mice that are genetically identical to have longer or shorter upper first molars. These findings show how early differences during development can lead to small variations in form between adult species of mice. This study highlights how studying developmental differences as well as genetic sequences can further our understanding of how different species evolved.

Komentář v

PubMed

Zobrazit více v PubMed

Abzhanov A. Von Baer's law for the ages: lost and found principles of developmental evolution. Trends in Genetics. 2013;29:712–722. doi: 10.1016/j.tig.2013.09.004. PubMed DOI

Ahn Y, Sanderson BW, Klein OD, Krumlauf R. Inhibition of wnt signaling by wise (Sostdc1) and negative feedback from shh controls tooth number and patterning. Development. 2010;137:3221–3231. doi: 10.1242/dev.054668. PubMed DOI PMC

Ahnfelt-Rønne J, Jørgensen MC, Hald J, Madsen OD, Serup P, Hecksher-Sørensen J. An improved method for three-dimensional reconstruction of protein expression patterns in intact mouse and chicken embryos and organs. Journal of Histochemistry & Cytochemistry. 2007;55:925–930. doi: 10.1369/jhc.7A7226.2007. PubMed DOI

Alberch P, Gale EA. A developmental analysis of an evolutionary trend: digital reduction in amphibians. Evolution. 1985;39:8–23. doi: 10.2307/2408513. PubMed DOI

Balic A, Thesleff I. Tissue interactions regulating tooth development and renewal. Current Topics in Developmental Biology. 2015;115:157–186. doi: 10.1016/bs.ctdb.2015.07.006. PubMed DOI

Brakefield PM. Evo-devo and constraints on selection. Trends in Ecology & Evolution. 2006;21:362–368. doi: 10.1016/j.tree.2006.05.001. PubMed DOI

Brakefield PM. Evo-devo and accounting for Darwin's endless forms. Philosophical Transactions of the Royal Society B: Biological Sciences. 2011;366:2069–2075. doi: 10.1098/rstb.2011.0007. PubMed DOI PMC

Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology. 2016;34:525–527. doi: 10.1038/nbt.3519. PubMed DOI

Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics. 1998;7:434–455. doi: 10.1080/10618600.1998.10474787. DOI

Bünger L, Schüler L, Renne U, Kupatz B. Selection and growth of laboratory mice under synchronized estrus conditions direct selection success and correlated selection effect on litter size. Archiv Fur Experimentelle Veterinarmedizin. 1982;36:641–646. PubMed

Bünger L, Herrendörfer G. Analysis of a long-term selection experiment with an exponential model. Journal of Animal Breeding and Genetics. 1994;111:1–13. doi: 10.1111/j.1439-0388.1994.tb00432.x. PubMed DOI

Cho SW, Kwak S, Woolley TE, Lee MJ, Kim EJ, Baker RE, Kim HJ, Shin JS, Tickle C, Maini PK, Jung HS. Interactions between shh, Sostdc1 and wnt signaling and a new feedback loop for spatial patterning of the teeth. Development. 2011;138:1807–1816. doi: 10.1242/dev.056051. PubMed DOI

Cobourne MT, Sharpe PT. Making up the numbers: the molecular control of mammalian dental formula. Seminars in Cell & Developmental Biology. 2010;21:314–324. doi: 10.1016/j.semcdb.2010.01.007. PubMed DOI

Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell. 1993;75:1417–1430. doi: 10.1016/0092-8674(93)90627-3. PubMed DOI

Gómez Cano AR, Hernández Fernández M, Alvarez-Sierra MÁ. Dietary ecology of murinae (Muridae, rodentia): A geometric morphometric approach. PLOS ONE. 2013;8:e79080. doi: 10.1371/journal.pone.0079080. PubMed DOI PMC

Gould SJ, Lewontin RC. The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B, Biological Sciences. 1979;205:581–598. doi: 10.1098/rspb.1979.0086. PubMed DOI

Grüneberg H. Genes and genotypes affecting the teeth of the mouse. Journal of Embryology and Experimental Morphology. 1965;14:137–159. PubMed

Häärä O, Harjunmaa E, Lindfors PH, Huh SH, Fliniaux I, Åberg T, Jernvall J, Ornitz DM, Mikkola ML, Thesleff I. Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling. Development. 2012;139:3189–3199. doi: 10.1242/dev.079558. PubMed DOI PMC

Harjunmaa E, Kallonen A, Voutilainen M, Hämäläinen K, Mikkola ML, Jernvall J. On the difficulty of increasing dental complexity. Nature. 2012;483:324–327. doi: 10.1038/nature10876. PubMed DOI

Harjunmaa E, Seidel K, Häkkinen T, Renvoisé E, Corfe IJ, Kallonen A, Zhang Z-Q, Evans AR, Mikkola ML, Salazar-Ciudad I, Klein OD, Jernvall J. Replaying evolutionary transitions from the dental fossil record. Nature. 2014;512:44–48. doi: 10.1038/nature13613. PubMed DOI PMC

Hayashi S, McMahon AP. Efficient recombination in diverse tissues by a tamoxifen-inducible form of cre: a tool for temporally regulated gene activation/inactivation in the mouse. Developmental Biology. 2002;244:305–318. doi: 10.1006/dbio.2002.0597. PubMed DOI

Hayden L. dvpap. 37cf9fdGitHub. 2020 https://github.com/luke-hayden/dvpap

Hendrikse JL, Parsons TE, Hallgrímsson B. Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development. 2007;9:393–401. doi: 10.1111/j.1525-142X.2007.00176.x. PubMed DOI

Irie N, Kuratani S. The developmental hourglass model: a predictor of the basic body plan? Development. 2014;141:4649–4655. doi: 10.1242/dev.107318. PubMed DOI

Järvinen E, Shimomura-Kuroki J, Balic A, Jussila M, Thesleff I. Mesenchymal wnt/β-catenin signaling limits tooth number. Development. 2018;145:dev158048. doi: 10.1242/dev.158048. PubMed DOI

Jernvall J, Kettunen P, Karavanova I, Martin LB, Thesleff I. Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. The International Journal of Developmental Biology. 1994;38:463–469. PubMed

Kavanagh KD, Evans AR, Jernvall J. Predicting evolutionary patterns of mammalian teeth from development. Nature. 2007;449:427–432. doi: 10.1038/nature06153. PubMed DOI

Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H, Peterka M, Jernvall J, Martin GR. Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Developmental Cell. 2006;11:181–190. doi: 10.1016/j.devcel.2006.05.014. PubMed DOI PMC

Lagronova-Churava S, Spoutil F, Vojtechova S, Lesot H, Peterka M, Klein OD, Peterkova R. The dynamics of supernumerary tooth development are differentially regulated by sprouty genes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 2013;320:307–320. doi: 10.1002/jez.b.22502. PubMed DOI

Laland K, Uller T, Feldman M, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J, Wray GA, Hoekstra HE, Futuyma DJ, Lenski RE, Mackay TF, Schluter D, Strassmann JE. Does evolutionary theory need a rethink? Nature. 2014;514:161–164. doi: 10.1038/514161a. PubMed DOI

Lecompte E, Aplin K, Denys C, Catzeflis F, Chades M, Chevret P. Phylogeny and biogeography of african murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evolutionary Biology. 2008;8:199. doi: 10.1186/1471-2148-8-199. PubMed DOI PMC

Ledevin R, Chevret P, Ganem G, Britton-Davidian J, Hardouin EA, Chapuis J-L, Pisanu B, da Luz Mathias M, Schlager S, Auffray J-C, Renaud S. Phylogeny and adaptation shape the teeth of insular mice. Proceedings of the Royal Society B: Biological Sciences. 2016;283:20152820. doi: 10.1098/rspb.2015.2820. PubMed DOI PMC

Lesot H, Peterková R, Viriot L, Vonesch JL, Turecková J, Peterka M, Ruch JV. Early stages of tooth morphogenesis in mouse analyzed by 3D reconstructions. European Journal of Oral Sciences. 1998;106:64–70. doi: 10.1111/j.1600-0722.1998.tb02155.x. PubMed DOI

Lochovska K, Peterkova R, Pavlikova Z, Hovorakova M. Sprouty gene dosage influences temporal-spatial dynamics of primary enamel knot formation. BMC Developmental Biology. 2015;15:1553. doi: 10.1186/s12861-015-0070-0. PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Miner JH, Patton BL, Lentz SI, Gilbert DJ, Snider WD, Jenkins NA, Copeland NG, Sanes JR. The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1-5, identification of heterotrimeric laminins 8-11, and cloning of a novel alpha3 isoform. The Journal of Cell Biology. 1997;137:685–701. doi: 10.1083/jcb.137.3.685. PubMed DOI PMC

Misonne X. African and Indo-Australian Muridae Evolutionary Trends. Musée royal de l'Afrique centrale; 1969.

Navarro N, Murat Maga A. Genetic mapping of molar size relations identifies inhibitory locus for third molars in mice. Heredity. 2018;121:1–11. doi: 10.1038/s41437-017-0033-2. PubMed DOI PMC

O'Connell DJ, Ho JWK, Mammoto T, Turbe-Doan A, O'Connell JT, Haseley PS, Koo S, Kamiya N, Ingber DE, Park PJ, Maas RL. A Wnt-Bmp feedback circuit controls intertissue signaling dynamics in tooth organogenesis. Science Signaling. 2012;5:ra4. doi: 10.1126/scisignal.2002414. PubMed DOI PMC

Oster GF, Shubin N, Murray JD, Alberch P. Evolution and morphogenetic rules: the shape of the vertebrate limb in ontogeny and phylogeny. Evolution. 1988;42:862–884. doi: 10.1111/j.1558-5646.1988.tb02508.x. PubMed DOI

Pantalacci S, Sémon M, Martin A, Chevret P, Laudet V. Heterochronic shifts explain variations in a sequentially developing repeated pattern: palatal ridges of muroid rodents. Evolution & Development. 2009;11:422–433. doi: 10.1111/j.1525-142X.2009.00348.x. PubMed DOI

Peterka M, Lesot H, Peterková R. Body weight in mouse embryos specifies staging of tooth development. Connective Tissue Research. 2002;43:186–190. doi: 10.1080/03008200290000673. PubMed DOI

Peterková R, Lesot H, Vonesch JL, Peterka M, Ruch JV. Mouse molar morphogenesis revisited by three dimensional reconstruction I analysis of initial stages of the first upper molar development revealed two transient buds. The International Journal of Developmental Biology. 1996;40:1009–1016. PubMed

Peterková R, Peterka M, Viriot L, Lesot H. Development of the vestigial tooth primordia as part of mouse odontogenesis. Connective Tissue Research. 2002;43:120–128. doi: 10.1080/03008200290000745. PubMed DOI

Peterková R, Lesot H, Viriot L, Peterka M. The supernumerary cheek tooth in tabby/EDA mice-a reminiscence of the premolar in mouse ancestors. Archives of Oral Biology. 2005;50:219–225. doi: 10.1016/j.archoralbio.2004.10.020. PubMed DOI

Peterkova R, Lesot H, Peterka M. Phylogenetic memory of developing mammalian dentition. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 2006;306B:234–250. doi: 10.1002/jez.b.21093. PubMed DOI

Peterkova R, Churava S, Lesot H, Rothova M, Prochazka J, Peterka M, Klein OD. Revitalization of a diastemal tooth primordium in Spry2 null mice results from increased proliferation and decreased apoptosis. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 2009;312B:292–308. doi: 10.1002/jez.b.21266. PubMed DOI PMC

Peterkova R, Hovorakova M, Peterka M, Lesot H. Three-dimensional analysis of the early development of the dentition. Australian Dental Journal. 2014;59:55–80. doi: 10.1111/adj.12130. PubMed DOI PMC

Plummer M. Rjags: bayesian graphical models using MCMC. 4-6R Package. 2016

Prochazka J, Pantalacci S, Churava S, Rothova M, Lambert A, Lesot H, Klein O, Peterka M, Laudet V, Peterkova R. Patterning by heritage in mouse molar row development. PNAS. 2010;107:15497–15502. doi: 10.1073/pnas.1002784107. PubMed DOI PMC

R Development Core Team . Vienna, Austria: 2014. http://www.R-project.org/

Renaud S, Auffray J-C, Michaux J. Conserved phenotypic variation patterns, evolution along lines of least resistance, and departure due to selection in fossil rodents. Evolution. 2006;60:1701–1717. doi: 10.1111/j.0014-3820.2006.tb00514.x. PubMed DOI

Renaud S, Pantalacci S, Quéré JP, Laudet V, Auffray JC. Developmental constraints revealed by co-variation within and among molar rows in two murine rodents. Evolution & Development. 2009;11:590–602. doi: 10.1111/j.1525-142X.2009.00365.x. PubMed DOI

Renaud S, Pantalacci S, Auffray JC. Differential evolvability along lines of least resistance of upper and lower molars in island house mice. PLOS ONE. 2011;6:e18951. doi: 10.1371/journal.pone.0018951. PubMed DOI PMC

Renaud S, Ledevin R, Souquet L, Gomes Rodrigues H, Ginot S, Agret S, Claude J, Herrel A, Hautier L. Evolving teeth within a stable masticatory apparatus in orkney mice. Evolutionary Biology. 2018;45:405–424. doi: 10.1007/s11692-018-9459-6. DOI

Renaud S, Auffray J-C. The direction of main phenotypic variance as a channel to evolution: cases in murine rodents hystrix ital. Hystrix, the Italian Journal of Mammalogy. 2013;24:85–93. doi: 10.4404/hystrix-24.1-6296. DOI

Revell LJ. Phytools: an R package for phylogenetic comparative biology (and other things) Methods in Ecology and Evolution. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI

Sadier A, Twarogowska M, Steklikova K, Hayden L, Lambert A, Schneider P, Laudet V, Hovorakova M, Calvez V, Pantalacci S. Modeling edar expression reveals the hidden dynamics of tooth signaling center patterning. PLOS Biology. 2019;17:e3000064. doi: 10.1371/journal.pbio.3000064. PubMed DOI PMC

Salazar-Ciudad I, Jernvall J. A computational model of teeth and the developmental origins of morphological variation. Nature. 2010;464:583–586. doi: 10.1038/nature08838. PubMed DOI

Schluter D. Adaptive radiation along genetic lines of least resistance. Evolution. 1996;50:1766–1774. doi: 10.2307/2410734. PubMed DOI

Sears KE. Quantifying the impact of development on phenotypic variation and evolution: development and phenotypic variation. J. Exp. Zoolog. B Mol. Dev. Evol. 2014;322:643–653. doi: 10.1002/jez.b.22592. PubMed DOI

Sémon M. Bayesian method to estimate embryonic age for mouse embryos. 5a68149GitHub. 2020a https://github.com/msemon/cdpc

Sémon M. Comparison of the genes expressed in lower and upper first molar germs in DUHi and FVB. 93de5dfGitHub. 2020b https://github.com/msemon/trDUHi_FVB

Smith JM, Burian R, Kauffman S, Alberch P, Campbell J, Goodwin B, Lande R, Raup D, Wolpert L. Developmental constraints and evolution: a perspective from the mountain lake conference on development and evolution. The Quarterly Review of Biology. 1985;60:265–287. doi: 10.1086/414425. DOI

Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016;4:1521. doi: 10.12688/f1000research.7563.2. PubMed DOI PMC

Stoetzel E, Denys C, Michaux J, Renaud S. Mus in Morocco: a Quaternary sequence of intraspecific evolution. Biological Journal of the Linnean Society. 2013;109:599–621. doi: 10.1111/bij.12065. DOI

Viriot L, Lesot H, Vonesch JL, Ruch JV, Peterka M, Peterková R. The presence of rudimentary odontogenic structures in the mouse embryonic mandible requires reinterpretation of developmental control of first lower molar histomorphogenesis. The International Journal of Developmental Biology. 2000;44:233–240. PubMed

Wickham H. Reshaping data with the reshape package. Journal of Statistical Software. 2007;21:1–20. doi: 10.18637/jss.v021.i12. DOI

Wickham H. ggplot2 Elegant Graphics for Data Analysis 2009

Yokomizo T, Dzierzak E. Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos. Development. 2010;137:3651–3661. doi: 10.1242/dev.051094. PubMed DOI PMC

Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C, Gall A, Girón CG, Gil L, Gordon L, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann T, To JK, Laird MR, Lavidas I, Liu Z, Loveland JE, Maurel T, McLaren W, Moore B, Mudge J, Murphy DN, Newman V, Nuhn M, Ogeh D, Ong CK, Parker A, Patricio M, Riat HS, Schuilenburg H, Sheppard D, Sparrow H, Taylor K, Thormann A, Vullo A, Walts B, Zadissa A, Frankish A, Hunt SE, Kostadima M, Langridge N, Martin FJ, Muffato M, Perry E, Ruffier M, Staines DM, Trevanion SJ, Aken BL, Cunningham F, Yates A, Flicek P. Ensembl 2018. Nucleic Acids Research. 2018;46:D754–D761. doi: 10.1093/nar/gkx1098. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...