Three-dimensional analysis of the early development of the dentition
Jazyk angličtina Země Austrálie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
24495023
PubMed Central
PMC4199315
DOI
10.1111/adj.12130
Knihovny.cz E-zdroje
- Klíčová slova
- 3D reconstruction, Tooth, development, human, mouse, odontogenesis,
- MeSH
- biologická evoluce MeSH
- dentice MeSH
- diastema embryologie MeSH
- hybridizace in situ metody MeSH
- lidé MeSH
- myši MeSH
- odontogeneze * genetika fyziologie MeSH
- počítačové zpracování obrazu MeSH
- regenerace MeSH
- zobrazování trojrozměrné metody MeSH
- zuby přespočetné embryologie MeSH
- zuby embryologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Tooth development has attracted the attention of researchers since the 19th century. It became obvious even then that morphogenesis could not fully be appreciated from two-dimensional histological sections. Therefore, methods of three-dimensional (3D) reconstructions were employed to visualize the surface morphology of developing structures and to help appreciate the complexity of early tooth morphogenesis. The present review surveys the data provided by computer-aided 3D analyses to update classical knowledge of early odontogenesis in the laboratory mouse and in humans. 3D reconstructions have demonstrated that odontogenesis in the early stages is a complex process which also includes the development of rudimentary odontogenic structures with different fates. Their developmental, evolutionary, and pathological aspects are discussed. The combination of in situ hybridization and 3D reconstruction have demonstrated the temporo-spatial dynamics of the signalling centres that reflect transient existence of rudimentary tooth primordia at loci where teeth were present in ancestors. The rudiments can rescue their suppressed development and revitalize, and then their subsequent autonomous development can give rise to oral pathologies. This shows that tooth-forming potential in mammals can be greater than that observed from their functional dentitions. From this perspective, the mouse rudimentary tooth primordia represent a natural model to test possibilities of tooth regeneration.
Zobrazit více v PubMed
Moss ML. Phylogeny and comparative anatomy of oral ectodermal ectomesenchymal inductive interactions. J Dent Res. 1969;48:732–737. PubMed
Miles AEW, Poole DGF. The history and general organization of dentitions. In: Miles AEW, editor. Structural and chemical organization of teeth. New York, London: Academic Press; 1967. pp. 3–44.
McIntosh JE, Anderton X, Flores-De-Jacoby L, Carlson DS, Shuler CF, Diekwisch TG. Caiman periodontium as an intermediate between basal vertebrate ankylosis-type attachment and mammalian ‘true’ periodontium. Microsc Res Tech. 2002;59:449–459. PubMed
Moss-Salentijn L. Vestigial teeth in rabbit, rat and mouse: their relationship to the problem of lacteal dentitions. In: Butler PM, Joysey KA, editors. Development, function and evolution of teeth. London: Academic Press; 1978. pp. 13–29.
Kükenthal W. Über den Ursprung und die Entwickelung der Säugertierzähne. Jenaer Zeitsch Naturwiss. 1892;26:469–489.
Röse C. Über die Zahnentwickelung der Bauteltiere. Anat Anz. 1892;7:693–707.
Peyer B. In: Comparative odontology. Zangler R, editor. Chicago: The University of Chicago Press; 1968. p. 269.
Peterkova R, Lesot H, Peterka M. Phylogenetic memory of developing mammalian dentition. J Exp Zool. 2006;306B:234–250. PubMed
Osborn HF. The evolution of mammalian molars to and from the tritubercular type. Am Naturalist. 1888;22:1067–1079.
Ungar PS. Mammal teeth: origin, evolution, and diversity. Baltimore: The Johns Hopkins University Press; 2010.
Young JZ. The life of mammals. Oxford: Clarendon Press; 1957.
Adloff P. Die Entwicklung des Zahnsystems der Säugetiere und des Menschen. Berlin: Verlag von Hermann Meusser; 1916.
Bolk L. Odontological essays. On the relation between reptilian and mammalian teeth. J Anat. 1922;56:107–136. PubMed PMC
Peterkova R, Peterka M, Viriot L, Lesot H. Development of the vestigial tooth primordia as part of mouse odontogenesis. Connect Tissue Res. 2002;43:120–128. PubMed
Reiff WE. Evolution of dermal skeleton and dentition in vertebrates. The odontode regulation theory. Evol Biol. 1982;15:287–368.
Huysseune A, Sire JY. Evolution of patterns and processes in teeth and tooth-related tissues in non-mammalian vertebrates. Eur J Oral Sci. 1998;106(Suppl 1):437–481. PubMed
Hitchin AD, Morris I. Geminated odontome – connation of the incisors in the dog – its etiology and ontogeny. J Dent Res. 1966;45:575–583.
Guttal KS, Venkatesh G, Naikmasur VG, Bhargava P, Bathi RJ. Frequency of developmental dental anomalies in the Indian population. Eur J Dent. 2010;4:263–269. PubMed PMC
Marinelli A, Giuntini V, Franchi L, Tollaro I, Baccetti T, Defraia E. Dental anomalies in the primary dentition and their repetition in the permanent dentition: a diagnostic performance study. Odontology. 2012;100:22–27. PubMed
Peterkova R, Peterka M, Vonesch JL, Ruch JV. Multiple developmental origin of the upper incisor in mouse: histological and computer assisted 3D reconstruction studies. Int J Dev Biol. 1993;37:581–588. PubMed
Peterkova R, Peterka M, Vonesch JL, Ruch JV. Contribution of 3D computer-assisted reconstructions to the study of the initial steps of mouse odontogenesis. Int J Dev Biol. 1995;39:239–247. PubMed
Prochazka J, Pantalacci S, Churava S, et al. Patterning by heritage in mouse molar row development. Proc Natl Acad Sci U S A. 2010;107:15497–15502. PubMed PMC
Peterkova R, Lesot H, Viriot L, Peterka M. The supernumerary cheek tooth in tabby/EDA mice–a reminiscence of the premolar in mouse ancestors. Arch Oral Biol. 2005;50:219–225. PubMed
Peterkova R, Churava S, Lesot H, et al. Revitalization of a diastemal tooth primordium in Spry2 null mice results from increased proliferation and decreased apoptosis. J Exp Zool. 2009;312B:292–308. PubMed PMC
Hovorakova M, Lesot H, Peterka M, Peterkova R. The developmental relationship between the deciduous dentition and the oral vestibule in human embryos. Anat Embryol (Berl) 2005;209:303–313. PubMed
Charles C, Hovorakova M, Ahn Y, et al. Regulation of tooth number by fine-tuning levels of receptor-tyrosine kinase signaling. Development. 2011;138:4063–4073. PubMed PMC
Cobourne MT, Sharpe PT. Making up the numbers: the molecular control of mammalian dental formula. Semin Cell Dev Biol. 2010;21:314–324. PubMed
Born G. Die Plattenmodelirmethode. Arch Mikr Anat. 1883;22:584–599.
Born G. Noch einmal die Plattenmodelirmethode. Z Wiss Mikr. 1888;5:433–455.
Ahrens H. Die Entwicklung der menschlichen Zähne. Anat Hefte. 1913;48:169–257.
Knudsen PA. Congenital malformations of upper incisors in exencephalic mouse embryos, induced by hypervitaminosis A. II. Morphology of fused upper incisors. Acta Odontol Scand. 1965;23:391–409. PubMed
Knudsen PA. Fusion of upper incisors at bud or cap stage in mouse embryos with exencephaly induced by hypervitaminosis A. Acta Odontol Scand. 1965;23:549–565. PubMed
Knudsen PA. Malformations of upper incisors in mouse embryos with exencephaly, induced by trypan blue. Acta Odontol Scand. 1966;24:647–675. PubMed
Knudsen PA. Dental anomalies in mouse embryos with hydrocephalus induced by hypervitaminosis. Acta Odontol Scand. 1967;25:677–691. PubMed
Thomee S. Über Glasrekonstruktion. Z Wiss Mikr. 1928;45:356.
Rolshoven E. Rekonstruktion histologischer Objekte auf durchsichtigen Wrkstoffen. Z Wiss Mikr. 1937;54:328.
Blechschmidt E Rekonstruktionsverfahren mit Verwendung von Kunststoffen. Ein Verfahren zur Ermittlung und Rekonstruktion von Entwicklungsbewegungen. Z Anat Entwickl-Gesch. 1954;118:170–174. PubMed
Ooë T. On the development of position of the tooth germs in the human deciduous front teeth. Okajimas Folia Anat Jpn. 1956;28:317–340. PubMed
Ooë T. Three instances of supernumerary tooth germs observed with serial sections of human foetal jaws. Z Anat Entwicklungsgesch. 1971;135:202–209. PubMed
Ooë T. Development of human first and second permanent molar, with special reference to the distal portmon of the dental lamina. Anat Embryol. 1979;155:221–240. PubMed
Radlanski RJ. Contributions to the development of human deciduous primordia. Illinois: Quintessence Publishing Co; 1993. pp. 5–87.
Radlanski RJ. Morphogenesis of human tooth primordia: the importance of 3D computer-assisted reconstruction. Int J Dev Biol. 1995;39:249–256. PubMed
Hovorakova M, Lesot H, Peterkova R, Peterka M. Origin of the deciduous upper lateral incisor and its clinical aspects. J Dent Res. 2006;85:167–171. PubMed
Hovorakova M, Lesot H, Vonesch JL, Peterka M, Peterkova R. Early development of the lower deciduous dentition and oral vestibule in human embryos. Eur J Oral Sci. 2007;115:280–287. PubMed
Gaunt WA. The development of the molar pattern of the mouse (Mus musculus) Acta Anat. 1955;24:249–268. PubMed
Hay MF. The development in vivo and in vitro of the lower incisor and molars of the mouse. Arch Oral Biol. 1961;3:86–109. PubMed
Pourtois M. Contribution to the study of tooth buds in the mouse. I. Periods of induction and morphodifferentiation. Arch. Biol. 1961;72:17–95. PubMed
Cohn SA. Development of the molar teeth in the albino mouse. Am J Anat. 1957;101:295–319. PubMed
Peterka M, Lesot H, Peterkova R. Body weight in mouse embryos specifies staging of tooth development. Connect Tissue Res. 2002;43:186–190. PubMed
Peterkova R, Lesot H, Vonesch JL, Peterka M, Ruch JV. Mouse molar morphogenesis revisited by three-dimensional reconstruction. I. Analysis of initial stages of the first upper molar development revealed two transient buds. Int J Dev Biol. 1996;40:1009–1016. PubMed
Lesot H, Vonesch JL, Peterka M, Tureckova J, Peterkova R, Ruch JV. Mouse molar morphogenesis revisited by three-dimensional reconstruction. II. Spatial distribution of mitoses and apoptosis in cap to bell staged first and second upper molar teeth. Int J Dev Biol. 1996;40:1017–1031. PubMed
Lesot H, Peterkova R, Viriot L, et al. Early stages of tooth morphogenesis in mouse analyzed by 3D reconstructions. Eur J Oral Sci. 1998;106(Suppl 1):64–70. PubMed
Lesot H, Peterkova R, Schmitt R, et al. Initial features of the inner dental epithelium histo-morphogenesis in the first lower molar in mouse. Int J Dev Biol. 1999;43:245–254. PubMed
Lesot H, Hovorakova M, Peterka M, Peterkova R. Three-dimensional analysis of molar development in the mouse from the cap to bell stage. Aust Dent J. 2014 doi: 10.1111/adj.12132 [Epub ahead of print] PubMed
Kieffer S, Peterkova R, Vonesch JL, Ruch JV, Peterka M, Lesot H. Morphogenesis of the lower incisor in the mouse from the bud to early bell stage. Int J Dev Biol. 1999;43:531–539. PubMed
Viriot L, Peterkova R, Vonesch JL, Peterka M, Ruch JV, Lesot H. Mouse molar morphogenesis revisited by three-dimensional reconstruction. III. Spatial distribution of mitoses and apoptoses up to bell-staged first lower molar teeth. Int J Dev Biol. 1997;41:679–690. PubMed
Viriot L, Lesot H, Vonesch JL, Ruch JV, Peterka M, Peterkova R. The presence of rudimentary odontogenic structures in the mouse embryonic mandible requires reinterpretation of developmental control of first lower molar histomorphogenesis. Int J Dev Biol. 2000;44:233–240. PubMed
Hovorakova M, Prochazka J, Lesot H, et al. Shh expression in a rudimentary tooth offers new insights into development of the mouse incisor. J Exp Zool. 2011;316B:347–358. PubMed
Vaahtokari A, Aberg T, Jernvall J, Keränen S, Thesleff I. The enamel knot as a signaling center in the developing mouse tooth. Mech Dev. 1996;54:39–43. PubMed
Peterkova R, Peterka M, Vonesch JL, et al. Correlation between apoptosis distribution and BMP-2 and BMP-4 expression in vestigial tooth primordia in mice. Eur J Oral Sci. 1998;106:667–670. PubMed
Coin R, Lesot H, Vonesch JL, Haikel Y, Ruch JV. Aspects of cell proliferation kinetics of the inner dental epithelium during mouse molar and incisor morphogenesis: a reappraisal of the role of the enamel knot area. Int J Dev Biol. 1999;43:261–267. PubMed
Miard S, Peterkova R, Vonesch JL, Peterka M, Ruch JV, Lesot H. Alterations in the incisor development in the Tabby mouse. Int J Dev Biol. 1999;43:517–529. PubMed
Lisi S, Peterkova R, Peterka M, Vonesch JL, Ruch JV, Lesot H. Tooth morphogenesis and pattern of odontoblast differentiation. Connect Tissue Res. 2003;44(Suppl 1):167–170. PubMed
Lesot H, Kieffer-Combeau S, Fausser JL, et al. Cell-cell and cell-matrix interactions during initial enamel organ histomorphogenesis in the mouse. Connect Tissue Res. 2002;43:191–200. PubMed
Peterkova R, Kristenova P, Lesot H, et al. Different morphotypes of the tabby (EDA) dentition in the mouse mandible result from a defect in the mesio-distal segmentation of dental epithelium. Orthod Craniofac Res. 2002;5:215–226. PubMed
Ohazama A, Haycraft CJ, Seppala M, et al. Primary cilia regulate Shh activity in the control of molar tooth number. Development. 2009;136:897–903. PubMed PMC
Nakatomi M, Hovorakova M, Gritli-Linde A, et al. Evc regulates a symmetrical response to Shh signaling in molar development. J Dent Res. 2013;92:222–228. PubMed
Witter K, Lesot H, Peterka M, Vonesch JL, Mísek I, Peterkova R. Origin and developmental fate of vestigial tooth primordia in the upper diastema of the field vole (Microtus agrestis, Rodentia) Arch Oral Biol. 2005;50:401–409. PubMed
Harada H, Toyono T, Toyoshima K, et al. FGF10 maintains stem cell compartment in developing mouse incisors. Development. 2002;129:1533–1541. PubMed
Balic A, Mina M. Characterization of progenitor cells in pulps of murine incisors. J Dent Res. 2010;89:1287–1292. PubMed PMC
Lapthanasupkul P, Feng J, Mantesso A, et al. Ring1a/b polycomb proteins regulate the mesenchymal stem cell niche in continuously growing incisors. Dev Biol. 2012;367:140–153. PubMed
Tureckova J, Sahlberg C, Aberg T, Ruch JV, Thesleff I, Peterkova R. Comparison of expression of the msx-1, msx-2, BMP-2 and BMP-4 genes in the mouse upper diastemal and molar tooth primordia. Int J Dev Biol. 1995;39:459–468. PubMed
Keränen SV, Kettunen P, Aberg T, Thesleff I, Jernvall J. Gene expression patterns associated with suppression of odontogenesis in mouse and vole diastema regions. Dev Genes Evol. 1999;209:495–506. PubMed
Peterkova R, Peterka M, Lesot H. The developing mouse dentition: a new tool for apoptosis study. Ann N Y Acad Sci. 2003;1010:453–466. PubMed
Cobourne MT, Miletich I, Sharpe PT. Restriction of sonic hedgehog signalling during early tooth development. Development. 2004;131:2875–2885. PubMed
Yuan GH, Zhang L, Zhang YD, Fan MW, Bian Z, Chen Z. Mesenchyme is responsible for tooth suppression in the mouse lower diastema. J Dent Res. 2008;87:386–390. PubMed
Ahn Y, Sanderson BW, Klein OD, Krumlauf R. Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development. 2010;137:3221–3231. PubMed PMC
Porntaveetus T, Ohazama A, Choi HY, Herz J, Sharpe PT. Wnt signaling in the murine diastema. Eur J Orthod. 2012;34:518–524. PubMed PMC
Li L, Yuan G, Liu C, et al. Exogenous fibroblast growth factor 8 rescues development of mouse diastemal vestigial tooth ex vivo. Dev Dyn. 2011;240:1344–1353. PubMed PMC
Miletich I, Yu WY, Zhang R, et al. Developmental stalling and organ-autonomous regulation of morphogenesis. Proc Natl Acad Sci U S A. 2011;108:19270–19275. PubMed PMC
Chae YM, Jin YJ, Kim HS, et al. Proteome analysis of developing mice diastema region. BMB Rep. 2012;45:337–341. PubMed
Chen Y, Zhang Y, Jiang TX, et al. Conservation of early odontogenic signaling pathways in Aves. Proc Natl Acad Sci USA. 2000;97:10044–10049. PubMed PMC
Viriot L, Peterkova R, Peterka M, Lesot H. Evolutionary implications of the occurrence of two vestigial tooth germs during early odontogenesis in the mouse lower jaw. Connect Tissue Res. 2002;43:129–133. PubMed
Peterkova R, Peterka M, Viriot L, Lesot H. Dentition development and budding morphogenesis. J Craniofac Genet Dev Biol. 2000;20:158–172. PubMed
Theiler K. The House Mouse. Berlin, Heidelberg, New York: Springer-Verlag; 1972. pp. 1–162.
Kaufman MH. The atlas of mouse development. London: Academic Press; 1992.
Miyake T, Cameron AM, Hall BK. Detailed staging of inbred C57BL/6 mice between Theiler’s [1972] stages 18 and 21 (11–13 days of gestation) based on craniofacial development. J Craniofac Genet Dev Biol. 1996;16:1–31. PubMed
Bei M. Molecular genetics of tooth development. Curr Opin Genet Dev. 2009;19:504–510. PubMed PMC
Brook AH. Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development. Arch Oral Biol. 2009;54:S3–S17. PubMed PMC
Buchtova M, Handrigan GR, Tucker AS, et al. Initiation and patterning of the snake dentition are dependent on Sonic hedgehog signaling. Dev Biol. 2008;319:132–145. PubMed
Catón J, Tucker AS. Current knowledge of tooth development: patterning and mineralization of the murine dentition. J Anat. 2009;214:502–515. PubMed PMC
Lesot H, Brook AH. Epithelial histogenesis during tooth development. Arch Oral Biol. 2009;54(Suppl 1):S25–S33. PubMed
Jernvall J, Thesleff I. Tooth shape formation and tooth renewal: evolving with the same signals. Development. 2012;139:3487–3497. PubMed
Townsend G, Bockmann M, Hughes T, Brook A. Genetic, environmental and epigenetic influences on variation in human tooth number, size and shape. Odontology. 2012;100:1–9. PubMed
Lumsden AG. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development. 1988;103(Suppl):155–169. PubMed
Kollar EJ, Mina M. Role of the early epithelium in the patterning of the teeth and Meckel’s cartilage. J Craniofac Genet Dev Biol. 1991;11:223–228. PubMed
Ohazama A, Modino SA, Miletich I, Sharpe PT. Stem-cell-based tissue engineering of murine teeth. J Dent Res. 2004;83:518–522. PubMed
Cobourne MT, Mitsiadis T. Neural crest cells and patterning of the mammalian dentition. J Exp Zool. 2006;306B:251–260. PubMed
Thomas BL, Tucker AS, Qui M, et al. Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. Development. 1997;124:4811–4818. PubMed
Peters H, Balling R. Teeth. Where and how to make them. Trends Genet. 1999;15:59–65. PubMed
Tucker AS, Sharpe PT. Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. J Dent Res. 1999;78:826–834. PubMed
Rothova M, Peterkova R, Tucker AS. Fate map of the dental mesenchyme: dynamic development of the dental papilla and follicle. Dev Biol. 2012;366:244–254. PubMed
Nait LechguerA, Kuchler-Bopp S, Hu B, Haïkel Y, Lesot H. Vascularization of engineered teeth. J Dent Res. 2008;87:1138–1143. PubMed
Rothova M, Feng J, Sharpe PT, Peterkova R, Tucker AS. Contribution of mesoderm to the developing dental papilla. Int J Dev Biol. 2011;55:59–64. PubMed
Keller LV, Kuchler-Bopp S, Lesot H. Restoring physiological cell heterogeneity in the mesenchyme during tooth engineering. Int J Dev Biol. 2012;56:737–746. PubMed
Mohamed SS, Atkinson ME. A histological study of the innervation of developing mouse teeth. J Anat. 1983;136:735–749. PubMed PMC
Fried K, Nosrat C, Lillesaar C, Hildebrand C. Molecular signaling and pulpal nerve development. Crit Rev Oral Biol Med. 2000;11:318–332. PubMed
Luukko K, Kvinnsland IH, Kettunen P. Tissue interactions in the regulation of axon pathfinding during tooth morphogenesis. Dev Dyn. 2005;234:482–488. PubMed
Løes S, Kettunen P, Kvinnsland H, Luukko K. Mouse rudimentary diastema tooth primordia are devoid of peripheral nerve fibers. Anat Embryol. 2002;205:187–191. PubMed
Ooë T. On the early development of human dental lamina. Okajimas Folia Anat Jpn. 1957;30:198–210. PubMed
Nery EB, Kraus BS, Croup M. Timing and topography of early human tooth development. Arch Oral Biol. 1970;15:1315–1326. PubMed
Kriangkrai R, Chareonvit S, Yahagi K, Fujiwara M, Eto K, Iseki S. Study of Pax6 mutant rat revealed the association between upper incisor formation and midface formation. Dev Dyn. 2006;235:2134–2143. PubMed
Kriangkrai R, Iseki S, Eto K, Chareonvit S. Dual odontogenic origins develop at the early stage of rat maxillary incisor development. Anat Embryol. 2006;211:101–108. PubMed
Peterkova R. The common developmental origin and phylogenetic aspects of teeth, rugae palatinae, and fornix vestibuli oris in the mouse. J Craniofac Genet Dev Biol. 1985;5:89–104. PubMed
Schlosser G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. J Exp Zool. 2005;304B:347–399. PubMed
Schlosser G. Development and evolution of lateral line placodes in amphibians. I. Development. Zoology. 2002;105:119–146. PubMed
Mikkola ML. Genetic basis of skin appendage development. Semin Cell Dev Biol. 2007;18:225–236. PubMed
Westergaard B. Early dentition development in the lower jaws of Anguis fragilis and Lacerta agilis. Mem Soc Fauna Flora Fenn. 1988;64:148–151.
Huysseune A, Witten PE. Developmental mechanisms underlying tooth patterning in continuously replacing osteichthyan dentitions. J Exp Zool. 2006;306B:204–215. PubMed
Pispa J, Thesleff I. Mechanisms of ectodermal organogenesis. Dev Biol. 2003;262:195–205. PubMed
Munne PM, Felszeghy S, Jussila M, Suomalainen M, Thesleff I, Jernvall J. Splitting placodes: effects of bone morphogenetic protein and Activin on the patterning and identity of mouse incisors. Evol Dev. 2010;12:383–392. PubMed
Blackburn J, Ohazama A, Kawasaki K, et al. The role of Irf6 in tooth epithelial invagination. Dev Biol. 2012;365:61–70. PubMed PMC
Sarkar L, Cobourne M, Naylor S, Smalley M, Dale T, Sharpe PT. Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. Proc Natl Acad Sci U S A. 2000;97:4520–4524. PubMed PMC
Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol. 1995;172:126–138. PubMed
Hardcastle Z, Mo R, Hui CC, Sharpe PT. The Shh signalling pathway in tooth development: defects in Gli2 and Gli3 mutants. Development. 1998;125:2803–2811. PubMed
Ruch JV. Tooth morphogenesis and differentiation. In: Linde A, editor. Dentin and dentinogenesis. I. Boca Raton, FL, USA: CRC Press; 1984. pp. 47–79.
Ingber DE. The mechanochemical basis of cell and tissue regulation. Mech Chem Biosyst. 2004;1:53–68. PubMed
Donley CL, Nelson LP. Comparison of palatal and alveolar cysts of the newborn in premature and full-term infants. Pediatr Dent. 2000;22:321–324. PubMed
Fukumoto S, Kiba T, Hall B, et al. Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol. 2004;167:973–983. PubMed PMC
Obara N, Suzuki Y, Nagai Y, Takeda M. Expression of E- and P-cadherin during tooth morphogenesis and cytodifferentiation of ameloblasts. Anat Embryol. 1998;197:469–475. PubMed
Hogan BL. Morphogenesis. Cell. 1999;96:225–233. PubMed
Jung HS, Francis-West PH, Widelitz RB, et al. Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning. Dev Biol. 1998;196:11–23. PubMed
Widelitz RB, Chuong CM. Early events in skin appendage formation: induction of epithelial placodes and condensation of dermal mesenchyme. J Investig Dermatol Symp Proc. 1999;4:302–306. PubMed
Cobourne MT, Hardcastle Z, Sharpe PT. Sonic hedgehog regulates epithelial proliferation and cell survival in the developing tooth germ. J Dent Res. 2001;80:1974–1979. PubMed
Weiss KM, Stock DW, Zhao Z. Dynamic interactions and the evolutionary genetics of dental patterning. Crit Rev Oral Biol Med. 1998;9:369–398. PubMed
Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev. 2000;92:19–29. PubMed
Cho SW, Kwak S, Woolley TE, et al. Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback loop for spatial patterning of the teeth. Development. 2011;138:1807–1816. PubMed
Hovorakova M, Smrckova L, Lesot H, Lochovska K, Peterka M, Peterkova R. Sequential Shh expression in the development of the mouse upper functional incisor. J Exp Zool B Mol Dev Evol. 2013 Aug 1. doi: 10.1002/jez.b.22522 [Epub ahead of print] PubMed
Woodward MF. On the milk dentition of the rodentia, with a description of a vestigial milk incisor in the mouse (Mus musculus) Anat Anz. 1894;9:619–631.
Fitzgerald LR. Deciduous incisor teeth of the mouse (Mus musculus) Arch Oral Biol. 1973;18:381–389. PubMed
Leche W. Nachträge zu Studien über die Entwickelung der Zahnsystems bei Säugertieren. Morph Jahrb. 1893;20:113–142.
Röse C. Überreste einer vorzeitigen prälactealen un einer vierten Zahnreihe beim Menschen. Österreichisch-Ungarische Vierteljahrschr Zahnheilk. 1895;2:45–50.
Adloff P. Überreste einer prälactealen Zahnreihe beim Menschen. Deut Monatschr Zahnheilk. 1909;11:828–832.
Lagronova-Churava S, Spoutil F, Vojtechova S, et al. The dynamics of supernumerary tooth development are differentially regulated by Sprouty genes. J Exp Zool. 2013;320B:307–320. PubMed
Kollar EJ, Baird GR. The influence of the dental papilla on the development of tooth shape in embryonic mouse tooth germs. J Embryol Exp Morphol. 1969;21:131–148. PubMed
Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol. 1987;32:123–127. PubMed
Fleischmannova J, Matalova E, Tucker AS, Sharpe PT. Mouse models of tooth abnormalities. Eur J Oral Sci. 2008;116:1–10. PubMed
Peterkova R. Dental lamina develops even within the mouse diastema. J Craniofac Genet Dev Biol. 1983;3:133–142. PubMed
Klein OD, Minowada G, Peterkova R, et al. Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell. 2006;11:181–190. PubMed PMC
D’Souza RN, Klein OD. Unraveling the molecular mechanisms that lead to supernumerary teeth in mice and men: current concepts and novel approaches. Cells Tissues Organs. 2007;186:60–69. PubMed
Butler PM. The ontogeny of molar teeth. Biol Rev. 1956;31:30–70.
MacKenzie A, Ferguson MW, Sharpe PT. Expression patterns of the homeobox gene, Hox-8, in the mouse embryo suggest a role in specifying tooth initiation and shape. Development. 1992;115:403–420. PubMed
Jernvall J, Kettunen P, Karavanova I, Martin LB, Thesleff I. Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int J Dev Biol. 1994;38:463–469. PubMed
Nozue T. Specific spindle cells and globular substances in enamel knot. Okajimas Folia Anat Jpn. 1971;48:139–151. PubMed
Kindaichi K. An electron microscopic study of cell death in molar tooth germ epithelia of mouse embryos. Arch Histol Jpn. 1980;43:289–304. PubMed
Vaahtokari A, Aberg T, Thesleff I. Apoptosis in the developing tooth: association with an embryonic signaling center and suppression by EGF and FGF-4. Development. 1996b;122:121–129. PubMed
Jernvall J, Aberg T, Kettunen P, Keränen S, Thesleff I. The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development. 1998;125:161–169. PubMed
Sharpe PT. Homeobox genes and orofacial development. Connect Tissue Res. 1995;32:17–25. PubMed
Qiu M, Bulfone A, Ghattas I, et al. Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev Biol. 1997;185:165–184. PubMed
Seichert V, Čihák R, Naňka O. The Guide of the Collections of the Institute of Anatomy, First Faculty of Medicine, Charles University in Prague. Prague: Charles University in Prague, Karolinum Publisher; 2006. pp. 7–99.
Edmund AG. Tooth replacement phenomena in the lower vertebrates. R Ont Mus Life Sci. 1960;52:1–190.
Wolsan M. The origin of extra teeth in mammals. Acta Theriol. 1984;29:128–133.
Drehmer CJ, Fabián ME, Meneghetiet JO, et al. Dental anomalies in the Atlantic population of South American sea lion, Otaria byronia (Pinnipedia, Otariidae): evolutionary implications and ecological approach. LAJAM. 2004;3:7–18.
Darwin C. On the Origin of Species. A facsimile of the First Edition. Cambridge, Massachusetts: Harvard University Press. Sixteenth printing. 1859;2000:411–458.
Developmental variability channels mouse molar evolution
Early development of the human dentition revisited
Transcriptomic signatures shaped by cell proportions shed light on comparative developmental biology
Fate of the molar dental lamina in the monophyodont mouse
Sprouty gene dosage influences temporal-spatial dynamics of primary enamel knot formation