Three-dimensional analysis of the early development of the dentition

. 2014 Jun ; 59 Suppl 1 (Suppl 1) : 55-80. [epub] 20140204

Jazyk angličtina Země Austrálie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid24495023

Tooth development has attracted the attention of researchers since the 19th century. It became obvious even then that morphogenesis could not fully be appreciated from two-dimensional histological sections. Therefore, methods of three-dimensional (3D) reconstructions were employed to visualize the surface morphology of developing structures and to help appreciate the complexity of early tooth morphogenesis. The present review surveys the data provided by computer-aided 3D analyses to update classical knowledge of early odontogenesis in the laboratory mouse and in humans. 3D reconstructions have demonstrated that odontogenesis in the early stages is a complex process which also includes the development of rudimentary odontogenic structures with different fates. Their developmental, evolutionary, and pathological aspects are discussed. The combination of in situ hybridization and 3D reconstruction have demonstrated the temporo-spatial dynamics of the signalling centres that reflect transient existence of rudimentary tooth primordia at loci where teeth were present in ancestors. The rudiments can rescue their suppressed development and revitalize, and then their subsequent autonomous development can give rise to oral pathologies. This shows that tooth-forming potential in mammals can be greater than that observed from their functional dentitions. From this perspective, the mouse rudimentary tooth primordia represent a natural model to test possibilities of tooth regeneration.

Zobrazit více v PubMed

Moss ML. Phylogeny and comparative anatomy of oral ectodermal ectomesenchymal inductive interactions. J Dent Res. 1969;48:732–737. PubMed

Miles AEW, Poole DGF. The history and general organization of dentitions. In: Miles AEW, editor. Structural and chemical organization of teeth. New York, London: Academic Press; 1967. pp. 3–44.

McIntosh JE, Anderton X, Flores-De-Jacoby L, Carlson DS, Shuler CF, Diekwisch TG. Caiman periodontium as an intermediate between basal vertebrate ankylosis-type attachment and mammalian ‘true’ periodontium. Microsc Res Tech. 2002;59:449–459. PubMed

Moss-Salentijn L. Vestigial teeth in rabbit, rat and mouse: their relationship to the problem of lacteal dentitions. In: Butler PM, Joysey KA, editors. Development, function and evolution of teeth. London: Academic Press; 1978. pp. 13–29.

Kükenthal W. Über den Ursprung und die Entwickelung der Säugertierzähne. Jenaer Zeitsch Naturwiss. 1892;26:469–489.

Röse C. Über die Zahnentwickelung der Bauteltiere. Anat Anz. 1892;7:693–707.

Peyer B. In: Comparative odontology. Zangler R, editor. Chicago: The University of Chicago Press; 1968. p. 269.

Peterkova R, Lesot H, Peterka M. Phylogenetic memory of developing mammalian dentition. J Exp Zool. 2006;306B:234–250. PubMed

Osborn HF. The evolution of mammalian molars to and from the tritubercular type. Am Naturalist. 1888;22:1067–1079.

Ungar PS. Mammal teeth: origin, evolution, and diversity. Baltimore: The Johns Hopkins University Press; 2010.

Young JZ. The life of mammals. Oxford: Clarendon Press; 1957.

Adloff P. Die Entwicklung des Zahnsystems der Säugetiere und des Menschen. Berlin: Verlag von Hermann Meusser; 1916.

Bolk L. Odontological essays. On the relation between reptilian and mammalian teeth. J Anat. 1922;56:107–136. PubMed PMC

Peterkova R, Peterka M, Viriot L, Lesot H. Development of the vestigial tooth primordia as part of mouse odontogenesis. Connect Tissue Res. 2002;43:120–128. PubMed

Reiff WE. Evolution of dermal skeleton and dentition in vertebrates. The odontode regulation theory. Evol Biol. 1982;15:287–368.

Huysseune A, Sire JY. Evolution of patterns and processes in teeth and tooth-related tissues in non-mammalian vertebrates. Eur J Oral Sci. 1998;106(Suppl 1):437–481. PubMed

Hitchin AD, Morris I. Geminated odontome – connation of the incisors in the dog – its etiology and ontogeny. J Dent Res. 1966;45:575–583.

Guttal KS, Venkatesh G, Naikmasur VG, Bhargava P, Bathi RJ. Frequency of developmental dental anomalies in the Indian population. Eur J Dent. 2010;4:263–269. PubMed PMC

Marinelli A, Giuntini V, Franchi L, Tollaro I, Baccetti T, Defraia E. Dental anomalies in the primary dentition and their repetition in the permanent dentition: a diagnostic performance study. Odontology. 2012;100:22–27. PubMed

Peterkova R, Peterka M, Vonesch JL, Ruch JV. Multiple developmental origin of the upper incisor in mouse: histological and computer assisted 3D reconstruction studies. Int J Dev Biol. 1993;37:581–588. PubMed

Peterkova R, Peterka M, Vonesch JL, Ruch JV. Contribution of 3D computer-assisted reconstructions to the study of the initial steps of mouse odontogenesis. Int J Dev Biol. 1995;39:239–247. PubMed

Prochazka J, Pantalacci S, Churava S, et al. Patterning by heritage in mouse molar row development. Proc Natl Acad Sci U S A. 2010;107:15497–15502. PubMed PMC

Peterkova R, Lesot H, Viriot L, Peterka M. The supernumerary cheek tooth in tabby/EDA mice–a reminiscence of the premolar in mouse ancestors. Arch Oral Biol. 2005;50:219–225. PubMed

Peterkova R, Churava S, Lesot H, et al. Revitalization of a diastemal tooth primordium in Spry2 null mice results from increased proliferation and decreased apoptosis. J Exp Zool. 2009;312B:292–308. PubMed PMC

Hovorakova M, Lesot H, Peterka M, Peterkova R. The developmental relationship between the deciduous dentition and the oral vestibule in human embryos. Anat Embryol (Berl) 2005;209:303–313. PubMed

Charles C, Hovorakova M, Ahn Y, et al. Regulation of tooth number by fine-tuning levels of receptor-tyrosine kinase signaling. Development. 2011;138:4063–4073. PubMed PMC

Cobourne MT, Sharpe PT. Making up the numbers: the molecular control of mammalian dental formula. Semin Cell Dev Biol. 2010;21:314–324. PubMed

Born G. Die Plattenmodelirmethode. Arch Mikr Anat. 1883;22:584–599.

Born G. Noch einmal die Plattenmodelirmethode. Z Wiss Mikr. 1888;5:433–455.

Ahrens H. Die Entwicklung der menschlichen Zähne. Anat Hefte. 1913;48:169–257.

Knudsen PA. Congenital malformations of upper incisors in exencephalic mouse embryos, induced by hypervitaminosis A. II. Morphology of fused upper incisors. Acta Odontol Scand. 1965;23:391–409. PubMed

Knudsen PA. Fusion of upper incisors at bud or cap stage in mouse embryos with exencephaly induced by hypervitaminosis A. Acta Odontol Scand. 1965;23:549–565. PubMed

Knudsen PA. Malformations of upper incisors in mouse embryos with exencephaly, induced by trypan blue. Acta Odontol Scand. 1966;24:647–675. PubMed

Knudsen PA. Dental anomalies in mouse embryos with hydrocephalus induced by hypervitaminosis. Acta Odontol Scand. 1967;25:677–691. PubMed

Thomee S. Über Glasrekonstruktion. Z Wiss Mikr. 1928;45:356.

Rolshoven E. Rekonstruktion histologischer Objekte auf durchsichtigen Wrkstoffen. Z Wiss Mikr. 1937;54:328.

Blechschmidt E Rekonstruktionsverfahren mit Verwendung von Kunststoffen. Ein Verfahren zur Ermittlung und Rekonstruktion von Entwicklungsbewegungen. Z Anat Entwickl-Gesch. 1954;118:170–174. PubMed

Ooë T. On the development of position of the tooth germs in the human deciduous front teeth. Okajimas Folia Anat Jpn. 1956;28:317–340. PubMed

Ooë T. Three instances of supernumerary tooth germs observed with serial sections of human foetal jaws. Z Anat Entwicklungsgesch. 1971;135:202–209. PubMed

Ooë T. Development of human first and second permanent molar, with special reference to the distal portmon of the dental lamina. Anat Embryol. 1979;155:221–240. PubMed

Radlanski RJ. Contributions to the development of human deciduous primordia. Illinois: Quintessence Publishing Co; 1993. pp. 5–87.

Radlanski RJ. Morphogenesis of human tooth primordia: the importance of 3D computer-assisted reconstruction. Int J Dev Biol. 1995;39:249–256. PubMed

Hovorakova M, Lesot H, Peterkova R, Peterka M. Origin of the deciduous upper lateral incisor and its clinical aspects. J Dent Res. 2006;85:167–171. PubMed

Hovorakova M, Lesot H, Vonesch JL, Peterka M, Peterkova R. Early development of the lower deciduous dentition and oral vestibule in human embryos. Eur J Oral Sci. 2007;115:280–287. PubMed

Gaunt WA. The development of the molar pattern of the mouse (Mus musculus) Acta Anat. 1955;24:249–268. PubMed

Hay MF. The development in vivo and in vitro of the lower incisor and molars of the mouse. Arch Oral Biol. 1961;3:86–109. PubMed

Pourtois M. Contribution to the study of tooth buds in the mouse. I. Periods of induction and morphodifferentiation. Arch. Biol. 1961;72:17–95. PubMed

Cohn SA. Development of the molar teeth in the albino mouse. Am J Anat. 1957;101:295–319. PubMed

Peterka M, Lesot H, Peterkova R. Body weight in mouse embryos specifies staging of tooth development. Connect Tissue Res. 2002;43:186–190. PubMed

Peterkova R, Lesot H, Vonesch JL, Peterka M, Ruch JV. Mouse molar morphogenesis revisited by three-dimensional reconstruction. I. Analysis of initial stages of the first upper molar development revealed two transient buds. Int J Dev Biol. 1996;40:1009–1016. PubMed

Lesot H, Vonesch JL, Peterka M, Tureckova J, Peterkova R, Ruch JV. Mouse molar morphogenesis revisited by three-dimensional reconstruction. II. Spatial distribution of mitoses and apoptosis in cap to bell staged first and second upper molar teeth. Int J Dev Biol. 1996;40:1017–1031. PubMed

Lesot H, Peterkova R, Viriot L, et al. Early stages of tooth morphogenesis in mouse analyzed by 3D reconstructions. Eur J Oral Sci. 1998;106(Suppl 1):64–70. PubMed

Lesot H, Peterkova R, Schmitt R, et al. Initial features of the inner dental epithelium histo-morphogenesis in the first lower molar in mouse. Int J Dev Biol. 1999;43:245–254. PubMed

Lesot H, Hovorakova M, Peterka M, Peterkova R. Three-dimensional analysis of molar development in the mouse from the cap to bell stage. Aust Dent J. 2014 doi: 10.1111/adj.12132 [Epub ahead of print] PubMed

Kieffer S, Peterkova R, Vonesch JL, Ruch JV, Peterka M, Lesot H. Morphogenesis of the lower incisor in the mouse from the bud to early bell stage. Int J Dev Biol. 1999;43:531–539. PubMed

Viriot L, Peterkova R, Vonesch JL, Peterka M, Ruch JV, Lesot H. Mouse molar morphogenesis revisited by three-dimensional reconstruction. III. Spatial distribution of mitoses and apoptoses up to bell-staged first lower molar teeth. Int J Dev Biol. 1997;41:679–690. PubMed

Viriot L, Lesot H, Vonesch JL, Ruch JV, Peterka M, Peterkova R. The presence of rudimentary odontogenic structures in the mouse embryonic mandible requires reinterpretation of developmental control of first lower molar histomorphogenesis. Int J Dev Biol. 2000;44:233–240. PubMed

Hovorakova M, Prochazka J, Lesot H, et al. Shh expression in a rudimentary tooth offers new insights into development of the mouse incisor. J Exp Zool. 2011;316B:347–358. PubMed

Vaahtokari A, Aberg T, Jernvall J, Keränen S, Thesleff I. The enamel knot as a signaling center in the developing mouse tooth. Mech Dev. 1996;54:39–43. PubMed

Peterkova R, Peterka M, Vonesch JL, et al. Correlation between apoptosis distribution and BMP-2 and BMP-4 expression in vestigial tooth primordia in mice. Eur J Oral Sci. 1998;106:667–670. PubMed

Coin R, Lesot H, Vonesch JL, Haikel Y, Ruch JV. Aspects of cell proliferation kinetics of the inner dental epithelium during mouse molar and incisor morphogenesis: a reappraisal of the role of the enamel knot area. Int J Dev Biol. 1999;43:261–267. PubMed

Miard S, Peterkova R, Vonesch JL, Peterka M, Ruch JV, Lesot H. Alterations in the incisor development in the Tabby mouse. Int J Dev Biol. 1999;43:517–529. PubMed

Lisi S, Peterkova R, Peterka M, Vonesch JL, Ruch JV, Lesot H. Tooth morphogenesis and pattern of odontoblast differentiation. Connect Tissue Res. 2003;44(Suppl 1):167–170. PubMed

Lesot H, Kieffer-Combeau S, Fausser JL, et al. Cell-cell and cell-matrix interactions during initial enamel organ histomorphogenesis in the mouse. Connect Tissue Res. 2002;43:191–200. PubMed

Peterkova R, Kristenova P, Lesot H, et al. Different morphotypes of the tabby (EDA) dentition in the mouse mandible result from a defect in the mesio-distal segmentation of dental epithelium. Orthod Craniofac Res. 2002;5:215–226. PubMed

Ohazama A, Haycraft CJ, Seppala M, et al. Primary cilia regulate Shh activity in the control of molar tooth number. Development. 2009;136:897–903. PubMed PMC

Nakatomi M, Hovorakova M, Gritli-Linde A, et al. Evc regulates a symmetrical response to Shh signaling in molar development. J Dent Res. 2013;92:222–228. PubMed

Witter K, Lesot H, Peterka M, Vonesch JL, Mísek I, Peterkova R. Origin and developmental fate of vestigial tooth primordia in the upper diastema of the field vole (Microtus agrestis, Rodentia) Arch Oral Biol. 2005;50:401–409. PubMed

Harada H, Toyono T, Toyoshima K, et al. FGF10 maintains stem cell compartment in developing mouse incisors. Development. 2002;129:1533–1541. PubMed

Balic A, Mina M. Characterization of progenitor cells in pulps of murine incisors. J Dent Res. 2010;89:1287–1292. PubMed PMC

Lapthanasupkul P, Feng J, Mantesso A, et al. Ring1a/b polycomb proteins regulate the mesenchymal stem cell niche in continuously growing incisors. Dev Biol. 2012;367:140–153. PubMed

Tureckova J, Sahlberg C, Aberg T, Ruch JV, Thesleff I, Peterkova R. Comparison of expression of the msx-1, msx-2, BMP-2 and BMP-4 genes in the mouse upper diastemal and molar tooth primordia. Int J Dev Biol. 1995;39:459–468. PubMed

Keränen SV, Kettunen P, Aberg T, Thesleff I, Jernvall J. Gene expression patterns associated with suppression of odontogenesis in mouse and vole diastema regions. Dev Genes Evol. 1999;209:495–506. PubMed

Peterkova R, Peterka M, Lesot H. The developing mouse dentition: a new tool for apoptosis study. Ann N Y Acad Sci. 2003;1010:453–466. PubMed

Cobourne MT, Miletich I, Sharpe PT. Restriction of sonic hedgehog signalling during early tooth development. Development. 2004;131:2875–2885. PubMed

Yuan GH, Zhang L, Zhang YD, Fan MW, Bian Z, Chen Z. Mesenchyme is responsible for tooth suppression in the mouse lower diastema. J Dent Res. 2008;87:386–390. PubMed

Ahn Y, Sanderson BW, Klein OD, Krumlauf R. Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development. 2010;137:3221–3231. PubMed PMC

Porntaveetus T, Ohazama A, Choi HY, Herz J, Sharpe PT. Wnt signaling in the murine diastema. Eur J Orthod. 2012;34:518–524. PubMed PMC

Li L, Yuan G, Liu C, et al. Exogenous fibroblast growth factor 8 rescues development of mouse diastemal vestigial tooth ex vivo. Dev Dyn. 2011;240:1344–1353. PubMed PMC

Miletich I, Yu WY, Zhang R, et al. Developmental stalling and organ-autonomous regulation of morphogenesis. Proc Natl Acad Sci U S A. 2011;108:19270–19275. PubMed PMC

Chae YM, Jin YJ, Kim HS, et al. Proteome analysis of developing mice diastema region. BMB Rep. 2012;45:337–341. PubMed

Chen Y, Zhang Y, Jiang TX, et al. Conservation of early odontogenic signaling pathways in Aves. Proc Natl Acad Sci USA. 2000;97:10044–10049. PubMed PMC

Viriot L, Peterkova R, Peterka M, Lesot H. Evolutionary implications of the occurrence of two vestigial tooth germs during early odontogenesis in the mouse lower jaw. Connect Tissue Res. 2002;43:129–133. PubMed

Peterkova R, Peterka M, Viriot L, Lesot H. Dentition development and budding morphogenesis. J Craniofac Genet Dev Biol. 2000;20:158–172. PubMed

Theiler K. The House Mouse. Berlin, Heidelberg, New York: Springer-Verlag; 1972. pp. 1–162.

Kaufman MH. The atlas of mouse development. London: Academic Press; 1992.

Miyake T, Cameron AM, Hall BK. Detailed staging of inbred C57BL/6 mice between Theiler’s [1972] stages 18 and 21 (11–13 days of gestation) based on craniofacial development. J Craniofac Genet Dev Biol. 1996;16:1–31. PubMed

Bei M. Molecular genetics of tooth development. Curr Opin Genet Dev. 2009;19:504–510. PubMed PMC

Brook AH. Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development. Arch Oral Biol. 2009;54:S3–S17. PubMed PMC

Buchtova M, Handrigan GR, Tucker AS, et al. Initiation and patterning of the snake dentition are dependent on Sonic hedgehog signaling. Dev Biol. 2008;319:132–145. PubMed

Catón J, Tucker AS. Current knowledge of tooth development: patterning and mineralization of the murine dentition. J Anat. 2009;214:502–515. PubMed PMC

Lesot H, Brook AH. Epithelial histogenesis during tooth development. Arch Oral Biol. 2009;54(Suppl 1):S25–S33. PubMed

Jernvall J, Thesleff I. Tooth shape formation and tooth renewal: evolving with the same signals. Development. 2012;139:3487–3497. PubMed

Townsend G, Bockmann M, Hughes T, Brook A. Genetic, environmental and epigenetic influences on variation in human tooth number, size and shape. Odontology. 2012;100:1–9. PubMed

Lumsden AG. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development. 1988;103(Suppl):155–169. PubMed

Kollar EJ, Mina M. Role of the early epithelium in the patterning of the teeth and Meckel’s cartilage. J Craniofac Genet Dev Biol. 1991;11:223–228. PubMed

Ohazama A, Modino SA, Miletich I, Sharpe PT. Stem-cell-based tissue engineering of murine teeth. J Dent Res. 2004;83:518–522. PubMed

Cobourne MT, Mitsiadis T. Neural crest cells and patterning of the mammalian dentition. J Exp Zool. 2006;306B:251–260. PubMed

Thomas BL, Tucker AS, Qui M, et al. Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. Development. 1997;124:4811–4818. PubMed

Peters H, Balling R. Teeth. Where and how to make them. Trends Genet. 1999;15:59–65. PubMed

Tucker AS, Sharpe PT. Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. J Dent Res. 1999;78:826–834. PubMed

Rothova M, Peterkova R, Tucker AS. Fate map of the dental mesenchyme: dynamic development of the dental papilla and follicle. Dev Biol. 2012;366:244–254. PubMed

Nait LechguerA, Kuchler-Bopp S, Hu B, Haïkel Y, Lesot H. Vascularization of engineered teeth. J Dent Res. 2008;87:1138–1143. PubMed

Rothova M, Feng J, Sharpe PT, Peterkova R, Tucker AS. Contribution of mesoderm to the developing dental papilla. Int J Dev Biol. 2011;55:59–64. PubMed

Keller LV, Kuchler-Bopp S, Lesot H. Restoring physiological cell heterogeneity in the mesenchyme during tooth engineering. Int J Dev Biol. 2012;56:737–746. PubMed

Mohamed SS, Atkinson ME. A histological study of the innervation of developing mouse teeth. J Anat. 1983;136:735–749. PubMed PMC

Fried K, Nosrat C, Lillesaar C, Hildebrand C. Molecular signaling and pulpal nerve development. Crit Rev Oral Biol Med. 2000;11:318–332. PubMed

Luukko K, Kvinnsland IH, Kettunen P. Tissue interactions in the regulation of axon pathfinding during tooth morphogenesis. Dev Dyn. 2005;234:482–488. PubMed

Løes S, Kettunen P, Kvinnsland H, Luukko K. Mouse rudimentary diastema tooth primordia are devoid of peripheral nerve fibers. Anat Embryol. 2002;205:187–191. PubMed

Ooë T. On the early development of human dental lamina. Okajimas Folia Anat Jpn. 1957;30:198–210. PubMed

Nery EB, Kraus BS, Croup M. Timing and topography of early human tooth development. Arch Oral Biol. 1970;15:1315–1326. PubMed

Kriangkrai R, Chareonvit S, Yahagi K, Fujiwara M, Eto K, Iseki S. Study of Pax6 mutant rat revealed the association between upper incisor formation and midface formation. Dev Dyn. 2006;235:2134–2143. PubMed

Kriangkrai R, Iseki S, Eto K, Chareonvit S. Dual odontogenic origins develop at the early stage of rat maxillary incisor development. Anat Embryol. 2006;211:101–108. PubMed

Peterkova R. The common developmental origin and phylogenetic aspects of teeth, rugae palatinae, and fornix vestibuli oris in the mouse. J Craniofac Genet Dev Biol. 1985;5:89–104. PubMed

Schlosser G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. J Exp Zool. 2005;304B:347–399. PubMed

Schlosser G. Development and evolution of lateral line placodes in amphibians. I. Development. Zoology. 2002;105:119–146. PubMed

Mikkola ML. Genetic basis of skin appendage development. Semin Cell Dev Biol. 2007;18:225–236. PubMed

Westergaard B. Early dentition development in the lower jaws of Anguis fragilis and Lacerta agilis. Mem Soc Fauna Flora Fenn. 1988;64:148–151.

Huysseune A, Witten PE. Developmental mechanisms underlying tooth patterning in continuously replacing osteichthyan dentitions. J Exp Zool. 2006;306B:204–215. PubMed

Pispa J, Thesleff I. Mechanisms of ectodermal organogenesis. Dev Biol. 2003;262:195–205. PubMed

Munne PM, Felszeghy S, Jussila M, Suomalainen M, Thesleff I, Jernvall J. Splitting placodes: effects of bone morphogenetic protein and Activin on the patterning and identity of mouse incisors. Evol Dev. 2010;12:383–392. PubMed

Blackburn J, Ohazama A, Kawasaki K, et al. The role of Irf6 in tooth epithelial invagination. Dev Biol. 2012;365:61–70. PubMed PMC

Sarkar L, Cobourne M, Naylor S, Smalley M, Dale T, Sharpe PT. Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. Proc Natl Acad Sci U S A. 2000;97:4520–4524. PubMed PMC

Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol. 1995;172:126–138. PubMed

Hardcastle Z, Mo R, Hui CC, Sharpe PT. The Shh signalling pathway in tooth development: defects in Gli2 and Gli3 mutants. Development. 1998;125:2803–2811. PubMed

Ruch JV. Tooth morphogenesis and differentiation. In: Linde A, editor. Dentin and dentinogenesis. I. Boca Raton, FL, USA: CRC Press; 1984. pp. 47–79.

Ingber DE. The mechanochemical basis of cell and tissue regulation. Mech Chem Biosyst. 2004;1:53–68. PubMed

Donley CL, Nelson LP. Comparison of palatal and alveolar cysts of the newborn in premature and full-term infants. Pediatr Dent. 2000;22:321–324. PubMed

Fukumoto S, Kiba T, Hall B, et al. Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol. 2004;167:973–983. PubMed PMC

Obara N, Suzuki Y, Nagai Y, Takeda M. Expression of E- and P-cadherin during tooth morphogenesis and cytodifferentiation of ameloblasts. Anat Embryol. 1998;197:469–475. PubMed

Hogan BL. Morphogenesis. Cell. 1999;96:225–233. PubMed

Jung HS, Francis-West PH, Widelitz RB, et al. Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning. Dev Biol. 1998;196:11–23. PubMed

Widelitz RB, Chuong CM. Early events in skin appendage formation: induction of epithelial placodes and condensation of dermal mesenchyme. J Investig Dermatol Symp Proc. 1999;4:302–306. PubMed

Cobourne MT, Hardcastle Z, Sharpe PT. Sonic hedgehog regulates epithelial proliferation and cell survival in the developing tooth germ. J Dent Res. 2001;80:1974–1979. PubMed

Weiss KM, Stock DW, Zhao Z. Dynamic interactions and the evolutionary genetics of dental patterning. Crit Rev Oral Biol Med. 1998;9:369–398. PubMed

Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev. 2000;92:19–29. PubMed

Cho SW, Kwak S, Woolley TE, et al. Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback loop for spatial patterning of the teeth. Development. 2011;138:1807–1816. PubMed

Hovorakova M, Smrckova L, Lesot H, Lochovska K, Peterka M, Peterkova R. Sequential Shh expression in the development of the mouse upper functional incisor. J Exp Zool B Mol Dev Evol. 2013 Aug 1. doi: 10.1002/jez.b.22522 [Epub ahead of print] PubMed

Woodward MF. On the milk dentition of the rodentia, with a description of a vestigial milk incisor in the mouse (Mus musculus) Anat Anz. 1894;9:619–631.

Fitzgerald LR. Deciduous incisor teeth of the mouse (Mus musculus) Arch Oral Biol. 1973;18:381–389. PubMed

Leche W. Nachträge zu Studien über die Entwickelung der Zahnsystems bei Säugertieren. Morph Jahrb. 1893;20:113–142.

Röse C. Überreste einer vorzeitigen prälactealen un einer vierten Zahnreihe beim Menschen. Österreichisch-Ungarische Vierteljahrschr Zahnheilk. 1895;2:45–50.

Adloff P. Überreste einer prälactealen Zahnreihe beim Menschen. Deut Monatschr Zahnheilk. 1909;11:828–832.

Lagronova-Churava S, Spoutil F, Vojtechova S, et al. The dynamics of supernumerary tooth development are differentially regulated by Sprouty genes. J Exp Zool. 2013;320B:307–320. PubMed

Kollar EJ, Baird GR. The influence of the dental papilla on the development of tooth shape in embryonic mouse tooth germs. J Embryol Exp Morphol. 1969;21:131–148. PubMed

Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol. 1987;32:123–127. PubMed

Fleischmannova J, Matalova E, Tucker AS, Sharpe PT. Mouse models of tooth abnormalities. Eur J Oral Sci. 2008;116:1–10. PubMed

Peterkova R. Dental lamina develops even within the mouse diastema. J Craniofac Genet Dev Biol. 1983;3:133–142. PubMed

Klein OD, Minowada G, Peterkova R, et al. Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell. 2006;11:181–190. PubMed PMC

D’Souza RN, Klein OD. Unraveling the molecular mechanisms that lead to supernumerary teeth in mice and men: current concepts and novel approaches. Cells Tissues Organs. 2007;186:60–69. PubMed

Butler PM. The ontogeny of molar teeth. Biol Rev. 1956;31:30–70.

MacKenzie A, Ferguson MW, Sharpe PT. Expression patterns of the homeobox gene, Hox-8, in the mouse embryo suggest a role in specifying tooth initiation and shape. Development. 1992;115:403–420. PubMed

Jernvall J, Kettunen P, Karavanova I, Martin LB, Thesleff I. Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int J Dev Biol. 1994;38:463–469. PubMed

Nozue T. Specific spindle cells and globular substances in enamel knot. Okajimas Folia Anat Jpn. 1971;48:139–151. PubMed

Kindaichi K. An electron microscopic study of cell death in molar tooth germ epithelia of mouse embryos. Arch Histol Jpn. 1980;43:289–304. PubMed

Vaahtokari A, Aberg T, Thesleff I. Apoptosis in the developing tooth: association with an embryonic signaling center and suppression by EGF and FGF-4. Development. 1996b;122:121–129. PubMed

Jernvall J, Aberg T, Kettunen P, Keränen S, Thesleff I. The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development. 1998;125:161–169. PubMed

Sharpe PT. Homeobox genes and orofacial development. Connect Tissue Res. 1995;32:17–25. PubMed

Qiu M, Bulfone A, Ghattas I, et al. Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev Biol. 1997;185:165–184. PubMed

Seichert V, Čihák R, Naňka O. The Guide of the Collections of the Institute of Anatomy, First Faculty of Medicine, Charles University in Prague. Prague: Charles University in Prague, Karolinum Publisher; 2006. pp. 7–99.

Edmund AG. Tooth replacement phenomena in the lower vertebrates. R Ont Mus Life Sci. 1960;52:1–190.

Wolsan M. The origin of extra teeth in mammals. Acta Theriol. 1984;29:128–133.

Drehmer CJ, Fabián ME, Meneghetiet JO, et al. Dental anomalies in the Atlantic population of South American sea lion, Otaria byronia (Pinnipedia, Otariidae): evolutionary implications and ecological approach. LAJAM. 2004;3:7–18.

Darwin C. On the Origin of Species. A facsimile of the First Edition. Cambridge, Massachusetts: Harvard University Press. Sixteenth printing. 1859;2000:411–458.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace