Characterization of the inhalable fraction (< 10 μm) of soil from highly urbanized and industrial environments: magnetic measurements, bioaccessibility, Pb isotopes and health risk assessment
Jazyk angličtina Země Nizozemsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38849623
PubMed Central
PMC11161548
DOI
10.1007/s10653-024-02009-z
PII: 10.1007/s10653-024-02009-z
Knihovny.cz E-zdroje
- Klíčová slova
- Magnetite, Respiratory bioaccessibility, Source identification, Urban geochemistry,
- MeSH
- biologická dostupnost MeSH
- dítě MeSH
- dospělí MeSH
- hodnocení rizik MeSH
- inhalační expozice analýza MeSH
- izotopy analýza MeSH
- látky znečišťující půdu * analýza MeSH
- lidé MeSH
- monitorování životního prostředí metody MeSH
- olovo * analýza MeSH
- průmysl MeSH
- půda chemie MeSH
- těžké kovy analýza MeSH
- urbanizace MeSH
- velikost částic MeSH
- velkoměsta MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- velkoměsta MeSH
- Názvy látek
- izotopy MeSH
- látky znečišťující půdu * MeSH
- olovo * MeSH
- půda MeSH
- těžké kovy MeSH
Soil in urban and industrial areas is one of the main sinks of pollutants. It is well known that there is a strong link between metal(loid)s bioaccessibility by inhalation pathway and human health. The critical size fraction is < 10 μm (inhalable fraction) since these particles can approach to the tracheobronchial region. Here, soil samples (< 10 μm) from a highly urbanized area and an industrialized city were characterized by combining magnetic measurements, bioaccessibility of metal(loids) and Pb isotope analyses. Thermomagnetic analysis indicated that the main magnetic mineral is impure magnetite. In vitro inhalation analysis showed that Cd, Mn, Pb and Zn were the elements with the highest bioaccessibility rates (%) for both settings. Anthropogenic sources that are responsible for Pb accumulation in < 10 μm fraction are traffic emissions for the highly urbanized environment, and Pb related to steel emissions and coal combustion in cement plant for the industrial setting. We did not establish differences in the Pb isotope composition between pseudo-total and bioaccessible Pb. The health risk assessment via the inhalation pathway showed limited non-carcinogenic risks for adults and children. The calculated risks based on pseudo-total and lung bioaccessible concentrations were identical for the two areas of contrasting anthropogenic pressures. Carcinogenic risks were under the threshold levels (CR < 10-4), with Ni being the dominant contributor to risk. This research contributes valuable insights into the lung bioaccessibility of metal(loids) in urban and industrial soils, incorporating advanced analytical techniques and health risk assessments for a comprehensive understanding.
Zobrazit více v PubMed
Åberg G, Charalambides G, Fosse G, Hjelmseth H. The use of Pb isotopes to differentiate between contemporary and ancient sources of pollution in Greece. Atmospheric Environment. 2001;35:4609–4615. doi: 10.1016/S1352-2310(01)00166-2. DOI
Aidona E, Grison H, Petrovsky E, Kazakis N, Papadopoulou L, Voudouris K. Magnetic characteristics and trace elements concentration in soils from Anthemountas river basin (North Greece): Discrimination of different sources of magnetic enhancement. Environmental Earth Sciences. 2016;75:1375. doi: 10.1007/s12665-016-6114-3. DOI
Alloway BJ. (Ed.). (2013). Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability (Vol. 22). Dordrecht: Springer Netherlands. 10.1007/978-94-007-4470-7
Argyraki A, Kelepertzis E. Urban soil geochemistry in Athens, Greece: The importance of local geology in controlling the distribution of potentially harmful trace elements. Science of the Total Environment. 2014;482–483:366–377. doi: 10.1016/j.scitotenv.2014.02.133. PubMed DOI
Argyraki A, Kelepertzis E, Botsou F, Paraskevopoulou V, Katsikis I, Trigoni M. Environmental availability of trace elements (Pb, Cd, Zn, Cu) in soil from urban, suburban, rural and mining areas of Attica, Hellas. Journal of Geochemical Exploration. 2018;187:201–213. doi: 10.1016/j.gexplo.2017.09.004. DOI
Bacon JR, Hewitt IJ. Heavy metals deposited from the atmosphere on upland Scottish soils: Chemical and lead isotope studies of the association of metals with soil components. Geochimica Et Cosmochimica Acta. 2005;69(1):19–33. doi: 10.1016/j.gca.2004.06.030. DOI
Bi X, Zhang M, Wu Y, Fu Z, Sun G, Shang L, et al. Distribution patterns and sources of heavy metals in soils from an industry undeveloped city in Southern China. Ecotoxicology and Environmental Safety. 2020;205:111115. doi: 10.1016/j.ecoenv.2020.111115. PubMed DOI
Billmann M, Hulot C, Pauget B, Badreddine R, Papin A, Pelfrêne A. Oral bioaccessibility of PTEs in soils: A review of data, influencing factors and application in human health risk assessment. Science of the Total Environment. 2023;896:165263. doi: 10.1016/j.scitotenv.2023.165263. PubMed DOI
Boim AGF, Patinha C, Wragg J, Cave M, Alleoni LRF. Respiratory bioaccessibility and solid phase partitioning of potentially harmful elements in urban environmental matrices. Science of the Total Environment. 2021;765:142791. doi: 10.1016/j.scitotenv.2020.142791. PubMed DOI
Boisa N, Entwistle J, Dean JR. A new simple, low-cost approach for generation of the PM10 fraction from soil and related materials: Application to human health risk assessment. Analytica Chimica Acta. 2014;852:97–104. doi: 10.1016/j.aca.2014.09.038. PubMed DOI
Bourliva A, Aidona E, Papadopoulou L, Ferreira da Silva E, Patinha C, Sarafidis C, Kantiranis N. An integrated approach combining magnetic, geochemical and particle-based techniques to assess metal(loid) loadings in urban venues frequented by children. Science of the Total Environment. 2022;822:153600. doi: 10.1016/j.scitotenv.2022.153600. PubMed DOI
Bourliva A, Kantiranis N, Papadopoulou L, Aidona E, Christophoridis C, Kollias P, Evgenakis M, Fytianos K. Seasonal and spatial variations of magnetic susceptibility and potentially toxic elements (PTEs) in road dusts of Thessaloniki city, Greece: A one-year monitoring period. Science of the Total Environment. 2018;639:417–427. doi: 10.1016/j.scitotenv.2018.05.170. PubMed DOI
Bourliva A, Papadopoulou L, Aidona E. Study of road dust magnetic phases as the main carrier of potentially harmful trace elements. Science of the Total Environment. 2016;553:380–391. doi: 10.1016/j.scitotenv.2016.02.149. PubMed DOI
Brown JS, Gordon T, Price O, Asgharian B. Thoracic and respirable particle definitions for human health risk assessment. Particle and Fibre Toxicology. 2013;10(1):12. doi: 10.1186/1743-8977-10-12. PubMed DOI PMC
Cao Z-G, Yu G, Chen Y-S, Cao Q-M, Fiedler H, Deng S-B, et al. Particle size: A missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust. Environment International. 2012;49:24–30. doi: 10.1016/j.envint.2012.08.010. PubMed DOI
Erel Y, Veron A, Halicz L. Tracing the transport of anthropogenic lead in the atmosphere and in soils using isotopic ratios. Geochimica Et Cosmochimica Acta. 1997;61(21):4495–4505. doi: 10.1016/S0016-7037(97)00353-0. DOI
Ettler V, Mihaljevič M, Šebek O, Molek M, Grygar T, Zeman J. Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Příbram. Czech Republic. Environmental Pollution. 2006;142(3):409–417. doi: 10.1016/j.envpol.2005.10.024. PubMed DOI
Falta T, Limbeck A, Koellensperger G, Hann S. Bioaccessibility of selected trace metals in urban PM2.5 and PM10 samples: a model study. Analytical and Bioanalytical Chemistry. 2008;390(4):1149–1157. doi: 10.1007/s00216-007-1762-5. PubMed DOI
Farmer JG, Broadway A, Cave MR, Wragg J, Fordyce FM, Graham MC, et al. A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow. Scotland. Science of the Total Environment. 2011;409(23):4958–4965. doi: 10.1016/j.scitotenv.2011.08.061. PubMed DOI
Ferreira-Baptista L, De Miguel E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment. 2005;39(25):4501–4512. doi: 10.1016/j.atmosenv.2005.03.026. DOI
FOREGS (2005). Forum of the European Geological Survey Directors. Geochemical Atlas of Europe, Geological Survey of Finland, Espoo.
Giordano A, Malandrino M, Ajmone Marsan F, Padoan E. Potentially toxic elements and lead isotopic signatures in the 10 μm fraction of urban dust: Environmental risk enhanced by resuspension of contaminated soils. Environmental Research. 2024;242:117664. doi: 10.1016/j.envres.2023.117664. PubMed DOI
Górka-Kostrubiec B. The magnetic properties of indoor dust fractions as markers of air pollution inside buildings. Building and Environment. 2015;90:186–195. doi: 10.1016/j.buildenv.2015.03.034. DOI
Gulson B. Stable lead isotopes in environmental health with emphasis on human investigations. Science of the Total Environment. 2008;400(1–3):75–92. doi: 10.1016/j.scitotenv.2008.06.059. PubMed DOI
Guney M, Bourges CM-J, Chapuis RP, Zagury GJ. Lung bioaccessibility of As, Cu, Fe, Mn, Ni, Pb, and Zn in fine fraction (< 20 μm) from contaminated soils and mine tailings. Science of the Total Environment. 2017;579:378–386. doi: 10.1016/j.scitotenv.2016.11.086. PubMed DOI
Guney M, Chapuis RP, Zagury GJ. Lung bioaccessibility of contaminants in particulate matter of geological origin. Environmental Science and Pollution Research. 2016;23(24):24422–24434. doi: 10.1007/s11356-016-6623-3. PubMed DOI
Han L, Gao B, Wei X, Gao L, Xu D, Sun K. The characteristic of Pb isotopic compositions in different chemical fractions in sediments from Three Gorges Reservoir, China. Environmental Pollution. 2015;206:627–635. doi: 10.1016/j.envpol.2015.08.030. PubMed DOI
Han Q, Wang M, Xu X, Li M, Liu Y, Zhang C, Li S, Wang M. Health risk assessment of heavy metals in road dust from the fourth-tier industrial city in central China based on Monte Carlo simulation and bioaccessibility. Ecotoxicology and Environmental Safety. 2023;252:114627. doi: 10.1016/j.ecoenv.2023.114627. PubMed DOI
Hanesch M, Scholger R. The influence of soil type on the magnetic susceptibility measured throughout soil profiles. Geophysical Journal International. 2005;161:50–56. doi: 10.1111/j.1365-246X.2005.02577.x. DOI
Hernández-Pellón A, Nischkauer W, Limbeck A, Fernández-Olmo I. Metal(loid) bioaccessibility and inhalation risk assessment: A comparison between an urban and an industrial area. Environmental Research. 2018;165:140–149. doi: 10.1016/j.envres.2018.04.014. PubMed DOI
Hiller E, Pilková Z, Filová L, Mihaljevič M, Špirová V, Jurkovič Ľ. Metal(loid) concentrations, bioaccessibility and stable lead isotopes in soils and vegetables from urban community gardens. Chemosphere. 2022;305:135499. doi: 10.1016/j.chemosphere.2022.135499. PubMed DOI
Huang M, Wang W, Chan CY, Cheung KC, Man YB, Wang X, Wong MH. Contamination and risk assessment (based on bioaccessibility via ingestion and inhalation) of metal(loid)s in outdoor and indoor particles from urban centers of Guangzhou, China. Science of the Total Environment. 2014;479–480:117–124. doi: 10.1016/j.scitotenv.2014.01.115. PubMed DOI
Ishida M, Fujinaga K, Tanimizu M, Ishikawa T, Nagaishi K, Kato Y. New Pb isotopic data from Japanese hydrothermal deposits for tracing heavy metal sources. Geochemistry. 2023 doi: 10.1016/j.chemer.2023.126045. DOI
Jeleńska M, Hasso-Agopsowicz A, Kopcewicz B, Sukhorada A, Tyamina K, Kadziałko-Hofmokl M, Matviishina Z. Magnetic properties of the profiles of polluted and non-polluted soils. A case study from Ukraine. Geophysical Journal International. 2004;159:104–116. doi: 10.1111/j.1365-246X.2004.02370.x. DOI
Jeong H, Ra K. Multi-isotope signatures (Cu, Zn, Pb) of different particle sizes in road-deposited sediments: A case study from industrial area. Journal of Analytical Science and Technology. 2021;12(1):39. doi: 10.1186/s40543-021-00292-4. DOI
Jordanova D, Jordanova N, Petrov P. Magnetic susceptibility of road deposited sediments at a national scale- Relation to population size and urban pollution. Environmental Pollution. 2014;189:239–251. doi: 10.1016/j.envpol.2014.02.030. PubMed DOI
Kabata-Pendias A. Trace elements in soils and plants. 4. CRC Press; 2011.
Karim Z, Qureshi BA, Mumtaz M, Qureshi S. Heavy metal content in urban soils as an indicator of anthropogenic and natural influences on landscape of Karachi – A multivariate spatio-temporal analysis. Ecological Indicators. 2013;42:20–31. doi: 10.1016/j.ecolind.2013.07.020. DOI
Kastury F, Smith E, Juhasz AL. A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Science of the Total Environment. 2017;574:1054–1074. doi: 10.1016/j.scitotenv.2016.09.056. PubMed DOI
Katsikatsos G, Mylonakis J, Vidakis M, Hecht J, Papadheas G, Dimou E, Papazeti E, Skourtsi-Koroneou V, Hadjicostanti–Tsalachouri I, Karamicahlou–Kavali A, et al. (1978). Geological Map of Greece, Volos Sheet; Institute of Geology and Mineral Exploration of Greece: Athens, Greece.
Kelepertzis E, Argyraki A. Geochemical associations for evaluating the availability of potentially harmful elements in urban soils: Lessons learnt from Athens, Greece. Applied Geochemistry. 2015;59:63–73. doi: 10.1016/j.apgeochem.2015.03.019. DOI
Kelepertzis E, Argyraki A, Botsou F, Aidona E, Szabó A, Szabó C. Tracking the occurrence of anthropogenic magnetic particles and potentially toxic elements (PTEs) in house dust using magnetic and geochemical analysis. Environmental Pollution. 2019;245:909–920. doi: 10.1016/j.envpol.2018.11.072. PubMed DOI
Kelepertzis E, Argyraki A, Chrastný V, Botsou F, Skordas K, Komárek M, Fouskas A. Metal(loid) and isotopic tracing of Pb in soils, road and house dusts from the industrial area of Volos (central Greece) Science of the Total Environment. 2020;725:138300. doi: 10.1016/j.scitotenv.2020.138300. PubMed DOI
Kelepertzis E, Chrastný V, Botsou F, Sigala E, Kypritidou Z, Komárek M, et al. Tracing the sources of bioaccessible metal(loid)s in urban environments: A multidisciplinary approach. Science of the Total Environment. 2021;771:144827. doi: 10.1016/j.scitotenv.2020.144827. PubMed DOI
Kelepertzis E, Komárek M, Argyraki A, Šillerová H. Metal(loid) distribution and Pb isotopic signatures in the urban environment of Athens, Greece. Environmental Pollution. 2016;213:420–431. doi: 10.1016/j.envpol.2016.02.049. PubMed DOI
Kim HS, Kim YJ, Seo YR. An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention. Journal of Cancer Prevention. 2015;20(4):232–240. doi: 10.15430/JCP.2015.20.4.232. PubMed DOI PMC
Komárek M, Ettler V, Chrastný V, Mihaljevič M. Lead isotopes in environmental sciences: A review. Environment International. 2008;34(4):562–577. doi: 10.1016/j.envint.2007.10.005. PubMed DOI
Kong S, Lu B, Bai Z, Zhao X, Chen L, Han B, et al. Potential threat of heavy metals in re-suspended dusts on building surfaces in oilfield city. Atmospheric Environment. 2011;45(25):4192–4204. doi: 10.1016/j.atmosenv.2011.05.011. DOI
Li H-B, Chen K, Juhasz AL, Huang L, Ma LQ. Childhood Lead Exposure in an Industrial Town in China: Coupling Stable Isotope Ratios with Bioaccessible Lead. Environmental Science & Technology. 2015;49(8):5080–5087. doi: 10.1021/es5060622. PubMed DOI
Li X, Gao Y, Zhang M, Zhang Y, Zhou M, Peng L, et al. In vitro lung and gastrointestinal bioaccessibility of potentially toxic metals in Pb-contaminated alkaline urban soil: The role of particle size fractions. Ecotoxicology and Environmental Safety. 2020;190:110151. doi: 10.1016/j.ecoenv.2019.110151. PubMed DOI
Li Y, Padoan E, Ajmone-Marsan F. Soil particle size fraction and potentially toxic elements bioaccessibility: A review. Ecotoxicology and Environmental Safety. 2021;209:111806. doi: 10.1016/j.ecoenv.2020.111806. PubMed DOI
Liu QS, Roberts AP, Larrasoaña JC, Banerjee SK, Guyodo Y, Tauxe L, Oldfield F. Environmental magnetism: principles and applications. Review of Geophysics. 2012;50(RG 4002):1–50.
Ljung K, Siah WS, Devine B, Maley F, Wensinger A, Cook A, Smirk M. Extracting dust from soil: Improved efficiency of a previously published process. Science of the Total Environment. 2011;410–411:269–270. doi: 10.1016/j.scitotenv.2011.07.061. PubMed DOI
Ljung K, Torin A, Smirk M, Maley F, Cook A, Weinstein P. Extracting dust from soil: A simple solution to a tricky task. Science of the Total Environment. 2008;407(1):589–593. doi: 10.1016/j.scitotenv.2008.09.007. PubMed DOI
Luo J, Xing W, Ippolito JA, Zhao L, Han K, Wang Y, et al. Bioaccessibility, source and human health risk of Pb, Cd, Cu and Zn in windowsill dusts from an area affected by long-term Pb smelting. Science of the Total Environment. 2022;842:156707. doi: 10.1016/j.scitotenv.2022.156707. PubMed DOI
Luo X, Yu S, Li X. Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: Implications for assessing the risk to human health. Environmental Pollution. 2011;159(5):1317–1326. doi: 10.1016/j.envpol.2011.01.013. PubMed DOI
Ma J-j, Yan Y, Chen X-j, Niu Z-r, Yu R-l, Hu G-r. Incorporating bioaccessibility and source apportionment into human health risk assessment of heavy metals in urban dust of Xiamen. China. Ecotoxicology and Environmental Safety. 2021;228:112985. doi: 10.1016/j.ecoenv.2021.112985. PubMed DOI
Madrid F, Biasioli M, Ajmone-Marsan F. Availability and bioaccessibility of metals in fine particles of some urban soils. Archives of Environmental Contamination and Toxicology. 2008;55(1):21–32. doi: 10.1007/s00244-007-9086-1. PubMed DOI
Magiera T, Jabłońska M, Strzyszcz Z, Rachwal M. Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmospheric Environment. 2011;45(25):4281–4290. doi: 10.1016/j.atmosenv.2011.04.076. DOI
Monna F, Aiuppa A, Varrica D, Dongarra G. Pb isotope composition in lichens and aerosols from eastern sicily: Insights into the regional impact of volcanoes on the environment. Environmental Science & Technology. 1999;33(15):2517–2523. doi: 10.1021/es9812251. DOI
Mukhtar A, Limbeck A. Recent developments in assessment of bio-accessible trace metal fractions in airborne particulate matter: A review. Analytica Chimica Acta. 2013;774:11–25. doi: 10.1016/j.aca.2013.02.008. PubMed DOI
Nemery, B. (1990). Metal toxicity and the respiratory tract, 3, 202–219. 10.1183/09031936.93.03020202 PubMed
Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives. 2005;113(7):823–839. doi: 10.1289/ehp.7339. PubMed DOI PMC
Papanikolaou DI, Lozios SG, Soukis K, Skourtsos E (2004). The geological structure of the allochthonous ‘Athens Schists’, Bulletin of the Geological Society of Greece vol. XXXVI, Proceedings of the 10th International Congress, Thessaloniki, April 2004, 1550–1559 (in Greek with English abstract).
Petrovsky E, Kapicka A, Jordanova N, Knab M, Hoffmann V. Low-field magnetic susceptibility: A proxy method of estimating increased pollution of different environmental systems. Environmental Geology. 2000;39:312–318. doi: 10.1007/s002540050010. DOI
Raffa CM, Chiampo F, Shanthakumar S. Remediation of metal/metalloid-polluted soils: A short review. Applied Sciences. 2021;11(9):4134. doi: 10.3390/app11094134. DOI
Reimann C, Flem B, Fabian K, Birke M, Ladenberger A, Négrel P, et al. Lead and lead isotopes in agricultural soils of Europe – the continental perspective. Applied Geochemistry. 2012;27(3):532–542. doi: 10.1016/j.apgeochem.2011.12.012. DOI
Ren H, Yu Y, An T. Bioaccessibilities of metal(loids) and organic contaminants in particulates measured in simulated human lung fluids: A critical review. Environmental Pollution. 2020;265:1150670. doi: 10.1016/j.envpol.2020.115070. PubMed DOI
Stouraiti C, Soukis K, Voudouris P, Mavrogonatos C, Lozios S, Lekkas S, et al. Silver-rich sulfide mineralization in the northwestern termination of the Western Cycladic Detachment System at Agios Ioannis Kynigos, Hymittos Mt. (Attica, Greece): a mineralogical, geochemical and stable isotope study. Ore Geology Reviews. 2019;111:102992. doi: 10.1016/j.oregeorev.2019.102992. DOI
Tang R, Ma K, Zhang Y, Mao Q. The spatial characteristics and pollution levels of metals in urban street dust of Beijing, China. Applied Geochemistry. 2013;35:88–98. doi: 10.1016/j.apgeochem.2013.03.016. DOI
Teutsch N, Erel Y, Halicz L, Banin A. Distribution of natural and anthropogenic lead in Mediterranean soils. Geochimica Et Cosmochimica Acta. 2001;65(17):2853–2864. doi: 10.1016/S0016-7037(01)00607-X. DOI
Thompson R, Oldfield F. Environmental Magnetism. Allen and Unwin; 1986.
Tong R, Cheng M, Ma X, Yang Y, Liu Y, Li J. Quantitative health risk assessment of inhalation exposure to automobile foundry dust. Environmental Geochemistry and Health. 2019;41(5):2179–2193. doi: 10.1007/s10653-019-00277-8. PubMed DOI
Ungureanu T, Iancu GO, Pintilei M, Chicos MM. Spatial distribution and geochemistry of heavy metals in soils: A case study from the NE area of Vaslui county, Romania. Journal of Geochemical Exploration. 2017;176:20–32. doi: 10.1016/j.gexplo.2016.08.012. DOI
USEPA (United States Environmental Protection Agency) (1989). Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A), Interim Final. Office of Emergency and Remedial Response, Washington, DC.
USEPA (1996). Method 3050B: Acid Digestion of Sediments, Sludges, and Soils. United States Environmental Protection Agency. http://www.epa.gov/wastes/hazard.
USEPA (United States Environmental Protection Agency) (1997). Exposure Factors Handbook, vol. 1. General factors. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC.
USEPA (United States Environmental Protection Agency) (2001). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4–24., Office of Solid Waste and Emergency Response. U.S. Environmental Protection Agency., Washington, DC 20460.
USEPA (2002). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington.
Verosub K, Roberts AP. Environmental magnetism: Past, present, and future. Journal of Geophysical Research. 1995;100:2175–2192. doi: 10.1029/94JB02713. DOI
Wang XS, Zhang P, Fu J, Zhou HY. Association between Pb and Zn concentrations and magnetic properties in particle size fractions of urban soils. Journal of Applied Geophysics. 2012;86:1–7. doi: 10.1016/j.jappgeo.2012.07.010. DOI
Wang Z, Wade AM, Richter DD, Stapleton HM, Kaste JM, Vengosh A. Legacy of anthropogenic lead in urban soils: Co-occurrence with metal(loids) and fallout radionuclides, isotopic fingerprinting, and in vitro bioaccessibility. Science of the Total Environment. 2022;806:151276. doi: 10.1016/j.scitotenv.2021.151276. PubMed DOI
Wiseman CLS. Analytical methods for assessing metal bioaccessibility in airborne particulate matter: A scoping review. Analytica Chimica Acta. 2015;877:9–18. doi: 10.1016/j.aca.2015.01.024. PubMed DOI
Wiseman CLS, Zereini F. Characterizing metal(loid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany using simulated lung fluids. Atmospheric Environment. 2014;89:282–289. doi: 10.1016/j.atmosenv.2014.02.055. DOI
Wong CSC, Li X, Thornton I. Urban environmental geochemistry of trace metals. Environmental Pollution. 2006;142:1–16. doi: 10.1016/j.envpol.2005.09.004. PubMed DOI
Xia D, Wang B, Yu Y, Jia J, Nie Y, Wang X, Xu S. Combination of magnetic parameters and heavy metals to discriminate soil-contamination sources in Yinchuan – A typical oasis city of Northwestern China. Science of the Total Environment. 2014;485–486:83–92. doi: 10.1016/j.scitotenv.2014.03.070. PubMed DOI
Yan L, Franco A-M, Elio P. Health risk assessment via ingestion and inhalation of soil PTE of an urban area. Chemosphere. 2021;281:130964. doi: 10.1016/j.chemosphere.2021.130964. PubMed DOI