Metal(loid)s and their bioaccessibility in urban soils from residential areas of a medieval mining town
Jazyk angličtina Země Nizozemsko Médium electronic
Typ dokumentu časopisecké články, historické články
Grantová podpora
22-27939S
Grantová Agentura České Republiky
22-27939S
Grantová Agentura České Republiky
22-27939S
Grantová Agentura České Republiky
22-27939S
Grantová Agentura České Republiky
22-27939S
Grantová Agentura České Republiky
CZ.02.01.01/00/22_008/0004605
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.01.01/00/22_008/0004605
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.01.01/00/22_008/0004605
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.01.01/00/22_008/0004605
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.01.01/00/22_008/0004605
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39891773
PubMed Central
PMC11787173
DOI
10.1007/s10653-024-02339-y
PII: 10.1007/s10653-024-02339-y
Knihovny.cz E-zdroje
- Klíčová slova
- Human health, Oral ingestion, Contamination, Exposure,
- MeSH
- biologická dostupnost * MeSH
- dějiny středověku MeSH
- hornictví * MeSH
- látky znečišťující půdu * analýza MeSH
- lidé MeSH
- monitorování životního prostředí MeSH
- půda chemie MeSH
- těžké kovy analýza MeSH
- velkoměsta MeSH
- vystavení vlivu životního prostředí MeSH
- Check Tag
- dějiny středověku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- Geografické názvy
- Česká republika MeSH
- velkoměsta MeSH
- Názvy látek
- látky znečišťující půdu * MeSH
- půda MeSH
- těžké kovy MeSH
In historic mining towns, where mining activities were abandoned many decades or even centuries ago, legacy contaminations can be remobilized and redispersed, representing a threat for the environment and human health. This study focuses on urban soils (n = 19) in the town of Jihlava, the Czech Republic, one of the medieval centers of silver mining in central Europe. The basic geochemical characterization of the soils was combined with mineralogical investigations to understand the solid speciation of the metal(loid) contaminants, oral bioaccessibility tests, and exposure assessment. The total concentrations of the metal(loid)s in the original soils were not excessively high (up to 45.8 mg As/kg, 19.2 mg Cd/kg; 205 mg Cr/kg; 91.8 mg Cu/kg, 163 mg Pb/kg, 253 mg V/kg, 262 mg Zn/kg), although, in some cases, they exceeded the regulatory guidelines for agricultural and/or residential soils. A substantial increase in the metal(loid)s contents was confirmed for the < 48-µm soil fraction that was later used for the bioaccessibility tests. Scanning electron microscopy and the electron microprobe showed that ore-derived primary sulfides were rare in the studied soils. Still, hydrous ferric oxides rich in Cu, Pb and Zn and fragments of metallurgical slags composed of metal-containing glass and silicates (olivine) were prone to dissolution during extraction in a simulated gastric fluid (SGF, glycine solution acidified to pH 1.5 by HCl). The maximum bioaccessible concentrations corresponded to 4.69 mg As/kg, 1.75 mg Cd/kg, 2.02 mg Cr/kg, 20.3 mg Cu/kg, 81.6 mg Pb/kg, 16.2 mg V/kg, and 233 mg Zn/kg. Exposure estimates were carried out for children (10 kg) as a target group and a conservative soil ingestion rate (100 mg/d). However, the daily intake of all the studied contaminants was far below the tolerable limits. Our results show that the human health risk based on incidental soil ingestion in the studied area seems limited.
Zobrazit více v PubMed
ATSDR (2024). Minimal Risk Levels (MRLs). Agency for Toxic Substances and Disease Registry, July 2024. Atlanta, USA. https://www.atsdr.cdc.gov/minimal-risk-levels/about/index.html
Argyraki, A. (2014). Garden soil and house dust as exposure media for lead uptake in the mining village of Stratoni, Greece. Environmental Geochemistry and Health,36, 677–692. 10.1007/s10653-013-9589-9 PubMed
Baars, A. J., Theelen, R.M.C., Janssen, P.J.C.M., Hesse, J.M., van Apeldoorn, M.E., Meijerink, M.C.M., Verdam, L., & Zeilmaker, M.J. (2001). Re-evaluation of human-toxicological maximum permissible risk levels. Bilthoven, the Netherlands: RIVM report 711701025.
Bierkens, J., Van Holderbeke, M., Cornelis, C., & Torfs, R. (2011). Exposure Through Soil and Dust Ingestion. In F. A. Swartjes (Ed.), Dealing with Contaminated Sites (pp. 261–286). Springer Science+Business Media B.V.
Boisa, N., Bird, G., Brewer, P. A., Dean, J. R., Entwistle, J. A., Kemp, S. J., & Macklin, M. G. (2013). Potentially harmful elements (PHEs) in scalp hair, soil and metallurgical wastes in Mitrovica, Kosovo: The role of oral bioaccessibility and mineralogy in human PHE exposure. Environment International,60, 56–70. 10.1016/j.envint.2013.07.014 PubMed
CCME (2024). Canadian Environmental Quality Guidelines – Soil Quality Guidelines for the Protection of Environmental and Human Health. Canadian Council of Ministers of the Environment. https://ccme.ca/en/summary-table
Derner, K., Hrubý, P., Malina, O., & Večeřa, J. (2019). Hornické revíry vrcholného středověku a raného novověku ve srovnávacím pohledu. Archaeologia Historica. 10.5817/AH2019-2-18
Dodd, M., Lee, D., Nelson, J., Verenitch, S., & Wilson, R. (2024). In vitro bioaccessibility round robin testing for arsenic and lead in standard reference materials and soil samples. Integrated Environmental Assessment and Management, Advance Online Publication.10.1002/ieam.4891 PubMed
Drahota, P., Raus, K., Rychlíková, E., & Rohovec, J. (2018). Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic. Environmental Geochemistry and Health,40, 1495–1512. 10.1007/s10653-017-9999-1 PubMed
EFSA (2009). Cadmium in food. Scientific opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on cadmium in food. EFSA Journal,980, 1–139. 10.2903/j.efsa.2009.980
EFSA (2010). Scientific opinion on lead in food. EFSA Journal, 8(4), 1570. 10.2903/j.efsa.2010.1570
Ettler, V., et al. (2022). Contaminant Binding and Bioaccessibility in the Dust From the Ni‐Cu Mining/Smelting District of Selebi‐Phikwe (Botswana). GeoHealth. 10.1029/2022GH000683 PubMed PMC
Ettler, V., Cihlová, M., Jarošíková, A., Mihaljevič, M., Drahota, P., Kříbek, B., Vaněk, A., Penížek, V., Sracek, O., Klementová, M., Engel, Z., Kamona, F., & Mapani, B. (2019). Oral bioaccessibility of metal(loid)s in dust materials from mining areas of northern Namibia. Environment International,124, 205–215. 10.1016/j.envint.2018.12.027 PubMed
Ettler, V., Kříbek, B., Majer, V., Knésl, I., & Mihaljevič, M. (2012). Differences in the bioaccessibility of metals/metalloids in soils from mining and smelting areas (Copperbelt, Zambia). Journal of Geochemical Exploration,113, 68–75. 10.1016/j.gexplo.2011.08.001
Ettler, V., Štěpánek, D., Mihaljevič, M., Drahota, P., Jedlicka, R., Kříbek, B., Vaněk, A., Penížek, V., Sracek, O., & Nyambe, I. (2020). Slag dusts from Kabwe (Zambia): Contaminant mineralogy and oral bioaccessibility. Chemosphere,260, 127642. 10.1016/j.chemosphere.2020.127642 PubMed
Fry, K. L., Wheeler, C. A., Gillings, M. M., Flegal, A. R., & Taylor, M. P. (2020). Anthropogenic contamination of residential environments from smelter As, Cu and Pb emissions: Implications for human health. Environmental Pollution,262, 114235. 10.1016/j.envpol.2020.114235 PubMed
GEMAS (2008). EuroGeoSurveys Geochemical mapping of agricultural and grazing land soil of Europe (GEMAS) - Field manual. Report 2008.038. Geological Survey of Norway, Trondheim, 46 p.
Gabarrón, M., Faz, A., & Acosta, J. A. (2018). Use of multivariate and redundancy analysis to assess the behavior of metals and arsenic in urban soil and road dust affected by metallic mining as a base for risk assessment. Journal of Environmental Management,206, 192–201. 10.1016/j.envman.2017.10.034 PubMed
Galušková, I., Mihaljevič, M., Borůvka, L., Drábek, O., Frühauf, M., & Němeček, K. (2014). Lead isotope composition and risk elements distribution in urban soils of historically different cities Ostrava and Prague, the Czech Republic. Journal of Geochemical Exploration,147, 215–221. 10.1016/j.gexplo.2014.02.022
Gbefa, B. K., Entwistle, J. A., & Dean, J. R. (2011). Oral bioaccessibility of metals in an urban catchment, Newcastle upon Tyne. Environmental Geochemistry and Health,33, 167–181. 10.1007/s10653-010-9330-x PubMed
Goix, S., Uzu, G., Oliva, P., Barraza, F., Calas, A., Castet, S., Point, D., Masbou, J., Duprey, J. L., Huayta, C., Chincheros, J., & Gordon, J. (2016). Metal concentration and bioaccessibility in different particle sizes of dust and aerosols to refine metal exposure assessment. Journal of Hazardous Materials,317, 552–562. 10.1016/j.jhazmat.2016.05.083 PubMed
Harvey, P. J., Taylor, M. P., Kristensen, L. J., Grant-Vest, S., Rouillon, M., Wu, L., & Handley, H. K. (2016). Evaluation and assessment of the efficacy of an abatement strategy in a former lead smelter community, Boolaroo, Australia. Environmental Geochemistry and Health,38, 941–954. 10.1007/s10653-015-9779-8 PubMed
Hiller, E., Faragó, T., Kolesár, M., Filová, L., Mihaljevič, M., Jurkovič, L., Demko, R., Machlica, A., Štefánek, J., & Vítková, M. (2024). Metal(loid)s in urban soil from historical municipal solid waste landfill: Geochemistry, source apportionment, bioaccessibility testing and human health risks. Chemosphere,362, 142677. 10.1016/j.chemosphere.2024.142677 PubMed
Hiller, E., Mihaljevič, M., Filová, L., Lachká, L., Jurkovič, Ľ, Kulikova, T., Fajčíková, K., Šimurková, M., & Tatarková, V. (2017). Occurrence of selected trace metals and their oral bioaccessibility in urban soils of kindergartens and parks in Bratislava (Slovak Republic) as evaluated by simple in vitro digestion procedure. Ecotoxicology and Environmental Safety,144, 611–621. 10.1016/j.ecoenv.2017.06.040 PubMed
Holub, M. (2015). Modelování historické primární produkce stříbra v hlavních rudních revírech Čech a přilehlé části Moravy (Results of the mathematic models of the historical silver production from main ore districts of the Bohemia and adjacent part of the Moravia). Acta Rerum Naturalium,18, 9–20. (in Czech with English summary).
Hrubý, P. (2019). Metalurgická produkční sféra na Českomoravské vrchovině v závěru přemyslovské éry (Metallurgical production sphere in the Bohemian-Moravian Highlands at the end of the Přemyslid era). Opera Facultatis Philosophicae, no. 487, MUNI Press, Brno, 260 p. (in Czech with English summary)
Hu, Y., Zhou, J., Du, B., Liu, H., Zhang, W., Liang, J., Zhang, W., You, L., & Zhou, J. (2019). Health risks to local residents from the exposure of heavy metals around the largest copper smelter in China. Ecotoxicology and Environmental Safety,171, 329–336. 10.1016/j.ecoenv.2018.12.073 PubMed
Juhasz, A. L., Weber, J., & Smith, E. (2011). Impact of soil particle size and bioaccessibility on children and adult lead exposure in peri-urban contaminated soils. Journal of Hazardous Materials,186, 1870–1879. 10.1016/j.hazmat.2010.12.095 PubMed
Kapusta, J., Dolníček, Z., Hrubý, P., & Malý, K. (2017). Strusky po tavbě polymetalických rud z locality Jihlava U Mlékárny (Slags after smelting of polymetallic ores from the locality Jihlava U Mlékárny). Archeologia Technica,28, 28–32. (In Czech with English abstract).
Kapusta, J., Dolníček, Z., Sracek, O., & Malý, K. (2022). Origin of historical Ba-rich slags related to Pb-Ag production from Jihlava Ore District (Czech Republic). Minerals,12, 985. 10.3390/min12080985
Kelepertzis, E., Chrastný, V., Botsou, F., Sigala, E., Kypritidou, Z., Komárek, M., Skordas, K., & Argyraki, A. (2021). Tracing the sources of bioaccessible metal(loid)s in urban environments: A multidisciplinary approach. Science of the Total Environment,771, 144827. 10.1016/j.scitotenv.2020.144827 PubMed
Koutek, J. (1952). O rudních žilách a starém dolování u Jihlavy (On the ore veins and the old mines at Jihlava). Sborník ústředního geologického ústavu, oddíl geologický, 19, 77–116. (in Czech with English and Russian summary)
Li, Y., Padoan, E., & Ajmone-Marsan, F. (2021). Soil particle size fraction and potentially toxic elements bioaccessibility: A review. Ecotoxicology and Environmental Safety, 209, 111806. 10.1016/j.ecoenv.2020.111806 PubMed
Madrid, F., Biasoli, M., & Ajmone-Marsan, F. (2008a). Availability and bioaccessibility of metals in fine particles of some urban soils. Archives of Environmental Contamination and Toxicology,55, 21–32. 10.1007/s00244-007-9086-1 PubMed
Madrid, F., Díaz-Barrientos, E., & Madrid, L. (2008b). Availability and bio-accessibility of metals in clay fraction of urban soils of Sevilla. Environmental Pollution,156, 605–610. 10.1016/j.envpol.2008.06.023 PubMed
Menegaki, S., Kelepertzis, E., Kypritidou, Z., Lampropoulou, A., Chrastný, V., Aidona, E., Bourliva, A., & Komárek, M. (2024). Characterization of the inhalable fraction (<10 µm) of soil from highly urbanized and industrial environments: Magnetic measurements, bioaccessibility, Pb isotopes and health risk assessment. Environmental Geochemistry and Health,46, 320. 10.1007/s10653-024-02009-z PubMed PMC
Moya, J., & Phillips, L. (2014). A review of soil and dust ingestion studies for children. Journal of Exposure and Environmental Epidemiology,24, 545–554. 10.1038/jes.2014.17 PubMed
Okorie, A., Entwistle, J., & Dean, J. R. (2012). Estimation of daily intake of potentially toxic elements from urban street dust and the role of oral bioaccessibility testing. Chemosphere,86, 460–467. 10.1016/j.chemosphere.2011.09.047 PubMed
Parkhurst, D.L., & Appelo, C.A.J. (2013). Description of input and examples for PHREEQC version 3–A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, book 6, chap. A43.
Parviainen, A., Vázquez-Arias, A., Arrebola, J. P., & Martín-Peinado, F. J. (2022). Human health risks associated with urban soils in mining areas. Environmental Research,206, 112514. 10.1016/j.envres.2021.112514 PubMed
Pluskal, O., & Vosáhlo, J. (1998). Jihlavský rudní obvod (Jihlava mining district). Vlastivědný sborník Vysočiny, 13, 157–191. (in Czech)
Reis, A. P., Catinha, C., Noack, Y., Robert, S., & Dias, A. C. (2014b). Assessing human exposure to aluminium, chromium and vanadium through outdoor dust ingestion in the Bassin Minier de Provence, France. Environmental Geochemistry and Health,36, 303–317. 10.1007/s10653-013-0964-5 PubMed
Reis, A. P. M., Cave, M., Sousa, A. J., Wragg, J., Rangel, M. J., Oliveira, A. R., Patinha, C., Rocha, F., Orsiere, T., & Noack, Y. (2018). Lead and zinc concentrations in household dust and toenails of the residents (Estarreja, Portugal): A source-pathway-fate model. Environmental Science: Processes & Impacts,20, 1210–1224. 10.1039/c8em00211h PubMed
Reis, A. P., Patinha, C., Noack, Y., Robert, S., Dias, A. C., & Ferreira da Silva, E. (2014a). Assessing the human health risk for aluminium, zinc and lead in outdoor dusts collected in recreational sites used by children at an industrial area in the western part of the Bassin Minier de Provence, France. Journal of African Earth Sciences,99, 724–734. 10.1016/j.afrearsci.2013.08.001
Roussel, H., Waterlot, C., Pelfrêne, A., Pruvot, C., Mazzuca, M., & Douay, F. (2010). Cd, Pb and Zn oral bioaccessibility of urban soils contaminated in the past by atmospheric emissions from two lead and zinc smelters. Archives of Environmental Contamination and Toxicology,58, 945–954. 10.1007/s00244-009-9425-5 PubMed
Siciliano, S. D., James, K., Zhang, G., Schafer, A. N., & Peak, J. D. (2009). Adhesion and enrichment of metals on human hands from contaminated soil at an arctic urban brownfield. Environmental Science and Technology,43, 6385–6390. 10.1021/es901090w PubMed
Soto-Jiménez, M. F., Muñoz-Roos, S., Soto-Morales, S., Gómez-Lizarrága, L. E., & Bucio-Galindo, L. (2023). Environmental and health implications of Pb-bearing particles in settled urban dust from and arid city affected by Pb-Zn factory emissions. Scientific Reports,13, 21287. 10.1038/s41598-023-48593-5 PubMed PMC
Tiesjema, B., & Baars, A.J. (2009). Re-evaluation of some human-toxicological maximum permissible risk levels earlier evaluated in the period 1991–2001. Bilthoven, the Netherlands: RIVM report 711701092.
Tuhý, M., Hrstka, T., & Ettler, V. (2020). Automated mineralogy for quantification and partitioning of metal(loid)s in particulates from mining/smelting-polluted soils. Environmental Pollution,266, 115118. 10.1016/j.envpol.2020.115118 PubMed
Tyszka, R., Pedziwiatr, A., Pietranik, A., Kierczak, J., Ettler, V., Mihaljevič, M., & Zielinski, G. (2024). A long-term perspective on coal combustion solid waste interacting with urban soil. Applied Geochemistry,166, 105975. 10.1016/j.apgeochem.2024.105975
US EPA (2017). SW-846 Test Method 1340. In Vitro Bioaccessibility Assay for Lead in Soil. US EPA, Washington. https://www.epa.gov/hw-sw846/sw-846-test-method-1340-vitro-bioaccessibility-assay-lead-soil
Vosáhlo, J. (1988). Příspěvek k řešení strukturní pozice a minerogeneze hydrotermální polymetalické mineralizace na území rudních revírů Kamenná, Jihlava a Jezdovice. (Contribution to the understanding the structural position and minerogenesis of the hydrothermal polymetallic mineralization in ore districts Kamenná, Jihlava and Jezdovice). MSc thesis, Charles University in Prague, Czech Republic, 191 p. + 15 maps (in Czech)
Warr, L. N. (2021). IMA-CNMNC approved mineral symbols. Mineralogical Magazine,85, 291–320. 10.1180/mgm.2021.43
Yamamoto, N., Takahashi, Y., Yoshinaga, J., Tanaka, A., & Shibata, Y. (2006). Size distributions of soil particles adhered to children’s hands. Archives of Environmental Contamination and Toxicology,51, 157–163. 10.1007/s00244-005-7012-y PubMed
Özkaynak, H., Xue, J., Zartarian, V. G., Glen, G., & Smith, L. (2011). Modeled estimates of soil and dust ingestion rates for children. Risk Analysis,31, 592–608. 10.1111/j.1539-6924.2010.01524.x PubMed