Contaminant Binding and Bioaccessibility in the Dust From the Ni-Cu Mining/Smelting District of Selebi-Phikwe (Botswana)

. 2022 Nov ; 6 (11) : e2022GH000683. [epub] 20221101

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36348990

We studied the dust fractions of the smelting slag, mine tailings, and soil from the former Ni-Cu mining and processing district in Selebi-Phikwe (eastern Botswana). Multi-method chemical and mineralogical investigations were combined with oral bioaccessibility testing of the fine dust fractions (<48 and <10 μm) in a simulated gastric fluid to assess the potential risk of the intake of metal(loid)s contaminants. The total concentrations of the major contaminants varied significantly (Cu: 301-9,600 mg/kg, Ni: 850-7,000 mg/kg, Co: 48-791 mg/kg) but were generally higher in the finer dust fractions. The highest bioaccessible concentrations of Co, Cu, and Ni were found in the slag and mine tailing dusts, where these metals were mostly bound in sulfides (pentlandite, pyrrhotite, chalcopyrite). On the contrary, the soil dusts exhibited substantially lower bioaccessible fractions of these metals due to their binding in less soluble spinel-group oxides. The results indicate that slag dusts are assumed to be risk materials, especially when children are considered as a target group. Still, this exposure scenario seems unrealistic due to (a) the fencing of the former mine area and its inaccessibility to the local community and (b) the low proportion of the fine particles in the granulated slag dump and improbability of their transport by wind. The human health risk related to the incidental ingestion of the soil dust, the most accessible to the local population, seems to be quite limited in the Selebi-Phikwe area, even when a higher dust ingestion rate (280 mg/d) is considered.

Zobrazit více v PubMed

Argyraki, A. (2014). Garden soil and house dust as exposure media for lead uptake in the mining village of Stratoni, Greece. Environmental Geochemistry and Health, 36(4), 677–692. 10.1007/s10653-013-9589-9 PubMed DOI

Asare, B. K. , & Darkoh, M. B. K. (2001). Socio‐economic and environmental impact of mining in Botswana: A case study of the Selebi‐Phikwe copper‐nickel mine. Eastern Africa Social Science Research Review, 17, 1–42. https://www.ajol.info/index.php/eassrr/article/view/22718

ATSDR . (2022). Minimal risk levels (MRLs). Agency for Toxic Substances and Disease Registry, February 2022. Retrieved from https://www.atsdr.cdc.gov/mrls/index.html

Baars, A. J. , Theelen, R. M. C. , Janssen, P. J. C. M. , Hesse, J. M. , van Apeldoorn, M. E. , Meijerink, M. C. M. , et al. (2001). Re‐evaluation of human‐toxicological maximum permissible risk levels. Bilthoven, The Netherlands: RIVM report 711701025. Retrieved from https://www.rivm.nl/bibliotheek/rapporten/711701025.pdf

Baldock, J. W. , Hepworth, J. V. , & Marengwa, B. S. (1976). Gold, base metals, and diamonds in Botswana. Economic Geology, 71, 139–156.

Baleeiro, A. , Fiol, S. , Otero‐Fariña, A. , & Antelo, J. (2018). Surface chemistry of iron oxides formed by neutralization of acid mine waters: Removal of trace metals. Applied Geochemistry, 89, 129–137. 10.1016/j.apgeochem.2017.12.003 DOI

Banza, C. L. N. , Nawrot, T. S. , Haufroid, V. , Decrée, S. , De Putter, T. , Smolders, E. , et al. (2009). High human exposure to cobalt and other metals in Katanga, a mining area of the Democratic Republic of Congo. Environmental Research, 109(6), 745–752. 10.1016/j.envres.2009.04.012 PubMed DOI

Bierkens, J. , Van Holderbeke, M. , Cornelis, C. , & Torfs, R. (2011). Exposure through soil and dust ingestion. In Swartjes F. A. (Ed.), Dealing with contaminated sites (pp. 261–286). Springer Science+Business Media B.V. 10.1007/978-90-481-9757-6_6 DOI

Boisa, N. , Bird, G. , Brewer, P. A. , Dean, J. R. , Entwistle, J. A. , Kemp, S. J. , & Macklin, M. G. (2013). Potentially harmful elements (PHEs) in scalp hair, soil and metallurgical wastes in Mitrovica, Kosovo: The role of oral bioaccessibility and mineralogy in human PHE exposure. Environment International, 60, 56–70. https://org.doi/j.envint.2013.07.014 PubMed

Bosso, S. T. , & Enzweiler, J. (2008). Bioaccessible lead in soils, slag, and mine wastes from an abandoned mining district in Brazil. Environmental Geochemistry and Health, 30(3), 219–229. 10.1007/s10653-007-9110-4 PubMed DOI

Cave, M. R. , Wragg, J. , Denys, S. , Jondreville, C. , & Feidt, C. (2011). Oral bioavailability. In Swartjes F. A. (Ed.), Dealing with contaminated sites (pp. 287–324). Springer Science+Business Media B.V. 10.1007/978-90-481-9757-6_7 DOI

Cheyns, K. , Banza, C. L. N. , Ngombe, L. K. , Asosa, J. A. , Haufroid, V. , De Putter, T. , et al. (2014). Pathways of human exposure to cobalt in Katanga, a mining area of the D. R. Congo. Science of the Total Environment, 490, 313–321. 10.1016/j.scitotenv.2014.05.014 PubMed DOI

Csavina, J. , Field, J. , Taylor, M. P. , Gao, S. , Landázuri, A. , Betterton, E. A. , & Sáez, E. A. (2012). A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Science of the Total Environment, 433, 58–73. 10.1016/j.scitotenv.2012.06.013 PubMed DOI PMC

Denys, S. , Caboche, J. , Tack, K. , Rychen, G. , Wragg, J. , Cave, M. , et al. (2012). In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environmental Science and Technology, 46(11), 6252–6260. 10.1021/es3006942 PubMed DOI

Drexler, J. W. , & Brattin, W. J. (2007). An in vitro procedure for estimation of lead relative bioavailability: With validation. Human and Ecological Risk Assessment, 13(2), 383–401. 10.1080/10807030701226350 DOI

Dutton, M. D. , Thorn, R. , Lau, W. , Vasiluk, L. , & Hale, B. (2021). Gastric bioacessibility is a conservative measure of nickel bioavailability after oral exposure: Evidence from Ni‐contaminated soil, pure Ni substances and Ni alloys. Environmental Pollution, 268, 115830. 10.1016/j.envpol.2020.115830 PubMed DOI

Dutton, M. D. , Vasiluk, L. , Ford, F. , Bellantino Perco, M. , Taylor, S. R. , Lopez, K. , et al. (2019). Towards an exposure narrative for metals and arsenic in historically contaminated Ni refinery soils: Relationship between speciation, bioavailability, and bioaccessibility. Science of the Total Environment, 686, 805–818. 10.1016/j.scitotenv.2019.05.164 PubMed DOI

EFSA . (2009). Cadmium in food. Scientific opinion of the panel on contaminants in the food Chain on a request from the European commission on cadmium in food. EFSA Journal, 980, 1–139.

EFSA . (2010). Scientific opinion on lead in food. EFSA Journal, 8(4), 1570. 10.2903/j.efsa.2010.1570 DOI

EFSA . (2014a). Dietary exposure to inorganic arsenic in the European population. EFSA Journal, 12(3), 3597. 10.2903/j.efsa.2014.3597 DOI

EFSA . (2015). Scientific Opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA Journal, 13(2), 4002. 10.2903/j.efsa.2015.4002 DOI

Ekosse, G. (2005). Heavy metals concentrations in the biophysical environment around the Ni‐Cu mine and the smelter/concentrator plant, Selebi Phikwe, Botswana. Global Journal of Environmental Sciences, 4(2), 97–110. 10.4314/gjes.v4i2.2448 DOI

Ekosse, G. (2008). Environmental effects of nickel‐copper exploitation on workers health status at Selebi Phikwe area, Botswana. Journal of Applied Sciences, 8(13), 2344–2356. 10.3923/jas.2008.2344.2356 DOI

Ekosse, G. , van den Heever, D. J. , de Jager, L. , & Totolo, O. (2003). Environmental mineralogy of soils around Selebi Phikwe nickel‐copper plant, Botswana. International Journal of Environmental Studies, 60(3), 251–262. 10.1080/00207230290034332 DOI

Ekosse, G. , van den Heever, D. J. , de Jager, L. , & Totolo, O. (2004). Environmental chemistry and mineralogy of particulate air matter around Selebi Phikwe nickel‐copper plant, Botswana. Minerals Engineering, 17(2), 349–353. 10.1016/j.mineng/2003.08.016 DOI

Entwistle, J. A. , Hursthouse, A. S. , Reis, P. A. M. , & Stewart, A. G. (2019). Metalliferous mine dust: Human health impacts and the potential determinants of disease in mining communities. Current Pollution Reports, 5(3), 67–83. 10.1007/s40726-019-00108-5 DOI

Ettler, V. (2016). Soil contamination near non‐ferrous metal smelters: A review. Applied Geochemistry, 64, 56–74. 10.1016/j.envpol.2014.04.035 DOI

Ettler, V. , Cihlová, M. , Jarošíková, M. , Mihaljevič, M. , Drahota, P. , Kříbek, B. , et al. (2019). Oral bioaccessibility of metal(loid)s in dust materials from mining areas of northern Namibia. Environment International, 124, 205–215. 10.1016/j.envint.2018.12.027 PubMed DOI

Ettler, V. , Johan, Z. , Kříbek, B. , Veselovský, F. , Mihaljevič, M. , Vaněk, A. , et al. (2016). Composition and fate of mine‐ and smelter‐derived particles in soils of humid subtropical and hot semi‐arid areas. Science of the Total Environment, 563, 329–339. 10.1016/j.scitotenv.2016.04.133 PubMed DOI

Ettler, V. , & Kierczak, J. (2021). Environmental impact of slag particulates. In Piatak N. M. & Ettler V. (Eds.), Metallurgical slags: Environmental geochemistry and Resource potential (pp. 174–193). The Royal Society of Chemistry. 10.1039/9781839164576-00174 DOI

Ettler, V. , Kříbek, B. , Majer, V. , Knésl, I. , & Mihaljevič, M. (2012). Differences in the bioaccessibility of metals/metalloids in soils from mining and smelting areas (Copperbelt, Zambia). Journal of Geochemical Exploration, 113, 68–75. 10.1016/j.gexplo.2011.08.001 DOI

Ettler, V. , Mihaljevič, M. , Drahota, P. , Kříbek, B. , Nyambe, I. , Vaněk, A. , et al. (2022). Cobalt‐bearing copper slags from Luanshya (Zambian Copperbelt): Mineralogy, geochemistry, and potential recovery of critical metals. Journal of Geochemical Exploration, 237, 106987. 10.1016/j.gexplo.2022.106987 DOI

Ettler, V. , Polák, L. , Mihaljevič, M. , Ratié, G. , Garnier, J. , & Quantin, C. (2018). Oral bioaccessibility of inorganic contaminants in waste dusts generated by laterite Ni ore smelting. Environmental Geochemistry and Health, 40(5), 1699–1712. 10.1007/s10653-016-9875-4 PubMed DOI

Ettler, V. , Štěpánek, D. , Mihaljevič, M. , Drahota, P. , Jedlicka, R. , Kříbek, B. , et al. (2020). Slag dusts from Kabwe (Zambia): Contaminant mineralogy and oral bioaccessibility. Chemosphere, 260, 127642. 10.1016/j.chemosphere.2020.127642 PubMed DOI

Ettler, V. , Vítková, M. , Mihaljevič, M. , Šebek, O. , Klementová, M. , Veselovský, F. , et al. (2014). Dust from Zambian smelters: Mineralogy and contaminant bioaccessibility. Environmental Geochemistry and Health, 36(5), 919–933. 10.1007/s10653-014-9609-4 PubMed DOI

Fukushi, K. , Sasaki, M. , Sato, T. , Yanase, M. , Amano, H. , & Ikeda, H. (2003). A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Applied Geochemistry, 18(8), 1267–1278. 10.1016/S0883-2927(03)00011-8 DOI

Ghorbel, M. , Munoz, M. , Courjault‐Radé, P. , Destigneville, C. , de Perseval, P. , Souissi, R. , et al. (2010). Health risk assessment for human exposure by direct ingestion of Pb, Cd, Zn bearing dust in the former miners’ village of Jebel Ressas (NE Tunisia). European Journal of Mineralogy, 22(5), 639–649. 10.1127/0935-1221/2010/0022-2037 DOI

Goldhaber, S. B. (2003). Trace element risk assessment: Essentiality vs. toxicity. Regulatory Toxicology and Pharmacology, 38(2), 232–242. 10.1016/S0273-2300(02)00020-X PubMed DOI

Gräfe, M. , Beattie, D. A. , Smith, E. , Skinner, W. M. , & Singh, B. (2008). Copper and arsenate co‐sorption at mineral‐water interfaces of goethite and jarosite. Journal of Colloid and Interface Science, 322(2), 399–413. 10.1016/j.jcis.2008.02.044 PubMed DOI

Gražulis, S. , Daškevič, A. , Merkys, A. , Chateigner, D. , Lutterotti, L. , Quirós, M. , et al. (2012). Crystallography open database (COD): An open‐access collection of crystal structures and platform for world‐wide collaboration. Nucleic Acids Research, 40(D1), D420–D427. 10.1093/nar/gkr900 PubMed DOI PMC

Gregurek, D. , Reimann, C. , & Stumpfl, E. F. (1998). Mineralogical fingerprints of industrial emissions – An example from Ni mining and smelting on the Kola Peninsula, NW Russia. Science of the Total Environment, 221(2–3), 189–200. 10.1016/S0048-9697(98)00293-9 DOI

Harvey, P. J. , Taylor, M. P. , Kristensen, L. J. , Grant‐Vest, S. , Rouillon, M. , Wu, L. , & Handley, H. K. (2016). Evaluation and assessment of the efficacy of an abatement strategy in a former lead smelter community, Boolaroo, Australia. Environmental Geochemistry and Health, 38(4), 941–954. 10.1007/s10653-015-9779-8 PubMed DOI

Jaishankar, M. , Tseten, T. , Anbalagan, N. , Mathew, B. B. , & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. 10.2478/intox-2014-0009 PubMed DOI PMC

Kastury, F. , Smith, E. , & Juhasz, A. L. (2017). A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Science of the Total Environment, 574, 1054–1074. 10.1016/j.scitotenv.2016.09.056 PubMed DOI

Kastury, F. , Smith, E. , Karna, R. R. , Scheckel, K. G. , & Juhasz, A. L. (2018). An inhalation‐ingestion bioaccessibility assay (IIBA) for the assessment of exposure to metal(loid)s in PM10 . Science of the Total Environment, 631–632, 92–104. 10.1016/j.scitotenv.2018.02.337 PubMed DOI PMC

Kelepertzis, E. , Chrastný, V. , Botsou, F. , Sigala, E. , Kypritidou, Z. , Komárek, M. , et al. (2021). Tracing the sources of bioaccessible metal(loid)s in urban environments: A multidisciplinary approach. Science of the Total Environment, 771, 144827. 10.1016/j.scitotenv.2020.144827 PubMed DOI

Kříbek, B. , Majer, V. , Pašava, J. , Kamona, F. , Mapani, B. , Keder, J. , & Ettler, V. (2014). Contamination of soils with dust fallout from the tailings dam at the Rosh Pinah area, Namibia: Regional assessment, dust dispersion modeling and environmental consequences. Journal of Geochemical Exploration, 144, 391–408. 10.1016/j.gexplo.2014.01.010 DOI

Kříbek, B. , Majer, V. , Veselovský, F. , & Nyambe, I. (2010). Discrimination of lithogenic and anthropogenic sources of metals and sulphur in soils of the central‐northern part of the Zambian Copperbelt mining district: A topsoil vs. subsurface soil concept. Journal of Geochemical Exploration, 104(3), 69–86. 10.1016/j.gexplo.2009.12.005 DOI

Kříbek, B. , Nyambe, I. , Majer, V. , Knésl, I. , Mihaljevič, M. , Ettler, V. , et al. (2019). Soil contamination near the Kabwe Pb‐Zn smelter in Zambia: Environmental impacts and remediation measures proposal. Journal of Geochemical Exploration, 197, 159–173. 10.1016/j.gexplo.2018.11.018 DOI

Landes, F. C. , Inauen, J. , Ponce‐Canchihuamán, J. , Markowski, K. , Ellis, T. K. , & van Geen, A. (2019). Does involving parents in soil sampling identify causes of child exposure to lead? A case study of community engagement in mining‐impacted towns in Peru. GeoHealth, 3(8), 218–236. 10.1029/2019GH000200 PubMed DOI PMC

Lanteigne, S. , Schindler, M. , McDonald, A. M. , Skeries, K. , Abdu, Y. , Mantha, N. M. , et al. (2012). Mineralogy and weathering of smelter‐derived spherical particles in soils: Implications for the mobility of Ni and Cu in the surficial environment. Water, Air and Soil Pollution, 223(7), 3619–3641. 10.1007/s11270-012-1135-3 DOI

Lau, W. , Dutton, M. D. , Vasiluk, L. , & Hale, B. (2022). Derivation of a Ni bioaccessibility value for screening‐level risk assessment of Ni substances in ingested materials including soils. Environmental Geochemistry and Health, 44(8), 2563–2575. 10.1007/s10653-021-01048-0 PubMed DOI

Li, J. , & McDonald‐Gillespie, J. (2020). Airborne lead (Pb) from abandoned mine waste in northeastern Oklahoma, USA. GeoHealth, 4(9), e2020GH000273. 10.1029/2020GH000273 PubMed DOI PMC

Majzlan, J. , & Myneni, S. C. B. (2005). Speciation of iron and sulfate in acid waters: Aqueous clusters to mineral precipitates. Environmental Science and Technology, 39(1), 188–194. 10.1021/es049664p PubMed DOI

Manyiwa, T. , Ultra, V. U., Jr. , Rantong, G. , Opaletswe, K. A. , Gabankitse, G. , Taupedi, S. B. , & Gajaje, K. (2022). Heavy metals in soil, plants, and associated risk on grazing ruminants in the vicinity of Cu‐Ni mine in Selebi‐Phikwe, Botswana. Environmental Geochemistry and Health, 44(5), 1633–1648. 10.1007/s10653-021-00918-x PubMed DOI

Mapani, B. , Ellmies, R. , Kamona, F. , Kříbek, B. , Majer, V. , Knésl, I. , et al. (2010). Potential human health risks associated with historic ore processing at Berg Aukas, Grootfontein area, Namibia. Journal of African Earth Sciences, 58(4), 634–647. 10.1016/j.afrearsci.2010.07.007 DOI

Meza‐Figueroa, D. , Barboza‐Flores, M. , Romero, F. M. , Acosta‐Elias, M. , Hernández‐Mendiola, E. , Maldonado‐Escalante, F. , et al. (2020). Metal bioaccessibility, particle size distribution and polydispersity of playground dust in synthetic lysosomal fluids. Science of the Total Environment, 713, 136481. 10.1016/j.scitotenv.2019.136481 PubMed DOI

Morman, S. A. , & Plumlee, G. S. (2013). The role of airborne mineral dusts in human disease. Aeolian Research, 9, 203–212. 10.1016/j.aeolia.2012.12.001 DOI

Motswaiso, F. S. , Nakamura, K. , Watanabe, N. , & Komai, T. (2019). Geochemical investigation of metals and trace elements around the abandoned Cu‐Ni mine site in Selibe Phikwe, Botswana. Journal of Geoscience and Environment Protection, 7(05), 275–293. 10.4236/gep.2019.75020 DOI

Murad, E. , & Rojík, P. (2005). Iron mineralogy of mine‐drainage precipitates as environmental indicators: Review of current concepts and a case study from the Sokolov basin, Czech Republic. Clay Minerals, 40(4), 427–440. 10.1180/0009855054040181 DOI

Mwesigye, A. R. , Young, S. D. , Bailey, E. H. , & Tumwebaze, S. B. (2016). Population exposure to trace elements in the Kilembe copper mine area, Western Uganda: A pilot study. Science of the Total Environment, 573, 366–375. 10.1016/j.scitotenv.2016.08.125 PubMed DOI

Nejeschlebová, L. , Sracek, O. , Mihaljevič, M. , Ettler, V. , Kříbek, B. , Knésl, I. , et al. (2015). Geochemistry and potential environmental impact of the mine tailings at Rosh Pinah, southern Namibia. Journal of African Earth Sciences, 105, 17–28. 10.1016/j.afrearsci.2015.02.005 DOI

Patinha, C. , Reis, A. P. , Dias, A. C. , Abduljelil, A. A. , Noack, Y. , Robert, S. , et al. (2015). The mobility and human oral bioaccessibility of Zn and Pb in urban dusts of Estarreja (N Portugal). Environmental Geochemistry and Health, 37(1), 115–131. 10.1007/s10653-014-9634-3 PubMed DOI

Pelfrêne, A. , & Douay, F. (2018). Assessment of oral and lung bioaccessibility of Cd and Pb from smelter‐impacted dust. Environmental Science and Pollution Research, 35(4), 3718–3730. 10.1007/s11356-017-0760-1 PubMed DOI

Pelfrêne, A. , Waterlot, C. , Mazzuca, M. , Nisse, C. , Bidar, G. , & Douay, F. (2011). Assessing Cd, Pb, Zn human bioaccessibility in smelter contaminated agricultural topsoils (northern France). Environmental Geochemistry and Health, 33(5), 477–493. 10.1007/s10653-010-9365-z PubMed DOI

Plumlee, G. S. , & Morman, S. A. (2011). Mine wastes and human health. Elements, 7(6), 399–404. 10.2113/gselements.7.6.399 DOI

Reis, A. P. , Patinha, C. , Noack, Y. , Robert, S. , Dias, A. C. , & Ferreira da Silva, E. (2014). Assessing the human health risk for aluminium, zinc and lead in outdoor dusts collected in recreational sites used by children at an industrial area of the Western part of the Bassin Minier de Provence, France. Journal of African Earth Sciences, 99, 724–734. 10.1016/j.afrearsci.2013.08.001 DOI

Reis, A. P. M. , Cave, M. , Sousa, A. J. , Wragg, J. , Rangel, M. J. , Oliveira, A. R. , et al. (2018). Lead and zinc in household dust and toenails of the residents (Estarreja, Portugal): A source‐pathway‐fate model. Environmental Science – Processes & Impacts, 20(9), 1210–1224. 10.1039/c8em00211h PubMed DOI

Romero, F. M. , Villalobos, M. , Aguirre, R. , & Gutiérrez, M. E. (2008). Solid‐phase control on lead bioaccessibility in smelter‐impacted soils. Archives of Environmental Contamination and Toxicology, 55(4), 566–575. 10.1007/s00244-008-9152-3 PubMed DOI

Ruby, M. V. , & Lowney, Y. W. (2012). Selective soil particle adherence to hands: Implications for understanding oral exposure to soil contaminants. Environmental Science and Technology, 46(23), 12759–12771. 10.1021/es302473q PubMed DOI

Schippers, A. , Kock, D. , Schwartz, M. , Böttcher, M. E. , Vogel, H. , & Hagger, M. (2007). Geomicrobiological and geochemical investigation of a pyrrhotite‐containing mine waste tailings dam near Selebi‐Phikwe in Botswana. Journal of Geochemical Exploration, 92(2–3), 151–158. 10.1016/j.gexplo.2006.08.003 DOI

Schwartz, M. O. , & kgomanyane, J. (2008). Modelling natural attenuation of heavy‐metal groundwater contamination in the Selebi‐Phikwe mining area, Botswana. Environmental Geology, 54(4), 819–930. 10.1007/s00254-007-0865-9 DOI

Siciliano, S. D. , James, K. , Zhang, G. , Schafer, A. N. , & Peak, J. D. (2009). Adhesion and enrichment of metals on human hands from contaminated soil at an arctic urban brownfield. Environmental Science and Technology, 43(16), 6385–6390. 10.1021/es901090w PubMed DOI

Smolders, E. , Roels, L. , Kuhangana, T. C. , Coorevits, K. , Vassilieva, E. , Nemery, B. , & Nkulu, C. B. L. (2019). Unprecedently high dust ingestion estimates for the general population in a mining district of DR Congo. Environmental Science and Technology, 53(13), 7851–7858. 10.1021/acs.est.9b01973 PubMed DOI

Sracek, O. , Kříbek, B. , Mihaljevič, M. , Ettler, V. , Vaněk, A. , Penížek, V. , et al. (2018). Geochemistry and pH control of seepage from Ni‐Cu rich mine tailings at Selebi Phikwe, Botswana. Environmental Monitoring and Assessment, 190(8), 482. 10.1007/s10661-018-6851-8 PubMed DOI

Thomas, A. N. , Root, R. A. , Lantz, R. C. , Sáez, A. E. , & Chorover, J. (2018). Oxidative weathering decreases bioaccessibility of toxic metal(loid)s in PM10 emissions from sulfide mine tailings. GeoHealth, 2(4), 118–138. 10.1002/2017GH000118 PubMed DOI PMC

Tiesjema, B. , & Baars, A. J. (2009). Re‐Evaluation of some human‐toxicological maximum permissible risk levels earlier evaluated in the period 1991–2001. Bilthoven, The Netherlands: RIVM report 711701092.

Tuhý, M. , Hrstka, V. , & Ettler, V. (2020). Automated mineralogy for quantification and partitioning of metal(loid)s in particulates from mining/smelting‐polluted soils. Environmental Pollution, 266, 115118. 10.1016/j.envpol.2020.115118 PubMed DOI

Ultra, V. U., Jr. (2020). Fly ash and compost amendments and mycorrhizal inoculation enhanced the survival and growth of Delonix regia in Cu‐Ni mine tailings. Philippine Journal of Science, 149(3), 479–489.

Ultra, V. U., Jr. , & Manyiwa, T. (2021). Influence of mycorrhiza and fly ash on the survival, growth and heavy metal accumulation in three Acacia species grown in Cu‐Ni mine soil. Environmental Geochemistry and Health, 43(4), 1337–1353. 10.1007/s10653-020-00627-x PubMed DOI

US EPA . (2007). Estimation of relative bioavailability of lead in soil and soil‐like materials using in vivo and in vitro methods. In Office of solid waste and Emergency Response, US EPA. 9285.7–77.

US EPA . (2011). Exposure factors Handbook: 2011 edition. In National center for environmental assessment, US EPA, Washington, EPA/600/R‐09/052F. Retrieved from http://www.epa.gov/ncea/efh

US EPA . (2017). SW‐846 test method 1340. In vitro bioaccessibility assay for Lead in soil. US EPA. Retrieved from https://www.epa.gov/hw-sw846/sw-846-test-method-1340-vitro-bioaccessibility-assay-lead-soil

US EPA . (2019). Guidelines for human exposure assessment. Risk assessment Forum, US EPA, Washington, EPA/100/B‐19/00. Retrieved from https://www.epa.gov/risk/guidelines-human-exposure-assessment

Vasiluk, L. , Dutton, M. D. , & Hale, B. (2011). In vitro estimates of bioaccessible nickel in field‐contaminated soils, and comparison with in vivo measurement of bioavailability and identification of mineralogy. Science of the Total Environment, 409(14), 2700–2706. 10.1016/j.scitotenv.2011.03.035 PubMed DOI

Vasiluk, L. , Sowa, J. , Sanborn, P. , Ford, F. , Dutton, M. D. , & Hale, B. (2019). Bioaccessibility estimates by gastric SBRC method to determine relationships to bioavailability of nickel in ultramafic soils. Science of the Total Environment, 673, 685–693. 10.1016/j.scitotenv.2019.04.059 PubMed DOI

Vítková, M. , Ettler, V. , Johan, Z. , Kříbek, B. , Šebek, O. , & Mihaljevič, M. (2010). Primary and secondary phases in copper‐cobalt smelting slags from the Copperbelt Province, Zambia. Mineralogical Magazine, 74(4), 581–600. 10.1180/minmag.2010.074.4.581 DOI

Wakefield, J. (1976). The structural and metamorphic evolution of the Phikwe Ni‐Cu sulfide deposit, Selebi‐Phikwe, Botswana. Economic Geology, 71(6), 988–1005. 10.2113/gsecongeo.71.6.988 DOI

Wu, X. , Cobbina, S. J. , Mao, G. , Xu, H. , Zhang, Z. , & Yang, L. (2016). A review of toxicity and mechanism of individual and mixtures of heavy metals in the environment. Environmental Science and Pollution Research, 23(9), 8244–8259. 10.1007/s11356-016-6333-x PubMed DOI

Yabe, J. , Nakayama, S. M. M. , Ikenaka, Y. , Yohannes, Y. B. , Portey‐Sam, N. , Kabalo, A. N. , et al. (2018). Lead and cadmium excretion in feces and urine of children from polluted townships near a lead‐zinc mine in Kabwe, Zambia. Chemosphere, 202, 48–55. 10.1016/j.chemosphere.2018.03.079 PubMed DOI

Yager, T. R. (2019). The mineral industry of Botswana. U.S. Geological Survey, 2015 minerals Yearbook (p. 7). Retrieved from https://www.usgs.gov/media/files/mineral-industrybotswana-2015-pdf

Yager, T. R. (2021). The mineral industry of Botswana. U.S. Geological Survey, 2016 minerals Yearbook (p. 7). Retrieved from https://www.usgs.gov/media/files/mineral-industrybotswana-2016-pdf

Yamamoto, N. , Takahashi, Y. , Yoshinaga, J. , Tanaka, A. , & Shibata, Y. (2006). Size distributions of soil particles adhered to children’s hands. Archives of. Environmental Contamination and Toxicology, 51(2), 157–163. 10.1007/s00244-005-7012-y PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...