Dust from Zambian smelters: mineralogy and contaminant bioaccessibility

. 2014 Oct ; 36 (5) : 919-33. [epub] 20140412

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24729052

Metal smelting is often responsible for local contamination of environmental compartments. Dust materials escaping from the smelting facilities not only settle in the soil, but can also have direct effects on populations living close to these operations (by ingestion or inhalation). In this particular study, we investigate dusts from Cu-Co metal smelters in the Zambian Copperbelt, using a combination of mineralogical techniques (XRD, SEM/EDS, and TEM/EDS), in order to understand the solid speciation of the contaminants, as well as their bioaccessibility using in vitro tests in simulated gastric and lung fluids to assess the exposure risk for humans. The leaching of metals was mainly dependent on the contaminant mineralogy. Based on our results, a potential risk can be recognized, particularly from ingestion of the dust, with bioaccessible fractions ranging from 21 to 89% of the total contaminant concentrations. In contrast, relatively low bioaccessible fractions were observed for simulated lung fluid extracts, with values ranging from 0.01% (Pb) up to 16.5% (Co) of total contaminant concentrations. Daily intakes via oral exposure, calculated for an adult (70 kg, ingestion rate 50 mg dust per day), slightly exceeded the tolerable daily intake limits for Co (1.66× for fly ash and 1.19× for slag dust) and occasionally also for Pb (1.49×, fly ash) and As (1.64×, electrostatic precipitator dust). Cobalt has been suggested as the most important pollutant, and the direct pathways of the population's exposures to dust particles in the industrial parts of the Zambian Copperbelt should be further studied in interdisciplinary investigations.

Zobrazit více v PubMed

Water Air Soil Pollut. 2010 Feb;206(1-4):369-383 PubMed

Sci Total Environ. 2013 Apr 1;449:363-72 PubMed

Sci Total Environ. 2007 Aug 15;382(1):30-42 PubMed

Environ Geochem Health. 2009 Apr;31(2):165-87 PubMed

Sci Total Environ. 2011 Sep 1;409(19):4016-30 PubMed

Environ Geochem Health. 2011 Oct;33(5):477-93 PubMed

Environ Sci Technol. 2002 Aug 1;36(15):3326-34 PubMed

Trans R Soc Trop Med Hyg. 2010 Dec;104(12):787-95 PubMed

Sci Total Environ. 2014 Mar 1;473-474:117-24 PubMed

J Environ Monit. 2008 Dec;10(12):1448-53 PubMed

Chem Cent J. 2012 Nov 22;6(1):138 PubMed

Environ Res. 2009 Aug;109(6):745-52 PubMed

J Hazard Mater. 2011 Dec 15;197:417-23 PubMed

Chemosphere. 2012 Feb;86(5):460-7 PubMed

Sci Total Environ. 2012 Jun 15;427-428:253-62 PubMed

Environ Int. 2008 Aug;34(6):821-38 PubMed

J Hazard Mater. 2011 Feb 28;186(2-3):1018-27 PubMed

Environ Geochem Health. 2012 Apr;34(2):279-88 PubMed

Ultramicroscopy. 2005 Jun;103(3):237-49 PubMed

Environ Sci Technol. 2005 Oct 1;39(19):7749-56 PubMed

J Environ Monit. 2011 Mar;13(3):621-30 PubMed

Environ Geochem Health. 2011 Apr;33(2):167-81 PubMed

Sci Total Environ. 2012 Sep 1;433:58-73 PubMed

Environ Geochem Health. 2008 Jun;30(3):219-29 PubMed

Environ Sci Technol. 2012 Jun 5;46(11):6252-60 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...