Dental peculiarities in the silvery mole-rat: an original model for studying the evolutionary and biological origins of continuous dental generation in mammals

. 2015 ; 3 () : e1233. [epub] 20150910

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26401449

Unravelling the evolutionary and developmental mechanisms that have impacted the mammalian dentition, since more than 200 Ma, is an intricate issue. Interestingly, a few mammal species, including the silvery mole-rat Heliophobius argenteocinereus, are able to replace their dentition by the addition of supernumerary molars at the back of jaw migrating then toward the front. The aim here was to demonstrate the potential interest of further studying this rodent in order to better understand the origins of continuous dental replacement in mammals, which could also provide interesting data concerning the evolution of limited dental generation occurring in first mammals. In the present study, we described the main stages of the dental eruptive sequence in the silvery mole-rat and the associated characteristics of horizontal replacement using X-ray microtomography. This was coupled to the investigation of other African mole-rats which have no dental replacement. This method permitted to establish evidence that the initial development of the dentition in Heliophobius is comparable to what it is observed in most of African mole-rats. This rodent first has premolars, but then identical additional molars, a mechanism convergent to manatees and the pygmy rock-wallaby. Evidence of continuous replacement and strong dental dynamics were also illustrated in Heliophobius, and stressed the need to deeply investigate these aspects for evolutionary, functional and developmental purposes. We also noticed that two groups of extinct non-mammalian synapsids convergently acquired this dental mechanism, but in a way differing from extant mammals. The discussion on the diverse evolutionary origins of horizontal dental replacement put emphasis on the necessity of focusing on biological parameters potentially involved in both continuous and limited developments of teeth in mammals. In that context, the silvery mole-rat could appear as the most appropriate candidate to do so.

Zobrazit více v PubMed

Buchtová M, Stembírek J, Glocová K, Matalová E, Tucker AS. Early regression of the dental lamina underlies the development of diphyodont dentitions. Journal of Dental Research. 2012;91:491–498. doi: 10.1177/0022034512442896. PubMed DOI

Cui G, Sun A. Postcanine root system in tritylodonts. Vertebrata Palasiatica. 1987;25:245–259.

Dayan D, Waner T, Harmelin A, Nyska A. Bilateral complex odontoma in a Swiss (CD-1) male mouse. Laboratory Animals. 1994;28:90–92. doi: 10.1258/002367794781065898. PubMed DOI

Denys C. Nouvelles observations de la structure dentaire de spécimens juvéniles de Cryptomys hottentotus (Rongeurs, Bathyergidés) Mammalia. 1988;52:292–294. doi: 10.1515/mamm-1988-0405. DOI

Domning DP. Evolution of manatees; a speculative history. Journal of Paleontology. 1982;56:599–619.

Domning DP, Hayek L-AC. Horizontal tooth replacement in the Amazonian manatee (Trichechus inunguis) Mammalia. 1984;48:105–127. doi: 10.1515/mamm.1984.48.1.105. DOI

D’Souza RN, Klein OD. Unraveling the molecular mechanisms that lead to supernumerary teeth in mice and men: current concepts and novel approaches. Cells Tissues Organs. 2007;186:60–69. doi: 10.1159/000102681. PubMed DOI

Fleischmannová J, Matalová E, Sharpe PT, Míšek I, Radlanski RJ. Formation of the tooth-bone interface. Journal of Dental Research. 2010;89:108–115. doi: 10.1177/0022034509355440. PubMed DOI

Gallivan GJ, Best RC. Metabolism and respiration of the Amazonian manatee (Trichechus inunguis) Physiological Zoology. 1980;53:245–253.

Gomes Rodrigues H. The great disparity of dental structures and dynamics in rodents: new insights into their ecological diversity. In: Cox PG, Hautier L, editors. Evolution of the rodents: advances in phylogeny, functional morphology and development. Cambridge: Cambridge University Press; 2015. pp. 424–447.

Gomes Rodrigues H, Marangoni P, Šumbera R, Tafforeau P, Wendelen W, Viriot L. Continuous dental replacement in a hyper-chisel tooth digging rodent. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:17355–17359. doi: 10.1073/pnas.1109615108. PubMed DOI PMC

Gomes Rodrigues H, Solé F, Charles C, Tafforeau P, Vianey-Liaud M, Viriot L. Evolutionary and biological implications of dental mesial drift in rodents: the case of the Ctenodactylidae (Rodentia, Mammalia) PLoS ONE. 2012;7:e1233. doi: 10.1371/journal.pone.0050197. PubMed DOI PMC

Hopson JA. Postcanine replacement in the gomphodont cynodont Diademodon. Zoological Journal of the Linnean Society. 1971;50:1–20. doi: 10.1111/j.1096-3642.1971.tb00748.x. DOI

Jäger A, Kunert D, Friesen T, Zhang D, Lossdörfer S, Götz W. Cellular and extracellular factors in early root resorption repair in the rat. European Journal of Orthodontics. 2008;30:336–345. doi: 10.1093/ejo/cjn012. PubMed DOI

Janis CM, Fortelius M. On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biological Reviews. 1988;63:197–230. doi: 10.1111/j.1469-185X.1988.tb00630.x. PubMed DOI

Järvinen E, Salazar-Ciudad I, Birchmeier W, Taketo MM, Jernvall J, Thesleff I. Continuous tooth generation in mouse is induced by activated epithelial Wnt/β-catenin signaling. Proceedings of the National Academy of Sciences of the United States of America. 2006;103:18627–18632. doi: 10.1073/pnas.0607289103. PubMed DOI PMC

Järvinen E, Tummers M, Thesleff I. The role of the dental lamina in mammalian tooth replacement. Journal of Experimental Zoology. 2009;312B:281–291. doi: 10.1002/jez.b.21275. PubMed DOI

Jasinovski SC, Chinsamy A. Mandibular histology and growth of the nonmammaliaform cynodont Tritylodon. Journal of Anatomy. 2012;220:564–579. doi: 10.1111/j.1469-7580.2012.01494.x. DOI

Jernvall J, Thesleff I. Tooth shape formation and tooth renewal: evolving with the same signals. Development. 2012;139:3487–3497. doi: 10.1242/dev.085084. PubMed DOI

Johnson RB, Martinez RH. Synthesis of Sharpey’s fiber proteins within rodent alveolar bone. Scanning Microscopy. 1998;12:317–327.

Juuri E, Jussila M, Seidel K, Holmes S, Wu P, Richman J, Heikinheimo K, Chuong C-M, Arnold K, Hochedlinger K, Klein O, Michon F, Thesleff I. Sox2 marks epithelial competence to generate teeth in mammals and reptiles. Development. 2013;140:1424–1432. doi: 10.1242/dev.089599. PubMed DOI PMC

Kemp TS. The origin and evolution of Mammals. Oxford: Oxford University Press; 2005.

Kielan-Jaworowska Z, Cifelli RL, Luo Z-X. Mammals from the age of dinosaurs: origins, evolution, and structure. New York: Columbia University Press; 2004.

Kühne WG. The Liassic therapsid Oligokyphus. London: British Museum (Natural History); 1956.

Landry SC. The interrelationships of the New and Old World hystricomorph rodents. University of California Publications in Zoology. 1957;56:1–118.

Liu J, Bento Soares M, Reichel M. Massetognathus (Cynodontia, Traversodontidae) from the Santa Maria Formation of Brazil. Revista Brasileira de Paleontologia. 2008;11:27–36. doi: 10.4072/rbp.2008.1.03. DOI

Liu J, Sues H-D. Dentition and tooth replacement of Boreogomphodon (Cynodontia: Traversodontidae) from the Upper Triassic of North Carolina, USA. Vertebrata Palasiatica. 2010;48:169–184.

Luckett WP. Ontogenetic staging of the mammalian dentition, and its value for assessment of homology and heterochrony. Journal of Mammalian Evolution. 1993;1:269–282. doi: 10.1007/BF01041667. DOI

Luo Z-X, Kielan-Jaworowska Z, Cifelli RL. Evolution of dental replacement in mammals. Bulletin of Carnegie Museum of Natural History. 2004;36:159–175. doi: 10.2992/0145-9058(2004)36[159:EODRIM]2.0.CO;2. DOI

Mc Nab BK. Uniformity in the basal metabolic rate of marsupials: its causes and consequences. Revista Chilena de Historia Natural. 2005;78:183–198.

Mein P, Pickford M. Early miocene Rodentia from the northern Sperrgebiet, Namibia. Memoir of the Geological Survey of Namibia. 2008;20:235–290.

Miller WA, Sanson GD, Odell DK. Molar progression in the manatee (Trichechus manatus) The Anatomical Record. 1980;196:128A.

Osborn JW, Crompton A. The evolution of mammalian from reptilian dentitions. Breviora. 1971;399:1–18.

Patterson BD, Upham NS. A newly recognized family from the Horn of Africa, the Heterocephalidae (Rodentia: Ctenohystrica) Zoological Journal of the Linnean Society. 2014;172:942–963. doi: 10.1111/zoj.12201. DOI

Peterková R, Hovoráková M, Peterka M, Lesot H. Three-dimensional analysis of the early development of the dentition. Australian Dental Journal. 2014;59:1–26. doi: 10.1111/adj.12130. PubMed DOI PMC

Peterková R, Lesot H, Peterka M. Phylogenetic memory of developing mammalian dentition. Journal of Experimental Zoology. 2006;306B:234–250. doi: 10.1002/jez.b.21093. PubMed DOI

Ren Y, Maltha JC, Kuijpers-Jagtman AM. The rat as a model for orthodontic tooth movement-a critical review and a proposed solution. European Journal of Orthodontics. 2004;26:483–490. doi: 10.1093/ejo/26.5.483. PubMed DOI

Saffar JL, Lasfargues JJ, Cherruau M. Alveolar bone and the alveolar process: the socket that is never stable. Periodontology 2000. 1997;13:76–90. doi: 10.1111/j.1600-0757.1997.tb00096.x. PubMed DOI

Sanson GD. The evolution and significance of mastication in the Macropodidae. Australian Mammalogy. 1980;2:23–28.

Sanson GD. Morphological adaptations of teeth to diets and feeding in the Macropodoidea. In: Grigg G, Jarman P, Hume I, editors. Kangaroos, Wallabies and Rat-kangaroos. Sydney: Surrey Beatty & Sons; 1989. pp. 151–168.

Sanson GD, Nelson JE, Fell P. Ecology of Peradorcas concinna in Arnhem Land in the wet and dry season. Proceedings of the Ecological Society of Australia. 1985;13:69–72.

Šklíba J, Šumbera R, Vítámvás M. Resource characteristics and foraging adaptations in the silvery mole-rat (Heliophobius argenteocinereus), a solitary Afrotropical bathyergid. Ecological Research. 2011;26:1081–1088. doi: 10.1007/s11284-011-0860-1. DOI

Stannius H. Beitrage zur Kenntniss der amerikanischen Manati’s. Rostock: Adler’s Erben; 1845.

Šumbera R, Chitaukali WN, Burda H. Biology of the silvery mole-rat (Heliophobius argenteocinereus). Why study a neglected subterranean rodent species? In: Begall S, Šumbera R, Schleich CE, editors. Subterranean rodents: news from underground. Berlin Heidelberg: Springer-Verlag; 2007.

Tafforeau P, Boistel R, Boller E, Bravin A, Brunet M, Chaimanee Y, Cloetens P, Feist M, Hoszowska J, Jaeger J-J, Kay RF, Lazzari V, Marivaux L, Nel A, Nemoz C, Thibault X, Vignaud P, Zabler S. Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Applied Physics A, Materials Science & Processing. 2006;83:195–202. doi: 10.1007/s00339-006-3507-2. DOI

Taylor PJ, Jarvis JUM, Crowe TM. Age determination in the Cape mole rat Georychus capensis. South African Journal of Zoology. 1985;20:261–267.

Thomas O. On a collection of mammals made by Mr. JT Tunney in Arnhem Land, Northern Territory of South Australia. Novitates Zoologicae. 1904;11:222–229.

Van Daele PAAG, Herrel A, Adriaens D. Biting performance in teeth-digging African mole-rats (Fukomys, Bathyergidae, Rodentia) Physiological and Biochemical Zoology. 2009;82:40–50. doi: 10.1086/594379. PubMed DOI

Van Nievelt AFH, Smith KK. To replace or not to replace: the significance of reduced functional tooth replacement in marsupial and placental mammals. Paleobiology. 2005;31:324–346. doi: 10.1666/0094-8373(2005)031[0324:TRONTR]2.0.CO;2. DOI

Wang X-P, Fan J. Molecular genetics of supernumerary tooth formation. Genesis. 2011;49:261–277. doi: 10.1002/dvg.20715. PubMed DOI PMC

Wise GE, King GJ. Mechanisms of tooth eruption and orthodontic tooth movement. Journal of Dental Research. 2008;87:414–434. doi: 10.1177/154405910808700509. PubMed DOI PMC

Wood AE, Wilson RW. A suggested nomenclature of the cheek teeth of rodents. Journal of Paleontology. 1936;10:388–391.

Yoshimatsu M, Shibata Y, Kitaura H, Xin C, Moriishi T, Hashimoto F, Yoshida N, Yamaguchi A. Experimental model of tooth movement by orthodontic force in mice and its application to tumor necrosis factor receptor-deficient mice. Journal of Bone and Mineral Metabolism. 2006;24:20–27. doi: 10.1007/s00774-005-0641-4. PubMed DOI

Zelová J, Šumbera R, Sedláček F, Burda H. Energetics in a solitary subterranean rodent, the silvery mole-rat, Heliophobius argenteocinereus, and allometry of RMR in African mole-rats (Bathyergidae) Comparative Biochemistry and Physiology, Part A. 2007;147:412–419. doi: 10.1016/j.cbpa.2007.01.002. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...