High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams?
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
2020/39/I/NZ4/02070
National Science Centre, Poland
Gdansk University of Technology IDUB
Gdansk University of Technology IDUB grant AURUM
PubMed
38743818
PubMed Central
PMC11370809
DOI
10.1093/brain/awae159
PII: 7672954
Knihovny.cz E-zdroje
- Klíčová slova
- cognition, intracranial EEG, local field potential, memory consolidation, network oscillations, sharp-wave ripples,
- MeSH
- elektroencefalografie MeSH
- kognice * fyziologie MeSH
- lidé MeSH
- mozek fyziologie MeSH
- mozkové vlny fyziologie MeSH
- paměť fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Despite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected in the human mesial temporal lobe and neocortical intracranial recordings spanning gamma/epsilon (60-150 Hz), ripple (80-250 Hz) and higher frequency ranges. Separate from other non-oscillatory activities, these brief electrophysiological oscillations of distinct duration, frequency and amplitude are thought to be generated by coordinated spiking of neuronal ensembles within volumes as small as a single cortical column. Although the exact origins, mechanisms and physiological roles in health and disease remain elusive, they have been associated with human memory consolidation and cognitive processing. Recent studies suggest their involvement in encoding and recall of episodic memory with a possible role in the formation and reactivation of memory traces. High frequency oscillations are detected during encoding, throughout maintenance, and right before recall of remembered items, meeting a basic definition for an engram activity. The temporal coordination of high frequency oscillations reactivated across cortical and subcortical neural networks is ideally suited for integrating multimodal memory representations, which can be replayed and consolidated during states of wakefulness and sleep. High frequency oscillations have been shown to reflect coordinated bursts of neuronal assembly firing and offer a promising substrate for tracking and modulation of the hypothetical electrophysiological engram.
Zobrazit více v PubMed
Jacobs J, Kahana MJ. Direct brain recordings fuel advances in cognitive electrophysiology. Trends Cogn Sci. 2010;14:162–171. PubMed PMC
Engel AK, Moll CKE, Fried I, Ojemann GA. Invasive recordings from the human brain: Clinical insights and beyond. Nat Rev Neurosci. 2005;6:35–47. PubMed
Johnson EL, Knight RT. Intracranial recordings and human memory. Curr Opin Neurobiol. 2015;31:18–25. PubMed PMC
Johnson EL, Kam JWY, Tzovara A, Knight RT. Insights into human cognition from intracranial EEG: A review of audition, memory, internal cognition, and causality. J Neural Eng. 2020;17:051001. PubMed PMC
Fried I, Rutishauser U, Cerf M, Kreiman G. Single neuron studies of the human brain: Probing cognition. MIT Press; 2014.
Lhatoo SD, Kahane P, Luders HO. Invasive studies of the human epileptic brain: Principles and practice. Oxford University Press; 2019.
Axmacher N. Intracranial EEG: A practice-oriented guide for cognitive neuroscientists. Springer; 2023.
Suthana N, Fried I. Percepts to recollections: Insights from single neuron recordings in the human brain. Trends Cogn Sci. 2012;16:427–436. PubMed PMC
Kucewicz MT, Michael Berry B, Worrell GA. Simultaneous macro- and microrecordings. In: Invasive studies of the human epileptic brain. Oxford Academic; 2018:489–499.
Chang EF. Towards large-scale, human-based, mesoscopic neurotechnologies. Neuron. 2015;86:68–78. PubMed PMC
Chiang CH, Lee J, Wang C, et al. . A modular high-density μECoG system on macaque vlPFC for auditory cognitive decoding. J Neural Eng. 2020;17:046008. PubMed PMC
Viventi J, Kim DH, Vigeland L, et al. . Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci. 2011;14:1599–1605. PubMed PMC
Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012;13:407–420. PubMed PMC
Parvizi J, Kastner S. Promises and limitations of human intracranial electroencephalography. Nat Neurosci. 2018;21:474–483. PubMed PMC
Nunez PL, Srinivasan R. Electric fields of the brain: The neurophysics of EEG. Oxford University Press; 2006.
Rutishauser U, Reddy L, Mormann F, Sarnthein J. The architecture of human memory: Insights from human single-neuron recordings. J Neurosci. 2021;41:883–890. PubMed PMC
Quiroga RQ. Concept cells: The building blocks of declarative memory functions. Nat Rev Neurosci. 2012;13:587–597. PubMed
Kamiński J, Rutishauser U. Between persistently active and activity-silent frameworks: Novel vistas on the cellular basis of working memory. Ann N Y Acad Sci. 2020;1464:64–75. PubMed PMC
Buzsáki G. Large-scale recording of neuronal ensembles. Nat Neurosci. 2004;7:446–451. PubMed
Buzsáki G. Rhythms of the brain. Oxford Academic; 2006.
McCarty MJ, Woolnough O, Mosher JC, Seymour J, Tandon N. The listening zone of human electrocorticographic field potential recordings. eNeuro. 2022;9:ENEURO.0492-21.2022. PubMed PMC
Kucewicz MT, Michael Berry B, Bower MR, et al. . Combined single neuron unit activity and local field potential oscillations in a human visual recognition memory task. IEEE Trans Biomed Eng. 2016;63:67–75. PubMed
Liu AA, Henin S, Abbaspoor S, et al. . A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations. Nat Commun. 2022;13:6000. PubMed PMC
Lachaux JP, Axmacher N, Mormann F, Halgren E, Crone NE. High-frequency neural activity and human cognition: Past, present and possible future of intracranial EEG research. Prog Neurobiol. 2012;98:279–301. PubMed PMC
Vaz AP, Wittig JH Jr, Inati SK, Zaghloul KA. Replay of cortical spiking sequences during human memory retrieval. Science. 2020;367:1131–1134. PubMed PMC
Vaz AP, Inati SK, Brunel N, Zaghloul KA. Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science. 2019;363:975–978. PubMed PMC
Norman Y, Raccah O, Liu S, Parvizi J, Malach R. Hippocampal ripples and their coordinated dialogue with the default mode network during recent and remote recollection. Neuron. 2021;109:2767–2780.e5. PubMed PMC
Norman Y, Yeagle EM, Khuvis S, Harel M, Mehta AD, Malach R. Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. Science. 2019;365:eaax1030. PubMed
Dickey CW, Verzhbinsky IA, Jiang X, et al. . Cortical ripples during NREM sleep and waking in humans. J Neurosci. 2022;42:7931–7946. PubMed PMC
Dickey CW, Verzhbinsky IA, Jiang X, et al. . Widespread ripples synchronize human cortical activity during sleep, waking, and memory recall. Proc Natl Acad Sci U S A. 2022;119:e2107797119. PubMed PMC
Axmacher N, Elger CE, Fell J. Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain. 2008;131(Pt 7):1806–1817. PubMed
Kucewicz MT, Cimbalnik J, Matsumoto JY, et al. . High frequency oscillations are associated with cognitive processing in human recognition memory. Brain. 2014;137(Pt 8):2231–2244. PubMed PMC
Kucewicz MT, Berry BM, Kremen V, et al. . Dissecting gamma frequency activity during human memory processing. Brain. 2017;140:1337–1350. PubMed
Worrell GA, Jerbi K, Kobayashi K, Lina JM, Zelmann R, Le Van Quyen M. Recording and analysis techniques for high-frequency oscillations. Prog Neurobiol. 2012;98:265–278. PubMed PMC
Buzsáki G, da Silva FL. High frequency oscillations in the intact brain. Prog Neurobiol. 2012;98:241–249. PubMed PMC
Staba RJ, Frighetto L, Behnke EJ, et al. . Increased fast ripple to ripple ratios correlate with reduced hippocampal volumes and neuron loss in temporal lobe epilepsy patients. Epilepsia. 2007;48:2130–2138. PubMed
Baker SN, Curio G, Lemon RN. EEG oscillations at 600Hz are macroscopic markers for cortical spike bursts. J Physiol. 2003;550(Pt 2):529–534. PubMed PMC
Telenczuk B, Baker SN, Herz AVM, Curio G. High-frequency EEG covaries with spike burst patterns detected in cortical neurons. J Neurophysiol. 2011;105:2951–2959. PubMed PMC
Ray S, Crone NE, Niebur E, Franaszczuk PJ, Hsiao SS. Neural correlates of high-gamma oscillations (60–200Hz) in macaque local field potentials and their potential implications in electrocorticography. J Neurosci. 2008;28:11526–11536. PubMed PMC
Ray S, Maunsell JHR. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 2011;9:e1000610. PubMed PMC
Colgin LL, Denninger T, Fyhn M, et al. . Frequency of gamma oscillations routes flow of information in the hippocampus. Nature. 2009;462:353–357. PubMed
Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsáki G. Cross-frequency phase-phase coupling between θ and γ oscillations in the hippocampus. J Neurosci. 2012;32:423–435. PubMed PMC
Canolty RT, Edwards E, Dalal SS, et al. . High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313:1626–1628. PubMed PMC
Csicsvari J, Hirase H, Czurkó A, Mamiya A, Buzsáki G. Fast network oscillations in the hippocampal CA1 region of the behaving rat. J Neurosci. 1999;19:RC20. PubMed PMC
Sullivan D, Csicsvari J, Mizuseki K, Montgomery S, Diba K, Buzsáki G. Relationships between hippocampal sharp waves, ripples, and fast gamma oscillation: Influence of dentate and entorhinal cortical activity. J Neurosci. 2011;31:8605–8616. PubMed PMC
Staba RJ, Wilson CL, Bragin A, Fried I, Engel J. Quantitative analysis of high-frequency oscillations (80–500Hz) recorded in human epileptic hippocampus and entorhinal cortex. J Neurophysiol. 2002;88:1743–1752. PubMed
Bragin A, Wilson CL, Staba RJ, Reddick M, Fried I, Engel J. Interictal high-frequency oscillations (80–500Hz) in the human epileptic brain: Entorhinal cortex. Ann Neurol. 2002;52:407–415. PubMed
Bragin A, Engel J, Wilson CL, Fried I, Mathern GW. Hippocampal and entorhinal cortex high-frequency oscillations (100–500Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia. 1999;40:127–137. PubMed
Kandel A, Buzsáki G. Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. J Neurosci. 1997;17:6783–6797. PubMed PMC
Khodagholy D, Gelinas JN, Buzsáki G. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science. 2017;358:369–372. PubMed PMC
Buzsáki G. Memory consolidation during sleep: A neurophysiological perspective. J Sleep Res. 1998;7(Suppl 1):17–23. PubMed
Joo HR, Frank LM. The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation. Nat Rev Neurosci. 2018;19:744–757. PubMed PMC
Carr MF, Jadhav SP, Frank LM. Hippocampal replay in the awake state: A potential substrate for memory consolidation and retrieval. Nat Neurosci. 2011;14:147–153. PubMed PMC
Bragin A, Engel J, Wilson CL, Fried I, Buzsáki G. High-frequency oscillations in human brain. Hippocampus. 1999;9:137–142. PubMed
Staba RJ. Normal and pathologic high-frequency oscillations. Epilepsia. 2010;51:21–21.
Matsumoto A, Brinkmann BH, Matthew Stead S, et al. . Pathological and physiological high-frequency oscillations in focal human epilepsy. J Neurophysiol. 2013;110:1958–1964. PubMed PMC
Pail M, Cimbálník J, Roman R, et al. . High frequency oscillations in epileptic and non-epileptic human hippocampus during a cognitive task. Sci Rep. 2020;10:18147. PubMed PMC
Frauscher B, von Ellenrieder N, Zelmann R, et al. . High-frequency oscillations in the normal human brain. Ann Neurol. 2018;84:374–385. PubMed
Le Van Quyen M, Bragin A, Staba R, Crépon B, Wilson CL, Engel J Jr. Cell type-specific firing during ripple oscillations in the hippocampal formation of humans. J Neurosci. 2008;28:6104–6110. PubMed PMC
Tong APS, Vaz AP, Wittig JH, Inati SK, Zaghloul KA. Ripples reflect a spectrum of synchronous spiking activity in human anterior temporal lobe. Elife. 2021;10:e68401. PubMed PMC
Navas-Olive A, Rubio A, Abbaspoor S, Hoffman KL, de la Prida LM. A machine learning toolbox for the analysis of sharp-wave ripples reveals common waveform features across species. Commun Biol. 2024;7:211. PubMed PMC
Blanco JA, Stead M, Krieger A, et al. . Unsupervised classification of high-frequency oscillations in human neocortical epilepsy and control patients. J Neurophysiol. 2010;104:2900–2912. PubMed PMC
Sebastian ER, Quintanilla JP, Sánchez-Aguilera A, Esparza J, Cid E, de la Prida LM. Topological analysis of sharp-wave ripple waveforms reveals input mechanisms behind feature variations. Nat Neurosci. 2023;26:2171–2181. PubMed PMC
Bragin A, Mody I, Wilson CL, Engel J Jr. Local generation of fast ripples in epileptic brain. J Neurosci. 2002;22:2012–2021. PubMed PMC
Stead M, Bower M, Brinkmann BH, et al. . Microseizures and the spatiotemporal scales of human partial epilepsy. Brain. 2010;133:2789–2797. PubMed PMC
Ibarz JM, Foffani G, Cid E, Inostroza M, Menendez de la Prida L. Emergent dynamics of fast ripples in the epileptic hippocampus. J Neurosci. 2010;30:16249–16261. PubMed PMC
Alvarado-Rojas C, Huberfeld G, Baulac M, et al. . Different mechanisms of ripple-like oscillations in the human epileptic subiculum. Ann Neurol. 2015;77:281–290. PubMed PMC
Worrell GA, Gardner AB, Matt Stead S, et al. . High-frequency oscillations in human temporal lobe: Simultaneous microwire and clinical macroelectrode recordings. Brain. 2008;131:928–937. PubMed PMC
Crépon B, Navarro V, Hasboun D, et al. . Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy. Brain. 2010;133(Pt 1):33–45. PubMed
Schevon CA, Trevelyan AJ, Schroeder CE, Goodman RR, McKhann G Jr, Emerson RG. Spatial characterization of interictal high frequency oscillations in epileptic neocortex. Brain. 2009;132(Pt 11):3047–3059. PubMed PMC
Curot J, Barbeau E, Despouy E, et al. . Local neuronal excitation and global inhibition during epileptic fast ripples in humans. Brain. 2023;146:561–575. PubMed PMC
Buzsaki G, Horvath Z, Urioste R, Hetke J, Wise K. High-frequency network oscillation in the hippocampus. Science. 1992;256:1025–1027. PubMed
Fabo D, Bokodi V, Szabó JP, et al. . The role of superficial and deep layers in the generation of high frequency oscillations and interictal epileptiform discharges in the human cortex. Sci Rep. 2023;13:9620. PubMed PMC
Stark E, Roux L, Eichler R, Senzai Y, Royer S, Buzsáki G. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations. Neuron. 2014;83:467–480. PubMed PMC
Cardin JA, Carlén M, Meletis K, et al. . Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 2009;459:663–667. PubMed PMC
Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459:698–702. PubMed PMC
Chrobak JJ, Buzsáki G. High-frequency oscillations in the output networks of the hippocampal-entorhinal axis of the freely behaving rat. J Neurosci. 1996;16:3056–3066. PubMed PMC
Ball T, Kern M, Mutschler I, Aertsen A, Schulze-Bonhage A. Signal quality of simultaneously recorded invasive and non-invasive EEG. Neuroimage. 2009;46:708–716. PubMed
Kovach CK, Tsuchiya N, Kawasaki H, Oya H, Howard MA 3rd, Adolphs R. Manifestation of ocular-muscle EMG contamination in human intracranial recordings. Neuroimage. 2011;54:213–233. PubMed PMC
Yuval-Greenberg S, Tomer O, Keren AS, Nelken I, Deouell LY. Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron. 2008;58:429–441. PubMed
Kern M, Ball T, Lahr J, Mutschler I, Aertsen A, Schulze-Bonhage A. Signal quality of simultaneously recorded ECoG and non-invasive EEG: Results from analysis of spontaneous eye blinks and saccades. NeuroImage. 2009;47:S126. PubMed
Jerbi K, Freyermuth S, Dalal S, et al. . Saccade related gamma-band activity in intracerebral EEG: Dissociating neural from ocular muscle activity. Brain Topogr. 2009;22:18–23. PubMed
Waldert S, Lemon RN, Kraskov A. Influence of spiking activity on cortical local field potentials. J Physiol. 2013;591:5291–5303. PubMed PMC
Cimbálník J, Hewitt A, Worrell G, Stead M. The CS algorithm: A novel method for high frequency oscillation detection in EEG. J Neurosci Methods. 2018;293:6–16. PubMed PMC
Lachaux JP, Rodriguez E, Martinerie J, Adam C, Hasboun D, Varela FJ. A quantitative study of gamma-band activity in human intracranial recordings triggered by visual stimuli. Eur J Neurosci. 2000;12:2608–2622. PubMed
Lundqvist M, Rose J, Herman P, Brincat SL, Buschman TJ, Miller EK. Gamma and beta bursts underlie working memory. Neuron. 2016;90:152–164. PubMed PMC
Lundqvist M, Herman P, Warden MR, Brincat SL, Miller EK. Gamma and beta bursts during working memory readout suggest roles in its volitional control. Nat Commun. 2018;9:394. PubMed PMC
Rich EL, Wallis JD. Spatiotemporal dynamics of information encoding revealed in orbitofrontal high-gamma. Nat Commun. 2017;8:1139. PubMed PMC
Scheffer-Teixeira R, Belchior H, Leão RN, Ribeiro S, Tort ABL. On high-frequency field oscillations (>100 Hz) and the spectral leakage of spiking activity. J Neurosci. 2013;33:1535–1539. PubMed PMC
Leszczyński M, Barczak A, Kajikawa Y, et al. . Dissociation of broadband high-frequency activity and neuronal firing in the neocortex. Sci Adv. 2020;6:eabb0977. PubMed PMC
Schomburg EW, Anastassiou CA, Buzsáki G, Koch C. The spiking component of oscillatory extracellular potentials in the rat hippocampus. J Neurosci. 2012;32:11798–11811. PubMed PMC
Miller KJ, Honey CJ, Hermes D, Rao RPN, denNijs M, Ojemann JG. Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations. Neuroimage. 2014;85 Pt 2(0 2):711–720. PubMed PMC
Miller KJ, Sorensen LB, Ojemann JG, den Nijs M. Power-law scaling in the brain surface electric potential. PLoS Comput Biol. 2009;5:e1000609. PubMed PMC
Manning JR, Jacobs J, Fried I, Kahana MJ. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci. 2009;29:13613–13620. PubMed PMC
Burke JF, Ramayya AG, Kahana MJ. Human intracranial high-frequency activity during memory processing: Neural oscillations or stochastic volatility? Curr Opin Neurobiol. 2015;31:104–110. PubMed PMC
Fellner MC, Gollwitzer S, Rampp S, et al. . Spectral fingerprints or spectral tilt? Evidence for distinct oscillatory signatures of memory formation. PLoS Biol. 2019;17:e3000403. PubMed PMC
Siegel M, Donner TH, Engel AK. Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci. 2012;13:121–134. PubMed
Marks VS, Saboo KV, Topçu Ç, et al. . Independent dynamics of low, intermediate, and high frequency spectral intracranial EEG activities during human memory formation. Neuroimage. 2021;245:118637. PubMed
Hubel DH, Wiesel TN. Anatomical demonstration of columns in the monkey striate cortex. Nature. 1969;221:747–750. PubMed
Konorski J. Conditioned reflexes and neuron organization. Cambridge University Press; 1948.
Hebb DDO. Organization of behavior: A neuropsychological theory. Wiley; 1949.
Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci. 1995;18:555–586. PubMed
Singer W. Neuronal synchrony: A versatile code for the definition of relations? Neuron. 1999;24:49–65. 111-125. PubMed
Singer W. Temporal coherence: A versatile code for the definition of relations. In: Basbaum AI, Kaneko A, Shepherd GM, Westheimer G, Eds. The senses: A comprehensive reference. Academic Press; 2008:1–9.
Treisman A. Solutions to the binding problem: Progress through controversy and convergence. Neuron. 1999;24:105–110. 111-125. PubMed
Roelfsema PR. Solving the binding problem: Assemblies form when neurons enhance their firing rate-they don’t need to oscillate or synchronize. Neuron. 2023;111:1003–1019. PubMed
Tallon-Baudry C. Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci. 1999;3:151–162. PubMed
Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: Phase synchronization and large-scale integration. Nat Rev Neurosci. 2001;2:229–239. PubMed
Buzsáki G, Wang XJ. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–225. PubMed PMC
Fries P. Rhythms for cognition: Communication through coherence. Neuron. 2015;88:220–235. PubMed PMC
Jensen O, Kaiser J, Lachaux JP. Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci. 2007;30:317–324. PubMed
Düzel E, Penny WD, Burgess N. Brain oscillations and memory. Curr Opin Neurobiol. 2010;20:143–149. PubMed
Lisman JE, Jensen O. The theta-gamma neural code. Neuron. 2013;77:1002–1016. PubMed PMC
Lisman JE, Idiart MA. Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science. 1995;267:1512–1515. PubMed
Jensen O, Lisman JE. Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends Neurosci. 2005;28:67–72. PubMed
Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci. 2009;32:209–224. PubMed
Luczak A, McNaughton BL, Harris KD. Packet-based communication in the cortex. Nat Rev Neurosci. 2015;16:745–755. PubMed
Luczak A, Barthó P, Harris KD. Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron. 2009;62:413–425. PubMed PMC
Sadowski JHLP, Jones MW, Mellor JR. Ripples make waves: Binding structured activity and plasticity in hippocampal networks. Neural Plast. 2011;2011:960389. PubMed PMC
Sadowski JHLP, Sadowski JHL, Jones MW, Mellor JR. Sharp-wave ripples orchestrate the induction of synaptic plasticity during reactivation of place cell firing patterns in the hippocampus. Cell Rep. 2016;14:1916–1929. PubMed PMC
Yuste R, Cossart R, Yaksi E. Neuronal ensembles: Building blocks of neural circuits. Neuron. 2024;112:875–892. PubMed PMC
Nikolić D, Fries P, Singer W. Gamma oscillations: Precise temporal coordination without a metronome. Trends Cogn Sci. 2013;17:54–55. PubMed
David O, Kilner JM, Friston KJ. Mechanisms of evoked and induced responses in MEG/EEG. Neuroimage. 2006;31:1580–1591. PubMed
Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J. Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci. 1996;16:4240–4249. PubMed PMC
Burke JF, Zaghloul KA, Jacobs J, et al. . Synchronous and asynchronous theta and gamma activity during episodic memory formation. J Neurosci. 2013;33:292–304. PubMed PMC
Burke JF, Long NM, Zaghloul KA, Sharan AD, Sperling MR, Kahana MJ. Human intracranial high-frequency activity maps episodic memory formation in space and time. Neuroimage. 2014;85 Pt 2(0 2):834–843. PubMed PMC
Kucewicz MT, Saboo K, Berry BM, et al. . Human verbal memory encoding is hierarchically distributed in a continuous processing stream. eNeuro. 2019;6:ENEURO.0214-18.2018. PubMed PMC
Gaona CM, Sharma M, Freudenburg ZV, et al. . Nonuniform high-gamma (60–500 Hz) power changes dissociate cognitive task and anatomy in human cortex. J Neurosci. 2011;31:2091–2100. PubMed PMC
Topçu Ç, Marks VS, Saboo KV, et al. . Hotspot of human verbal memory encoding in the left anterior prefrontal cortex. EBioMedicine. 2022;82:104135. PubMed PMC
Brázdil M, Janeček J, Klimeš P, et al. . On the time course of synchronization patterns of neuronal discharges in the human brain during cognitive tasks. PLoS One. 2013;8:e63293. PubMed PMC
Wu HC, Nagasawa T, Brown EC, et al. . γ-oscillations modulated by picture naming and word reading: Intracranial recording in epileptic patients. Clin Neurophysiol. 2011;122:1929–1942. PubMed PMC
Crone NE, Sinai A, Korzeniewska A. High-frequency gamma oscillations and human brain mapping with electrocorticography. Prog Brain Res. 2006;159:275–295. PubMed
Jerbi K, Ossandón T, Hamamé CM, et al. . Task-related gamma-band dynamics from an intracerebral perspective: Review and implications for surface EEG and MEG. Hum Brain Mapp. 2009;30:1758–1771. PubMed PMC
Brovelli A, Lachaux JP, Kahane P, Boussaoud D. High gamma frequency oscillatory activity dissociates attention from intention in the human premotor cortex. Neuroimage. 2005;28:154–164. PubMed
Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412:150–157. PubMed
Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RAW. Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science. 2005;309:948–951. PubMed
Lachaux JP, Fonlupt P, Kahane P, et al. . Relationship between task-related gamma oscillations and BOLD signal: New insights from combined fMRI and intracranial EEG. Hum Brain Mapp. 2007;28:1368–1375. PubMed PMC
Panagiotaropoulos TI, Deco G, Kapoor V, Logothetis NK. Neuronal discharges and gamma oscillations explicitly reflect visual consciousness in the lateral prefrontal cortex. Neuron. 2012;74:924–935. PubMed
Siclari F, Baird B, Perogamvros L, et al. . The neural correlates of dreaming. Nat Neurosci. 2017;20:872–878. PubMed PMC
Doostmohammadi J, Gieselmann MA, van Kempen J, Lashgari R, Yoonessi A, Thiele A. Ripples in macaque V1 and V4 are modulated by top-down visual attention. Proc Natl Acad Sci U S A. 2023;120:e2210698120. PubMed PMC
Long NM, Burke JF, Kahana MJ. Subsequent memory effect in intracranial and scalp EEG. NeuroImage. 2014;84:488–494. PubMed PMC
Josselyn SA, Köhler S, Frankland PW. Heroes of the engram. J Neurosci. 2017;37:4647–4657. PubMed PMC
Domanski APF, Kucewicz MT, Russo E, et al. . Distinct hippocampal-prefrontal neural assemblies coordinate memory encoding, maintenance, and recall. Curr Biol. 2023;33:1220–1236.e4. PubMed PMC
Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus. 2015;25:1073–1188. PubMed PMC
Wilson MA, McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. Science. 1994;265:676–679. PubMed
Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsáki G. Organization of cell assemblies in the hippocampus. Nature. 2003;424:552–556. PubMed
Dragoi G, Buzsáki G. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron. 2006;50:145–157. PubMed
Pastalkova E, Itskov V, Amarasingham A, Buzsáki G. Internally generated cell assembly sequences in the rat hippocampus. Science. 2008;321:1322–1327. PubMed PMC
Lee AK, Wilson MA. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron. 2002;36:1183–1194. PubMed
Skaggs WE, McNaughton BL. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science. 1996;271:1870–1873. PubMed
Staresina BP, Bergmann TO, Bonnefond M, et al. . Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nat Neurosci. 2015;18:1679–1686. PubMed PMC
Ngo HV, Fell J, Staresina B. Sleep spindles mediate hippocampal-neocortical coupling during long-duration ripples. Elife. 2020;9:e57011. PubMed PMC
McGaugh JL. Memory--a century of consolidation. Science. 2000;287:248–251. PubMed
Stickgold R. Sleep-dependent memory consolidation. Nature. 2005;437:1272–1278. PubMed
Born J, Wilhelm I. System consolidation of memory during sleep. Psychol Res. 2012;76:192–203. PubMed PMC
Rothschild G, Eban E, Frank LM. A cortical-hippocampal-cortical loop of information processing during memory consolidation. Nat Neurosci. 2017;20:251–259. PubMed PMC
Lee H, Fell J, Axmacher N. Electrical engram: How deep brain stimulation affects memory. Trends Cogn Sci. 2013;17:574–584. PubMed
Kucewicz MT, Worrell GA, Axmacher N. Direct electrical brain stimulation of human memory: Lessons learnt and future perspectives. Brain. 2023;146:2214–2226. PubMed
Josselyn SA, Tonegawa S. Memory engrams: Recalling the past and imagining the future. Science. 2020;367:eaaw4325. PubMed PMC
Tonegawa S, Liu X, Ramirez S, Redondo R. Memory engram cells have come of age. Neuron. 2015;87:918–931. PubMed
Tonegawa S, Morrissey MD, Kitamura T. The role of engram cells in the systems consolidation of memory. Nat Rev Neurosci. 2018;19:485–498. PubMed
Brodt S, Gais S, Beck J, Erb M, Scheffler K, Schönauer M. Fast track to the neocortex: A memory engram in the posterior parietal cortex. Science. 2018;362:1045–1048. PubMed
Kindt M, Soeter M, Vervliet B. Beyond extinction: Erasing human fear responses and preventing the return of fear. Nat Neurosci. 2009;12:256–258. PubMed
Roy DS, Park YG, Kim ME, et al. . Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nat Commun. 2022;13:1799. PubMed PMC
Gliske SV, Irwin ZT, Chestek C, et al. . Variability in the location of high frequency oscillations during prolonged intracranial EEG recordings. Nat Commun. 2018;9:2155. PubMed PMC
Abeles M. Local cortical circuits: An electrophysiological study. Springer Science & Business Media; 2012.
Stacey W. Abby…normal? A new gold standard for identifying normal high frequency oscillations. Epilepsy Currents. 2015;15:211–212. PubMed PMC
Cimbalnik J, Pail M, Klimes P, et al. . Cognitive processing impacts high frequency intracranial EEG activity of human hippocampus in patients with pharmacoresistant focal epilepsy. Front Neurol. 2020;11:578571. PubMed PMC
Jiang X, Gonzalez-Martinez J, Cash SS, Chauvel P, Gale J, Halgren E. Improved identification and differentiation from epileptiform activity of human hippocampal sharp wave ripples during NREM sleep. Hippocampus. 2020;30:610–622. PubMed
Bower MR, Stead M, Bower RS, et al. . Evidence for consolidation of neuronal assemblies after seizures in humans. J Neurosci. 2015;35:999–1010. PubMed PMC
Brázdil M, Pail M, Halámek J, et al. . Very high-frequency oscillations: Novel biomarkers of the epileptogenic zone. Ann Neurol. 2017;82:299–310. PubMed
Hupbach A, Gomez R, Hardt O, Nadel L. Reconsolidation of episodic memories: A subtle reminder triggers integration of new information. Learn Mem. 2007;14(1–2):47–53. PubMed PMC
Kawala-Sterniuk A, Browarska N, Al-Bakri A, et al. . Summary of over fifty years with brain-computer interfaces—A review. Brain Sci. 2021;11:43. PubMed PMC