High frequency oscillations are associated with cognitive processing in human recognition memory
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01-NS63039
NINDS NIH HHS - United States
U24-NS063930
NINDS NIH HHS - United States
PubMed
24919972
PubMed Central
PMC4107742
DOI
10.1093/brain/awu149
PII: awu149
Knihovny.cz E-zdroje
- Klíčová slova
- cognitive processing, gamma oscillations, high frequency oscillations, memory, neural networks,
- MeSH
- afekt fyziologie MeSH
- amygdala fyziologie chirurgie MeSH
- dospělí MeSH
- elektroencefalografie přístrojové vybavení metody MeSH
- funkční zobrazování neurálních procesů MeSH
- hipokampus fyziologie chirurgie MeSH
- implantované elektrody MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozková kůra fyziologie MeSH
- mozkové vlny fyziologie MeSH
- nervová síť fyziologie MeSH
- paměť fyziologie MeSH
- rozpomínání fyziologie MeSH
- rozpoznávání (psychologie) fyziologie MeSH
- somatosenzorické korové centrum fyziologie MeSH
- velký mozek fyziologie MeSH
- zraková percepce fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
High frequency oscillations are associated with normal brain function, but also increasingly recognized as potential biomarkers of the epileptogenic brain. Their role in human cognition has been predominantly studied in classical gamma frequencies (30-100 Hz), which reflect neuronal network coordination involved in attention, learning and memory. Invasive brain recordings in animals and humans demonstrate that physiological oscillations extend beyond the gamma frequency range, but their function in human cognitive processing has not been fully elucidated. Here we investigate high frequency oscillations spanning the high gamma (50-125 Hz), ripple (125-250 Hz) and fast ripple (250-500 Hz) frequency bands using intracranial recordings from 12 patients (five males and seven females, age 21-63 years) during memory encoding and recall of a series of affectively charged images. Presentation of the images induced high frequency oscillations in all three studied bands within the primary visual, limbic and higher order cortical regions in a sequence consistent with the visual processing stream. These induced oscillations were detected on individual electrodes localized in the amygdala, hippocampus and specific neocortical areas, revealing discrete oscillations of characteristic frequency, duration and latency from image presentation. Memory encoding and recall significantly modulated the number of induced high gamma, ripple and fast ripple detections in the studied structures, which was greater in the primary sensory areas during the encoding (Wilcoxon rank sum test, P = 0.002) and in the higher-order cortical association areas during the recall (Wilcoxon rank sum test, P = 0.001) of memorized images. Furthermore, the induced high gamma, ripple and fast ripple responses discriminated the encoded and the affectively charged images. In summary, our results show that high frequency oscillations, spanning a wide range of frequencies, are associated with memory processing and generated along distributed cortical and limbic brain regions. These findings support an important role for fast network synchronization in human cognition and extend our understanding of normal physiological brain activity during memory processing.
Department of Neurology Mayo Clinic 200 1st St SW Rochester MN 55905 USA
Department of Neurosurgery Mayo Clinic 200 1st St SW Rochester MN 55905 USA
Zobrazit více v PubMed
Axmacher N, Elger CE, Fell J. Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain J Neurol. 2008;131:1806–17. PubMed
Ball T, Kern M, Mutschler I, Aertsen A, Schulze-Bonhage A. Signal quality of simultaneously recorded invasive and non-invasive EEG. Neuroimage. 2009;46:708–16. PubMed
Baker SN, Gabriel C, Lemon RN. EEG oscillations at 600 Hz are macroscopic markers for cortical spike bursts. J Physiol. 2003;550:529–34. PubMed PMC
Barth DS. Submillisecond synchronization of fast electrical oscillations in neocortex. J Neurosci. 2003;23:2502–10. PubMed PMC
Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. Chronux: a platform for analyzing neural signals. J Neurosci Methods. 2010;192:146–51. PubMed PMC
Bragin A, Engel J, Jr, Wilson CL, Fried I, Buzsáki G. High-frequency oscillations in human brain. Hippocampus. 1999;9:137–42. PubMed
Brinkmann BH, Bower MR, Stengel KA, Worrell GA, Stead M. Large-scale electrophysiology: acquisition, compression, encryption, and storage of big data. J Neurosci Methods. 2009;180:185–92. PubMed PMC
Brovelli A, Lachaux J-P, Kahane P, Boussaoud D. High gamma frequency oscillatory activity dissociates attention from intention in the human premotor cortex. Neuroimage. 2005;28:154–64. PubMed
Burke JF, Zaghloul KA, Jacobs J, Williams RB, Sperling MR, Sharan AD, et al. Synchronous and asynchronous theta and gamma activity during episodic memory formation. J Neurosci. 2013;33:292–304. PubMed PMC
Buzsáki G. Rhythms of the brain. Oxford: Oxford University Press; 2006.
Buzsáki G, Horváth Z, Urioste R, Hetke J, Wise K. High-frequency network oscillation in the hippocampus. Science. 1992;256:1025–7. PubMed
Buzsáki G, da Silva FL. High frequency oscillations in the intact brain. Prog Neurobiol. 2012;98:241–9. PubMed PMC
Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313:1626–8. PubMed PMC
Crone NE, Sinai A, Korzeniewska A. High frequency gamma oscillations and human brain mapping with electrocorticography. Prog Brain Res. 2006;159:275–95. PubMed
Curio G. Linking 600 Hz ‘spikelike’ EEG/MEG wavelets (‘sigma-bursts’) to cellular substrates: concepts and caveats. J Clin Neurophysiol. 2000;17:337–96. PubMed
David O, Kilner JM, Friston KJ. Mechanisms of evoked and induced responses in MEG/EEG. Neuroimage. 2006;31:1580–91. PubMed
Dragoi G, Tonegawa S. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature. 2011;469:397–401. PubMed PMC
Engel AK, Moll CKE, Fried I, Ojemann GA. Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci. 2005;6:35–47. PubMed
Engel J., Jr Biomarkers in epilepsy: introduction. Biomark Med. 2011;5:537–44. PubMed
Foster DJ, Wilson MA. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature. 2006;440:680–3. PubMed
Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci. 2009;32:209–24. PubMed
Gaona CM, Sharma M, Freudenburg ZV, Breshears JD, Bundy DT, Roland J, et al. Nonuniform high-gamma (60–500 Hz) power changes dissociate cognitive task and anatomy in human cortex. J Neurosci. 2011;31:2091–100. PubMed PMC
Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsáki G. Organization of cell assemblies in the hippocampus. Nature. 2003;424:552–6. PubMed
Howard MW, Rizzuto DS, Caplan JB, Madsen JR, Lisman J, Aschenbrenner-Scheibe R, et al. Gamma oscillations correlate with working memory load in humans. Cereb Cortex. 2003;13:1369–74. PubMed
Issa EB, Papanastassiou AM, DiCarlo JJ. Large-scale, high-resolution neurophysiological maps underlying fMRI of macaque temporal lobe. J Neurosci. 2013;33:15207–19. PubMed PMC
Jacobs J, Kahana MJ. Direct brain recordings fuel advances in cognitive electrophysiology. Trends Cogn Sci. 2010;14:162–71. PubMed PMC
Jadhav SP, Kemere C, German PW, Frank LM. Awake hippocampal sharp-wave ripples support spatial memory. Science. 2012;336:1454–8. PubMed PMC
Jensen O, Kaiser J, Lachaux JP. Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci. 2007;30:317–24. PubMed
Jerbi K, Ossandón T, Hamamé CM, Senova S, Dalal SS, Jung J, et al. Task-related gamma-band dynamics from an intracerebral perspective: review and implications for surface EEG and MEG. Hum Brain Mapp. 2009;30:1758–71. PubMed PMC
Kovach CK, Tsuchiya N, Kawasaki H, Oya H, Howard MA, Adolphs R. Manifestation of ocular-muscle EMG contamination in human intracranial recordings. Neuroimage. 2011;54:213–33. PubMed PMC
Lachaux JP, Axmacher N, Mormann F, Halgren E, Crone NE. High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research. Prog Neurobiol. 2012;98:279–301. PubMed PMC
Lang PJ, Bradley MM, Cuthbert BN. International Affective Picture System (IAPS): technical manual and affective ratings. 1997.
Le Van Quyen M. High frequency oscillations in cognition and epilepsy. Prog Neurobiol. 2012;98:239–40. PubMed
Le Van Quyen M, Bragin A, Staba R, Crépon B, Wilson CL, Engel J., Jr Cell type-specific firing during ripple oscillations in the hippocampal formation of humans. J Neurosci. 2008;28:6104–10. PubMed PMC
Le Van Quyen M, Staba R, Bragin A, Dickson C, Valderama M, Fried I, et al. Large-scale micro-electrode recordings of high-frequency gamma oscillations in human cortex during sleep. J Neurosci. 2010;30:7770–82. PubMed PMC
Liu H, Agam Y, Madsen JR, Kreiman G. Timing, timing, timing: fast decoding of object information from intracranial field potentials in human visual cortex. Neuron. 2009;62:281–90. PubMed PMC
Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412:150–7. PubMed
Manning JR, Jacobs J, Fried I, Kahana MJ. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci. 2009;29:13613–20. PubMed PMC
Matsumoto A, Brinkmann BH, Stead SM, Matsumoto J, Kucewicz M, Marsh WR, et al. Pathological and physiological high frequency oscillations in focal human epilepsy. J Neurophysiol. 2013a;110:1958–64. PubMed PMC
Matsumoto JY, Stead M, Kucewicz MT, Matsumoto AJ, Peters PA, Brinkmann BH, et al. Network oscillations modulate interictal epileptiform spike rate during human memory. Brain. 2013b;136:2444–56. PubMed PMC
Mishkin M, Ungerleider LG, Macko KA. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 1983;6:414–7.
Mormann F, Kornblith S, Quiroga RQ, Kraskov A, Cerf M, Fried I, et al. Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe. J Neurosci. 2008;28:8865–72. PubMed PMC
Mumford D. On the computational architecture of the neocortex. Biol Cybern. 1992;66:241–51. PubMed
Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RA. Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science. 2005;309:948–51. PubMed
O’Neill J, Senior TJ, Allen K, Huxter JR, Csicsvari J. Reactivation of experience-dependent cell assembly patterns in the hippocampus. Nat Neurosci. 2008;11:209–15. PubMed
Quian Quiroga R, Kraskov A, Koch C, Fried I. Explicit encoding of multimodal percepts by single neurons in the human brain. Curr Biol. 2009;19:1308–13. PubMed PMC
Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by single neurons in the human brain. Nature. 2005;435:1102–7. PubMed
Ray S, Crone NE, Niebur E, Franaszczuk PJ, Hsiao SS. Neural correlates of high-gamma oscillations (60-200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J Neurosci. 2008;28:11526–36. PubMed PMC
Roux F, Wibral M, Mohr HM, Singer W, Uhlhaas PJ. Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. J Neurosci. 2012;32:12411–20. PubMed PMC
Sederberg PB, Schulze-Bonhage A, Madsen JR, Bromfield EB, McCarthy DC, Brandt A, et al. Hippocampal and neocortical gamma oscillations predict memory formation in humans. Cereb Cortex. 2007;17:1190–6. PubMed
Silva FL. EEG and MEG: relevance to neuroscience. Neuron. 2013;80:1112–28. PubMed
Singer AC, Carr MF, Karlsson MP, Frank LM. Hippocampal SWR activity predicts correct decisions during the initial learning of an alternation task. Neuron. 2013;77:1163–73. PubMed PMC
Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci. 1995;18:555–86. PubMed
Staba RJ. Normal and pathologic high-frequency oscillations. Epilepsia. 2010;51:21. PubMed
Staba RJ, Wilson CL, Bragin A, Fried I, Engel J., Jr Quantitative analysis of high-frequency oscillations (80–500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. J Neurophysiol. 2002;88:1743–52. PubMed
Sullivan D, Csicsvari J, Mizuseki K, Montgomery S, Diba K, Buzsaki G. Relationships between hippocampal sharp waves, ripples and fast gamma oscillation: influence of dentate and entorhinal cortical activity. J Neurosci. 2011;31:8605–16. PubMed PMC
Tallon-Baudry C. The roles of gamma-band oscillatory synchrony in human visual cognition. Front Biosci (Landmark Ed) 2009;14:321–32. PubMed
Tallon-Baudry C, Bertrand O. Oscillatory gamma activity in humans andits role in object representation. Trends Cogn Sci. 1999;3:151–62. PubMed
Telenczuk B, Baker SN, Herz AVM, Curio G. High-frequency EEG covaries with spike burst patterns detected in cortical neurons. J Neurophysiol. 2011;105:2951–9. PubMed PMC
Traub RD, Whittington MA. Cortical oscillations in health and disease. Oxford University Press; 2010.
Uhlhaas PJ, Singer W. Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron. 2012;75:963–80. PubMed
Van Vugt MK, Sederberg PB, Kahana MJ. Comparison of spectral analysis methods for characterizing brain oscillations. J Neurosci Methods. 2007;162:49–63. PubMed PMC
Wilson MA, McNaughton BL. Recativation of hippocampal ensemble memories during sleep. Science. 1994;265:676–9. PubMed
Worrell GA, Gardner AB, Stead SM, Hu S, Goerss S, Cascino GJ, et al. High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macro-electrode recordings. Brain. 2008;131:928–37. PubMed PMC
Worrell G, Gotman J. High-frequency oscillations and other electrophysiological biomarkers of epilepsy: clinical studies. Biomark Med. 2011;5:557–66. PubMed PMC
Worrell GA, Jerbi K, Kobayashi K, Lina JM, Zelmann R, Le Van Quyen M. Recording and analysis techniques for high-frequency oscillations. Prog Neurobiol. 2012;98:265–278. PubMed PMC
Worrell GA, Parish L, Cranstoun SD, Jonas R, Baltuch G, Litt B. High-frequency oscillations and seizure generation in neocortical epilepsy. Brain. 2004;127:1496–506. PubMed
Yuval-Greenberg S, Tomer O, Keren AS, Nelken I, Deouell LY. Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron. 2008;58:429–41. PubMed
Phase-Amplitude Coupling Localizes Pathologic Brain with Aid of Behavioral Staging in Sleep
High frequency oscillations in epileptic and non-epileptic human hippocampus during a cognitive task
Multicenter intracranial EEG dataset for classification of graphoelements and artifactual signals
Multi-feature localization of epileptic foci from interictal, intracranial EEG
Human Verbal Memory Encoding Is Hierarchically Distributed in a Continuous Processing Stream
Physiological and pathological high frequency oscillations in focal epilepsy
Pupil size reflects successful encoding and recall of memory in humans
Spatial variation in high-frequency oscillation rates and amplitudes in intracranial EEG
Electrical Stimulation Modulates High γ Activity and Human Memory Performance
The CS algorithm: A novel method for high frequency oscillation detection in EEG
The functional organization of human epileptic hippocampus
Interictal high-frequency oscillations in focal human epilepsy
Impact of cognitive stimulation on ripples within human epileptic and non-epileptic hippocampus
Gamma oscillations precede interictal epileptiform spikes in the seizure onset zone