Pupil size reflects successful encoding and recall of memory in humans
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29563536
PubMed Central
PMC5862978
DOI
10.1038/s41598-018-23197-6
PII: 10.1038/s41598-018-23197-6
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- kognice fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- pupila fyziologie MeSH
- rozpomínání fyziologie MeSH
- světelná stimulace MeSH
- velikost orgánu fyziologie MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Pupil responses are known to indicate brain processes involved in perception, attention and decision-making. They can provide an accessible biomarker of human memory performance and cognitive states in general. Here we investigated changes in the pupil size during encoding and recall of word lists. Consistent patterns in the pupil response were found across and within distinct phases of the free recall task. The pupil was most constricted in the initial fixation phase and was gradually more dilated through the subsequent encoding, distractor and recall phases of the task, as the word items were maintained in memory. Within the final recall phase, retrieving memory for individual words was associated with pupil dilation in absence of visual stimulation. Words that were successfully recalled showed significant differences in pupil response during their encoding compared to those that were forgotten - the pupil was more constricted before and more dilated after the onset of word presentation. Our results suggest pupil size as a potential biomarker for probing and modulation of memory processing.
Department of Neurology Mayo Clinic Rochester MN USA
Department of Physiology and Biomedical Engineering Mayo Clinic Rochester MN USA
Zobrazit více v PubMed
Hess EH, Polt JM. Pupil Size as Related to Interest Value of Visual Stimuli. Science. 1960;132:349–350. doi: 10.1126/science.132.3423.349. PubMed DOI
Hess EH, Polt JM. Pupil Size in Relation to Mental Activity during Simple Problem-Solving. Science. 1964;143:1190–1192. doi: 10.1126/science.143.3611.1190. PubMed DOI
Kahneman D, Beatty J. Pupil Diameter and Load on Memory. Science. 1966;154:1583–1585. doi: 10.1126/science.154.3756.1583. PubMed DOI
Einhäuser W, Stout J, Koch C, Carter O. Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proc. Natl. Acad. Sci. 2008;105:1704–1709. doi: 10.1073/pnas.0707727105. PubMed DOI PMC
Einhäuser W, Koch C, Carter OL. Pupil dilation betrays the timing of decisions. Front. Hum. Neurosci. 2010;4:18. PubMed PMC
Loewenfeld, I. E. The Pupil: Anatomy, Physiology, and Clinical Applications. (Iowa State University Press, 1993).
Reimer J, et al. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nat. Commun. 2016;7:13289. doi: 10.1038/ncomms13289. PubMed DOI PMC
McCormick DA. Cholinergic and noradrenergic modulation of thalamocortical processing. Trends Neurosci. 1989;12:215–221. doi: 10.1016/0166-2236(89)90125-2. PubMed DOI
Reimer J, et al. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron. 2014;84:355–362. doi: 10.1016/j.neuron.2014.09.033. PubMed DOI PMC
McGinley MJ, David SV, McCormick DA. Cortical Membrane Potential Signature of Optimal States for Sensory Signal Detection. Neuron. 2015;87:179–192. doi: 10.1016/j.neuron.2015.05.038. PubMed DOI PMC
Starc M, Anticevic A, Repovš G. Fine-grained versus categorical: Pupil size differentiates between strategies for spatial working memory performance. Psychophysiology. 2017;54:724–735. doi: 10.1111/psyp.12828. PubMed DOI
Heaver B, Hutton SB. Keeping an eye on the truth? Pupil size changes associated with recognition memory. Mem. Hove Engl. 2011;19:398–405. PubMed
Otero SC, Weekes BS, Hutton SB. Pupil size changes during recognition memory. Psychophysiology. 2011;48:1346–1353. doi: 10.1111/j.1469-8986.2011.01217.x. PubMed DOI
Naber M, Frässle S, Rutishauser U, Einhäuser W. Pupil size signals novelty and predicts later retrieval success for declarative memories of natural scenes. J. Vis. 2013;13:11. doi: 10.1167/13.2.11. PubMed DOI
Võ ML-H, et al. The coupling of emotion and cognition in the eye: introducing the pupil old/new effect. Psychophysiology. 2008;45:130–140. doi: 10.1111/j.1469-8986.2008.00745.x. PubMed DOI
Kahana MJ. The cognitive correlates of human brain oscillations. J. Neurosci. Off. J. Soc. Neurosci. 2006;26:1669–1672. doi: 10.1523/JNEUROSCI.3737-05c.2006. PubMed DOI PMC
Kim H. Neural activity that predicts subsequent memory and forgetting: a meta-analysis of 74 fMRI studies. NeuroImage. 2011;54:2446–2461. doi: 10.1016/j.neuroimage.2010.09.045. PubMed DOI
Ezzyat Y, et al. Direct Brain Stimulation Modulates Encoding States and Memory Performance in Humans. Curr. Biol. 2017;27:1251–1258. doi: 10.1016/j.cub.2017.03.028. PubMed DOI PMC
Kahana, M. J. Foundations of Human Memory. (Oxford University Press, USA, 2012).
Doležal J, Fabian V. 41. Application of eye tracking in neuroscience. Clin. Neurophysiol. 2015;126:e44.
Burke JF, et al. Human intracranial high-frequency activity maps episodic memory formation in space and time. NeuroImage. 2014;85(Pt 2):834–843. doi: 10.1016/j.neuroimage.2013.06.067. PubMed DOI PMC
Kucewicz MT, et al. High frequency oscillations are associated with cognitive processing in human recognition memory. Brain J. Neurol. 2014;137:2231–2244. doi: 10.1093/brain/awu149. PubMed DOI PMC
Kucewicz Michal T., Berry Brent M., Kremen Vaclav, Brinkmann Benjamin H., Sperling Michael R., Jobst Barbara C., Gross Robert E., Lega Bradley, Sheth Sameer A., Stein Joel M., Das Sandthitsu R., Gorniak Richard, Stead S. Matthew, Rizzuto Daniel S., Kahana Michael J., Worrell Gregory A. Dissecting gamma frequency activity during human memory processing. Brain. 2017;140(5):1337–1350. doi: 10.1093/brain/awx043. PubMed DOI
Jutras MJ, Fries P, Buffalo EA. Oscillatory activity in the monkey hippocampus during visual exploration and memory formation. Proc. Natl. Acad. Sci. USA. 2013;110:13144–13149. doi: 10.1073/pnas.1302351110. PubMed DOI PMC
Leonard TK, Hoffman KL. Sharp-Wave Ripples in Primates Are Enhanced near Remembered Visual Objects. Curr. Biol. 2017;27:257–262. doi: 10.1016/j.cub.2016.11.027. PubMed DOI
Leonard TK, et al. Sharp Wave Ripples during Visual Exploration in the Primate Hippocampus. J. Neurosci. 2015;35:14771–14782. doi: 10.1523/JNEUROSCI.0864-15.2015. PubMed DOI PMC
Worrell GA, et al. Recording and analysis techniques for high-frequency oscillations. Prog. Neurobiol. 2012;98:265–278. doi: 10.1016/j.pneurobio.2012.02.006. PubMed DOI PMC