Intracranial electrophysiological recordings from the human brain during memory tasks with pupillometry
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dataset, časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 NS092882
NINDS NIH HHS - United States
POIR.04.04.00-00-4379/17
Fundacja na rzecz Nauki Polskiej (Foundation for Polish Science)
R01-NS92882
Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
PubMed
35027555
PubMed Central
PMC8758703
DOI
10.1038/s41597-021-01099-z
PII: 10.1038/s41597-021-01099-z
Knihovny.cz E-zdroje
- MeSH
- elektrody MeSH
- elektrokortikografie * MeSH
- epilepsie patofyziologie MeSH
- lidé MeSH
- mozek fyziologie MeSH
- oční fixace MeSH
- paměť fyziologie MeSH
- pupila MeSH
- technologie sledování pohybu očí MeSH
- záchvaty patofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Data comprise intracranial EEG (iEEG) brain activity represented by stereo EEG (sEEG) signals, recorded from over 100 electrode channels implanted in any one patient across various brain regions. The iEEG signals were recorded in epilepsy patients (N = 10) undergoing invasive monitoring and localization of seizures when they were performing a battery of four memory tasks lasting approx. 1 hour in total. Gaze tracking on the task computer screen with estimating the pupil size was also recorded together with behavioral performance. Each dataset comes from one patient with anatomical localization of each electrode contact. Metadata contains labels for the recording channels with behavioral events marked from all tasks, including timing of correct and incorrect vocalization of the remembered stimuli. The iEEG and the pupillometric signals are saved in BIDS data structure to facilitate efficient data sharing and analysis.
Department of Neurology Mayo Clinic Rochester MN USA
Department of Neurosurgery Mayo Clinic Rochester MN USA
Department of Physiology and Biomedical Engineering Mayo Clinic Rochester MN USA
Faculty of Electrical Engineering Czech Technical University Prague Prague Czech Republic
Zobrazit více v PubMed
Rosenow F, Lüders H. Presurgical evaluation of epilepsy. Brain. 2001;124:1683–1700. doi: 10.1093/brain/124.9.1683. PubMed DOI
Lhatoo, S. D., Kahane, P. & Luders, H. O. Invasive Studies of the Human Epileptic Brain: Principles and Practice. (Oxford University Press, USA, 2019).
Fried, I., Rutishauser, U., Cerf, M. & Kreiman, G. Single Neuron Studies of the Human Brain: Probing Cognition. (MIT Press, 2014).
Engel AK, Moll CKE, Fried I, Ojemann GA. Invasive recordings from the human brain: clinical insights and beyond. Nature Reviews Neuroscience. 2005;6:35–47. doi: 10.1038/nrn1585. PubMed DOI
Kucewicz MT, et al. Combined Single Neuron Unit Activity and Local Field Potential Oscillations in a Human Visual Recognition Memory Task. IEEE Trans. Biomed. Eng. 2016;63:67–75. doi: 10.1109/TBME.2015.2451596. PubMed DOI
Stead M, Halford JJ. Proposal for a Standard Format for Neurophysiology Data Recording and Exchange. J. Clin. Neurophysiol. 2016;33:403–413. doi: 10.1097/WNP.0000000000000257. PubMed DOI PMC
Brinkmann BH, Bower MR, Stengel KA, Worrell GA, Stead M. Large-scale electrophysiology: acquisition, compression, encryption, and storage of big data. J. Neurosci. Methods. 2009;180:185–192. doi: 10.1016/j.jneumeth.2009.03.022. PubMed DOI PMC
Stead M, et al. Microseizures and the spatiotemporal scales of human partial epilepsy. Brain. 2010;133:2789–2797. doi: 10.1093/brain/awq190. PubMed DOI PMC
Gorgolewski KJ, et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data. 2016;3:160044. doi: 10.1038/sdata.2016.44. PubMed DOI PMC
Holdgraf C, et al. iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology. Sci Data. 2019;6:102. doi: 10.1038/s41597-019-0105-7. PubMed DOI PMC
Underwood E. Researchers aim for an electrical memory prosthesis. Science. 2014;345:250–250. doi: 10.1126/science.345.6194.250. PubMed DOI
Kucewicz MT, et al. Evidence for verbal memory enhancement with electrical brain stimulation in the lateral temporal cortex. Brain. 2018;141:971–978. doi: 10.1093/brain/awx373. PubMed DOI
Ezzyat Y, et al. Closed-loop stimulation of temporal cortex rescues functional networks and improves memory. Nat. Commun. 2018;9:365. doi: 10.1038/s41467-017-02753-0. PubMed DOI PMC
Kucewicz, M. T. et al. Electrical Stimulation Modulates High γ Activity and Human Memory Performance. eNeuro5 (2018). PubMed PMC
Solomon EA, et al. Widespread theta synchrony and high-frequency desynchronization underlies enhanced cognition. Nat. Commun. 2017;8:1704. doi: 10.1038/s41467-017-01763-2. PubMed DOI PMC
Ezzyat Y, et al. Direct Brain Stimulation Modulates Encoding States and Memory Performance in Humans. Curr. Biol. 2017;27:1251–1258. doi: 10.1016/j.cub.2017.03.028. PubMed DOI PMC
Kucewicz MT, et al. Dissecting gamma frequency activity during human memory processing. Brain. 2017;140:1337–1350. doi: 10.1093/brain/awx043. PubMed DOI
Kucewicz, M. T. et al. Human Verbal Memory Encoding Is Hierarchically Distributed in a Continuous Processing Stream. eNeuro6 (2019). PubMed PMC
Stolk A, et al. Integrated analysis of anatomical and electrophysiological human intracranial data. Nat. Protoc. 2018;13:1699–1723. doi: 10.1038/s41596-018-0009-6. PubMed DOI PMC
Kucewicz MT, et al. Pupil size reflects successful encoding and recall of memory in humans. Sci. Rep. 2018;8:4949. doi: 10.1038/s41598-018-23197-6. PubMed DOI PMC
Norman, Y. et al. Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. Science365 (2019). PubMed
Vaz AP, Wittig JH, Jr, Inati SK, Zaghloul KA. Replay of cortical spiking sequences during human memory retrieval. Science. 2020;367:1131–1134. doi: 10.1126/science.aba0672. PubMed DOI PMC
Vaz AP, Inati SK, Brunel N, Zaghloul KA. Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science. 2019;363:975–978. doi: 10.1126/science.aau8956. PubMed DOI PMC
Kucewicz MT, et al. High frequency oscillations are associated with cognitive processing in human recognition memory. Brain. 2014;137:2231–2244. doi: 10.1093/brain/awu149. PubMed DOI PMC
Minxha, J., Adolphs, R., Fusi, S., Mamelak, A. N. & Rutishauser, U. Flexible recruitment of memory-based choice representations by the human medial frontal cortex. Science368 (2020). PubMed PMC
Urgolites ZJ, et al. Spiking activity in the human hippocampus prior to encoding predicts subsequent memory. Proc. Natl. Acad. Sci. USA. 2020;117:13767–13770. doi: 10.1073/pnas.2001338117. PubMed DOI PMC
Kamiński J, et al. Persistently active neurons in human medial frontal and medial temporal lobe support working memory. Nat. Neurosci. 2017;20:590–601. doi: 10.1038/nn.4509. PubMed DOI PMC
Mai, J. K., Majtanik, M. & Paxinos, G. Atlas of the Human Brain. (Academic Press, 2015).
Fukushima K, Fukushima J, Warabi T, Barnes GR. Cognitive processes involved in smooth pursuit eye movements: behavioral evidence, neural substrate and clinical correlation. Front. Syst. Neurosci. 2013;7:4. doi: 10.3389/fnsys.2013.00004. PubMed DOI PMC
Kahana, M. J. Foundations of Human Memory. (Oxford University Press, 2014).
Matsumoto JY, et al. Network oscillations modulate interictal epileptiform spike rate during human memory. Brain. 2013;136:2444–2456. doi: 10.1093/brain/awt159. PubMed DOI PMC
Horak PC, et al. Interictal epileptiform discharges impair word recall in multiple brain areas. Epilepsia. 2017;58:373–380. doi: 10.1111/epi.13633. PubMed DOI PMC
Kleen JK, et al. Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology. 2013;81:18–24. doi: 10.1212/WNL.0b013e318297ee50. PubMed DOI PMC
Staresina BP, Alink A, Kriegeskorte N, Henson RN. Awake reactivation predicts memory in humans. Proc. Natl. Acad. Sci. USA. 2013;110:21159–21164. doi: 10.1073/pnas.1311989110. PubMed DOI PMC
Staresina BP, Henson RNA, Kriegeskorte N, Alink A. Episodic reinstatement in the medial temporal lobe. J. Neurosci. 2012;32:18150–18156. doi: 10.1523/JNEUROSCI.4156-12.2012. PubMed DOI PMC
Johnson JD, McDuff SGR, Rugg MD, Norman KA. Recollection, familiarity, and cortical reinstatement: a multivoxel pattern analysis. Neuron. 2009;63:697–708. doi: 10.1016/j.neuron.2009.08.011. PubMed DOI PMC
Yaffe RB, et al. Reinstatement of distributed cortical oscillations occurs with precise spatiotemporal dynamics during successful memory retrieval. Proc. Natl. Acad. Sci. USA. 2014;111:18727–18732. doi: 10.1073/pnas.1417017112. PubMed DOI PMC
Munoz DP, Everling S. Look away: the anti-saccade task and the voluntary control of eye movement. Nat. Rev. Neurosci. 2004;5:218–228. doi: 10.1038/nrn1345. PubMed DOI
Coe, B. C. & Munoz, D. P. Mechanisms of saccade suppression revealed in the anti-saccade task. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372 (2017). PubMed PMC
Doležal J, Fabian V. 41. Application of eye tracking in neuroscience. Clinical Neurophysiology. 2015;126:e44. doi: 10.1016/j.clinph.2014.10.200. DOI
Cimbalnik J, 2021. Intracranial electrophysiological recordings from the human brain during memory tasks with pupillometry. EBRAINS. PubMed DOI PMC
Yarkoni T, et al. PyBIDS: Python tools for BIDS datasets. Journal of Open Source Software. 2019;4:1294. doi: 10.21105/joss.01294. PubMed DOI PMC
Mathôt S, Fabius J, Van Heusden E, Van der Stigchel S. Safe and sensible preprocessing and baseline correction of pupil-size data. Behav. Res. Methods. 2018;50:94–106. doi: 10.3758/s13428-017-1007-2. PubMed DOI PMC
Cimbalnik J. 2019. ICRC-BME/PySigView: First release for zenodo. Zenodo. DOI
Plesinger F, Jurco J, Halamek J, Jurak P. SignalPlant: an open signal processing software platform. Physiol. Meas. 2016;37:N38–48. doi: 10.1088/0967-3334/37/7/N38. PubMed DOI
Schwarz CG, et al. Identification of Anonymous MRI Research Participants with Face-Recognition Software. N. Engl. J. Med. 2019;381:1684–1686. doi: 10.1056/NEJMc1908881. PubMed DOI PMC
Cimbalnik J, Klimes P, Travnicek V. 2020. ICRC-BME/epycom: EPYCOM-beta. Zenodo. DOI
Cimbálník J, Hewitt A, Worrell G, Stead M. The CS algorithm: A novel method for high frequency oscillation detection in EEG. J. Neurosci. Methods. 2018;293:6–16. doi: 10.1016/j.jneumeth.2017.08.023. PubMed DOI PMC
Gardner AB, Worrell GA, Marsh E, Dlugos D, Litt B. Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings. Clin. Neurophysiol. 2007;118:1134–1143. doi: 10.1016/j.clinph.2006.12.019. PubMed DOI PMC
Barkmeier DT, et al. High inter-reviewer variability of spike detection on intracranial EEG addressed by an automated multi-channel algorithm. Clinical Neurophysiology. 2012;123:1088–1095. doi: 10.1016/j.clinph.2011.09.023. PubMed DOI PMC
Cimbalnik J, et al. Multi-feature localization of epileptic foci from interictal, intracranial EEG. Clin. Neurophysiol. 2019;130:1945–1953. doi: 10.1016/j.clinph.2019.07.024. PubMed DOI PMC
Klimes P, et al. NREM sleep is the state of vigilance that best identifies the epileptogenic zone in the interictal electroencephalogram. Epilepsia. 2019;60:2404–2415. doi: 10.1111/epi.16377. PubMed DOI