Implementation of a Morphological Filter for Removing Spikes from the Epileptic Brain Signals to Improve Identification Ripples
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36236621
PubMed Central
PMC9571066
DOI
10.3390/s22197522
PII: s22197522
Knihovny.cz E-zdroje
- Klíčová slova
- brain signals, dynamic threshold, epilepsy, morphological filter, ripples, spikes,
- MeSH
- algoritmy MeSH
- elektroencefalografie * metody MeSH
- epilepsie * diagnóza MeSH
- lidé MeSH
- mapování mozku MeSH
- mozek MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Epilepsy is a very common disease affecting at least 1% of the population, comprising a number of over 50 million people. As many patients suffer from the drug-resistant version, the number of potential treatment methods is very small. However, since not only the treatment of epilepsy, but also its proper diagnosis or observation of brain signals from recordings are important research areas, in this paper, we address this very problem by developing a reliable technique for removing spikes and sharp transients from the baseline of the brain signal using a morphological filter. This allows much more precise identification of the so-called epileptic zone, which can then be resected, which is one of the methods of epilepsy treatment. We used eight patients with 5 KHz data set and depended upon the Staba 2002 algorithm as a reference to detect the ripples. We found that the average sensitivity and false detection rate of our technique are significant, and they are ∼94% and ∼14%, respectively.
Department of Biomedical Engineering College of Engineering University of Babylon Hillah 51001 Iraq
School of Computing and Mathematical Sciences University of Greenwich Park Row London SE10 9LS UK
Zobrazit více v PubMed
Thomas G.P., Jobst B.C. Critical review of the responsive neurostimulator system for epilepsy. Med. Devices. 2015;8:405. PubMed PMC
Batson S., Shankar R., Conry J., Boggs J., Radtke R., Mitchell S., Barion F., Murphy J., Danielson V. Efficacy and safety of VNS therapy or continued medication management for treatment of adults with drug-resistant epilepsy: Systematic review and meta-analysis. J. Neurol. 2022;269:2874–2891. doi: 10.1007/s00415-022-10967-6. PubMed DOI PMC
Galanopoulou A.S., Buckmaster P.S., Staley K.J., Moshé S.L., Perucca E., Engel J., Jr., Löscher W., Noebels J.L., Pitkänen A., Stables J., et al. Identification of new epilepsy treatments: Issues in preclinical methodology. Epilepsia. 2012;53:571–582. doi: 10.1111/j.1528-1167.2011.03391.x. PubMed DOI PMC
World Health Organization. Global Campaign against Epilepsy. World Health Organization . Atlas: Epilepsy Care in The World. World Health Organization; Geneva, Switzerland: 2005.
Moshé S.L., Perucca E., Ryvlin P., Tomson T. Epilepsy: New advances. Lancet. 2015;385:884–898. doi: 10.1016/S0140-6736(14)60456-6. PubMed DOI
Alotaiby T.N., Alshebeili S.A., Alshawi T., Ahmad I., El-Samie A., Fathi E. EEG seizure detection and prediction algorithms: A survey. EURASIP J. Adv. Signal Process. 2014;2014:1–21. doi: 10.1186/1687-6180-2014-183. DOI
Li S., Zhou W., Yuan Q., Geng S., Cai D. Feature extraction and recognition of ictal EEG using EMD and SVM. Comput. Biol. Med. 2013;43:807–816. doi: 10.1016/j.compbiomed.2013.04.002. PubMed DOI
Li J., Reiter-Campeau S., Namiranian D., Toffa D.H., Bouthillier A., Dubeau F., Nguyen D.K. Insular Involvement in Cases of Epilepsy Surgery Failure. Brain Sci. 2022;12:125. doi: 10.3390/brainsci12020125. PubMed DOI PMC
Thomson L., Fayed N., Sedarous F., Ronen G.M. Life quality and health in adolescents and emerging adults with epilepsy during the years of transition: A scoping review. Dev. Med. Child Neurol. 2014;56:421–433. doi: 10.1111/dmcn.12335. PubMed DOI
Baker G.A., Jacoby A., Buck D., Stalgis C., Monnet D. Quality of life of people with epilepsy: A European study. Epilepsia. 1997;38:353–362. doi: 10.1111/j.1528-1157.1997.tb01128.x. PubMed DOI
Wang M., Perera K., Josephson C.B., Lamidi M., Lawal O.A., Awosoga O., Roach P., Patten S.B., Wiebe S., Sajobi T.T. Association between antiseizure medications and quality of life in epilepsy: A mediation analysis. Epilepsia. 2022;63:440–450. doi: 10.1111/epi.17153. PubMed DOI
Asiri S., Al-Otaibi A., Al Hameed M., Hamhom A., Alenizi A., Eskandrani A., AlKhrisi M., Aldosari M.M. Seizure-related injuries in people with epilepsy: A cohort study from Saudi Arabia. Epilepsia Open. 2022;7:422–430. doi: 10.1002/epi4.12615. PubMed DOI PMC
Friedman D. Sudden unexpected death in epilepsy. Curr. Opin. Neurol. 2022;35:181–188. doi: 10.1097/WCO.0000000000001034. PubMed DOI PMC
Liao P., Vajdic C.M., Reppermund S., Cvejic R.C., Srasuebkul P., Trollor J. Mortality rate, risk factors, and causes of death in people with epilepsy and intellectual disability. Seizure. 2022;101:75–82. doi: 10.1016/j.seizure.2022.07.012. PubMed DOI
Wadhera T. Brain network topology unraveling epilepsy and ASD Association: Automated EEG-based diagnostic model. Expert Syst. Appl. 2021;186:115762. doi: 10.1016/j.eswa.2021.115762. DOI
Adeli H., Ghosh-Dastidar S. Automated EEG-Based Diagnosis of Neurological Disorders: Inventing the Future of Neurology. CRC Press; Boca Raton, FL, USA: 2010.
Smith S.J. EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry. 2005;76:ii2–ii7. doi: 10.1136/jnnp.2005.069245. PubMed DOI PMC
Antoniades A., Spyrou L., Took C.C., Sanei S. Deep learning for epileptic intracranial EEG data; Proceedings of the 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP); Salerno, Italy. 13–16 September 2016; pp. 1–6.
Pacia S.V., Ebersole J.S. Intracranial EEG in temporal lobe epilepsy. J. Clin. Neurophysiol. 1999;16:399. doi: 10.1097/00004691-199909000-00001. PubMed DOI
Jobst B.C., Bartolomei F., Diehl B., Frauscher B., Kahane P., Minotti L., Sharan A., Tardy N., Worrell G., Gotman J. Intracranial EEG in the 21st Century. Epilepsy Curr. 2020;20:180–188. doi: 10.1177/1535759720934852. PubMed DOI PMC
Nahum L., Gabriel D., Spinelli L., Momjian S., Seeck M., Michel C.M., Schnider A. Rapid consolidation and the human hippocampus: Intracranial recordings confirm surface EEG. Hippocampus. 2011;21:689–693. doi: 10.1002/hipo.20819. PubMed DOI
Ponz A., Montant M., Liegeois-Chauvel C., Silva C., Braun M., Jacobs A.M., Ziegler J.C. Emotion processing in words: A test of the neural re-use hypothesis using surface and intracranial EEG. Soc. Cogn. Affect. Neurosci. 2014;9:619–627. doi: 10.1093/scan/nst034. PubMed DOI PMC
Cimbalnik J., Dolezal J., Topçu Ç., Lech M., Marks V.S., Joseph B., Dobias M., Van Gompel J., Worrell G., Kucewicz M. Intracranial electrophysiological recordings from the human brain during memory tasks with pupillometry. Sci. Data. 2022;9:1–10. doi: 10.1038/s41597-021-01099-z. PubMed DOI PMC
Parvizi J., Kastner S. Promises and limitations of human intracranial electroencephalography. Nat. Neurosci. 2018;21:474–483. doi: 10.1038/s41593-018-0108-2. PubMed DOI PMC
Kawala-Sterniuk A., Browarska N., Al-Bakri A., Pelc M., Zygarlicki J., Sidikova M., Martinek R., Gorzelanczyk E.J. Summary of over fifty years with brain-computer interfaces—a review. Brain Sci. 2021;11:43. doi: 10.3390/brainsci11010043. PubMed DOI PMC
Lachaux J.P., Axmacher N., Mormann F., Halgren E., Crone N.E. High-frequency neural activity and human cognition: Past, present and possible future of intracranial EEG research. Prog. Neurobiol. 2012;98:279–301. doi: 10.1016/j.pneurobio.2012.06.008. PubMed DOI PMC
Ung H., Baldassano S.N., Bink H., Krieger A.M., Williams S., Vitale F., Wu C., Freestone D., Nurse E., Leyde K., et al. Intracranial EEG fluctuates over months after implanting electrodes in human brain. J. Neural Eng. 2017;14:056011. doi: 10.1088/1741-2552/aa7f40. PubMed DOI PMC
Baud M.O., Schindler K., Rao V.R. Under-sampling in epilepsy: Limitations of conventional EEG. Clin. Neurophysiol. Pract. 2021;6:41–49. doi: 10.1016/j.cnp.2020.12.002. PubMed DOI PMC
Jasper H.H., Carmichael L. Electrical potentials from the intact human brain. Science. 1935;81:51–53. doi: 10.1126/science.81.2089.51. PubMed DOI
Reif P.S., Strzelczyk A., Rosenow F. The history of invasive EEG evaluation in epilepsy patients. Seizure. 2016;41:191–195. doi: 10.1016/j.seizure.2016.04.006. PubMed DOI
Lachaux J.P., Rudrauf D., Kahane P. Intracranial EEG and human brain mapping. J. Physiol. 2003;97:613–628. doi: 10.1016/j.jphysparis.2004.01.018. PubMed DOI
McCarty M.J., Woolnough O., Mosher J.C., Seymour J., Tandon N. The listening zone of human electrocorticographic field potential recordings. Eneuro. 2022;9 doi: 10.1523/ENEURO.0492-21.2022. PubMed DOI PMC
Kwan P., Schachter S.C., Brodie M.J. Drug-resistant epilepsy. N. Engl. J. Med. 2011;365:919–926. doi: 10.1056/NEJMra1004418. PubMed DOI
Liu J.t., Liu B., Zhang H. Surgical versus medical treatment of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsy Behav. 2018;82:179–188. doi: 10.1016/j.yebeh.2017.11.012. PubMed DOI
Yoo J.Y., Panov F. Identification and treatment of drug-resistant epilepsy. CONTINUUM Lifelong Learn. Neurol. 2019;25:362–380. doi: 10.1212/CON.0000000000000710. PubMed DOI
González F.L., Osorio X.R., Rein A.G.N., Martínez M.C., Fernández J.S., Haba V.V., Pedraza A.D., Cerdá J.M. Drug-resistant epilepsy: Definition and treatment alternatives. Neurología. 2015;30:439–446. doi: 10.1016/j.nrleng.2014.04.002. PubMed DOI
Ryvlin P., Rheims S. Epilepsy surgery: Eligibility criteria and presurgical evaluation. Dialogues Clin. Neurosci. 2022;10:91–103. doi: 10.31887/DCNS.2008.10.1/pryvlin. PubMed DOI PMC
Boon P., Raedt R., De Herdt V., Wyckhuys T., Vonck K. Electrical stimulation for the treatment of epilepsy. Neurotherapeutics. 2009;6:218–227. doi: 10.1016/j.nurt.2008.12.003. PubMed DOI PMC
Wu Y.C., Liao Y.S., Yeh W.H., Liang S.F., Shaw F.Z. Directions of deep brain stimulation for epilepsy and Parkinson’s disease. Front. Neurosci. 2021;15:671. doi: 10.3389/fnins.2021.680938. PubMed DOI PMC
Li M.C., Cook M.J. Deep brain stimulation for drug-resistant epilepsy. Epilepsia. 2018;59:273–290. doi: 10.1111/epi.13964. PubMed DOI
Hossain P.S.F., Shaikat I.M., George F.P. Ph.D. Thesis. BRAC University; Dhaka, Bangladesh: 2018. Emotion Recognition Using Brian Signals Based on Time-Frequency Analysis and Supervised Learning Algorithm.
Nunez M.D., Charupanit K., Sen-Gupta I., Lopour B.A., Lin J.J. Beyond rates: Time-varying dynamics of high frequency oscillations as a biomarker of the seizure onset zone. J. Neural Eng. 2022;19:016034. doi: 10.1088/1741-2552/ac520f. PubMed DOI PMC
Wang Y., Xu J., Liu T., Chen F., Chen S., Yuan L., Zhai F., Liang S. Diagnostic value of high-frequency oscillations for the epileptogenic zone: A systematic review and meta-analysis. Seizure. 2022;99:82–90. doi: 10.1016/j.seizure.2022.05.003. PubMed DOI
Papadelis C., Perry M.S. Seminars in Pediatric Neurology. Volume 39. Elsevier; Amsterdam, The Netherlands: 2021. Localizing the epileptogenic zone with novel biomarkers; p. 100919. PubMed PMC
King-Stephens D. The ambiguous nature of fast ripples in epilepsy surgery. Epilepsy Curr. 2019;19:91–92. doi: 10.1177/1535759719835669. PubMed DOI PMC
Kobayashi K., Shibata T., Tsuchiya H., Akiyama T. Exclusion of the possibility of “false ripples” from ripple band high-frequency oscillations recorded from scalp electroencephalogram in children with epilepsy. Front. Hum. Neurosci. 2021;15:696882. doi: 10.3389/fnhum.2021.696882. PubMed DOI PMC
Zweiphenning W.J., von Ellenrieder N., Dubeau F., Martineau L., Minotti L., Hall J.A., Chabardes S., Dudley R., Kahane P., Gotman J., et al. Correcting for physiological ripples improves epileptic focus identification and outcome prediction. Epilepsia. 2022;63:483–496. doi: 10.1111/epi.17145. PubMed DOI PMC
Van Mierlo P., Vorderwülbecke B.J., Staljanssens W., Seeck M., Vulliémoz S. Ictal EEG source localization in focal epilepsy: Review and future perspectives. Clin. Neurophysiol. 2020;131:2600–2616. doi: 10.1016/j.clinph.2020.08.001. PubMed DOI
Baroumand A.G., Arbune A.A., Strobbe G., Keereman V., Pinborg L.H., Fabricius M., Rubboli G., Madsen C.G., Jespersen B., Brennum J., et al. Automated ictal eeg source imaging: A retrospective, blinded clinical validation study. Clin. Neurophysiol. 2021;141:119–125. doi: 10.1016/j.clinph.2021.03.040. PubMed DOI
Vespa S., Baroumand A.G., Santos S.F., Vrielynck P., De Tourtchaninoff M., Feys O., Strobbe G., Raftopoulos C., van Mierlo P., El Tahry R. Ictal EEG source imaging and connectivity to localize the seizure onset zone in extratemporal lobe epilepsy. Seizure. 2020;78:18–30. doi: 10.1016/j.seizure.2020.03.001. PubMed DOI
LeVan P., Urrestarazu E., Gotman J. A system for automatic artifact removal in ictal scalp EEG based on independent component analysis and Bayesian classification. Clin. Neurophysiol. 2006;117:912–927. doi: 10.1016/j.clinph.2005.12.013. PubMed DOI
Pillai J., Sperling M.R. Interictal EEG and the diagnosis of epilepsy. Epilepsia. 2006;47:14–22. doi: 10.1111/j.1528-1167.2006.00654.x. PubMed DOI
Le Van Quyen M., Martinerie J., Adam C., Varela F.J. Nonlinear analyses of interictal EEG map the brain interdependences in human focal epilepsy. Phys. D Nonlinear Phenom. 1999;127:250–266. doi: 10.1016/S0167-2789(98)00258-9. DOI
Lee S.K., Kim J.Y., Hong K.S., Nam H.W., Park S.H., Chung C.K. The clinical usefulness of ictal surface EEG in neocortical epilepsy. Epilepsia. 2000;41:1450–1455. doi: 10.1111/j.1528-1157.2000.tb00121.x. PubMed DOI
Thamcharoenvipas T., Takahashi Y., Kimura N., Matsuda K., Usui N. Localizing and Lateralizing Value of Seizure Onset Pattern on Surface EEG in FCD Type II. Pediatr. Neurol. 2022;129:48–54. doi: 10.1016/j.pediatrneurol.2022.01.008. PubMed DOI
Foldvary N., Klem G., Hammel J., Bingaman W., Najm I., Lüders H. The localizing value of ictal EEG in focal epilepsy. Neurology. 2001;57:2022–2028. doi: 10.1212/WNL.57.11.2022. PubMed DOI
Ebersole J.S., Pacia S.V. Localization of temporal lobe foci by ictal EEG patterns. Epilepsia. 1996;37:386–399. doi: 10.1111/j.1528-1157.1996.tb00577.x. PubMed DOI
Walczak T.S., Radtke R.A., Lewis D.V. Accuracy and interobserver reliability of scalp ictal EEG. Neurology. 1992;42:2279. doi: 10.1212/WNL.42.12.2279. PubMed DOI
Helmstaedter C., Kurthen M., Lux S., Reuber M., Elger C.E. Chronic epilepsy and cognition: A longitudinal study in temporal lobe epilepsy. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 2003;54:425–432. doi: 10.1002/ana.10692. PubMed DOI
Taft C., Sager Magnusson E., Ekstedt G., Malmgren K. Health-related quality of life, mood, and patient satisfaction after epilepsy surgery in Sweden—A prospective controlled observational study. Epilepsia. 2014;55:878–885. doi: 10.1111/epi.12616. PubMed DOI PMC
Zentner J., Hufnagel A., Ostertun B., Wolf H.K., Behrens E., Campos M.G., Solymosi L., Elger C.E., Wiestler O.D., Schramm J. Surgical treatment of extratemporal epilepsy: Clinical, radiologic, and histopathologic findings in 60 patients. Epilepsia. 1996;37:1072–1080. doi: 10.1111/j.1528-1157.1996.tb01027.x. PubMed DOI
Liu S.Y., Yang X.L., Chen B., Hou Z., An N., Yang M.H., Yang H. Clinical outcomes and quality of life following surgical treatment for refractory epilepsy: A systematic review and meta-analysis. Medicine. 2015;94:e500. doi: 10.1097/MD.0000000000000500. PubMed DOI PMC
Ben-Menachem E., Sander J.W., Privitera M., Gilliam F. Measuring outcomes of treatment with antiepileptic drugs in clinical trials. Epilepsy Behav. 2010;18:24–30. doi: 10.1016/j.yebeh.2010.04.001. PubMed DOI
Zijlmans M., Jiruska P., Zelmann R., Leijten F.S., Jefferys J.G., Gotman J. High-frequency oscillations as a new biomarker in epilepsy. Ann. Neurol. 2012;71:169–178. doi: 10.1002/ana.22548. PubMed DOI PMC
Bragin A., Engel J., Jr., Staba R.J. High-frequency oscillations in epileptic brain. Curr. Opin. Neurol. 2010;23:151. doi: 10.1097/WCO.0b013e3283373ac8. PubMed DOI PMC
Staba R.J., Bragin A. High-frequency oscillations and other electrophysiological biomarkers of epilepsy: Underlying mechanisms. Biomarkers Med. 2011;5:545–556. doi: 10.2217/bmm.11.72. PubMed DOI PMC
Pail M., Cimbálník J., Roman R., Daniel P., Shaw D.J., Chrastina J., Brázdil M. High frequency oscillations in epileptic and non-epileptic human hippocampus during a cognitive task. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-74306-3. PubMed DOI PMC
Thomschewski A., Hincapié A.S., Frauscher B. Localization of the epileptogenic zone using high frequency oscillations. Front. Neurol. 2019;10:94. doi: 10.3389/fneur.2019.00094. PubMed DOI PMC
Saeid S., Chambers J. EEG Signal Processing. John Willey & Sons; Chichester, UK: 2007.
Gloor P. Neurosurgical Management of the Epilepsies. Raven Press; New York, NY, USA: 1975. Contributions of electroencephalography and electrocorticography to the neurosurgical treatment of the epilepsies; pp. 59–105. PubMed
Staba R.J., Wilson C.L., Bragin A., Fried I., Engel Jr J. Quantitative analysis of high-frequency oscillations (80–500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. J. Neurophysiol. 2002;88:1743–1752. doi: 10.1152/jn.2002.88.4.1743. PubMed DOI
Jacobs J., Staba R., Asano E., Otsubo H., Wu J., Zijlmans M., Mohamed I., Kahane P., Dubeau F., Navarro V., et al. High-frequency oscillations (HFOs) in clinical epilepsy. Prog. Neurobiol. 2012;98:302–315. doi: 10.1016/j.pneurobio.2012.03.001. PubMed DOI PMC
Gulyás A.I., Freund T.T. Generation of physiological and pathological high frequency oscillations: The role of perisomatic inhibition in sharp-wave ripple and interictal spike generation. Curr. Opin. Neurobiol. 2015;31:26–32. doi: 10.1016/j.conb.2014.07.020. PubMed DOI
Bragin A., Engel Jr J., Wilson C.L., Fried I., Mathern G.W. Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia. 1999;40:127–137. doi: 10.1111/j.1528-1157.1999.tb02065.x. PubMed DOI
Jacobs J., LeVan P., Chander R., Hall J., Dubeau F., Gotman J. Interictal high-frequency oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia. 2008;49:1893–1907. doi: 10.1111/j.1528-1167.2008.01656.x. PubMed DOI PMC
Ochi A., Otsubo H., Donner E.J., Elliott I., Iwata R., Funaki T., Akizuki Y., Akiyama T., Imai K., Rutka J.T., et al. Dynamic changes of ictal high-frequency oscillations in neocortical epilepsy: Using multiple band frequency analysis. Epilepsia. 2007;48:286–296. doi: 10.1111/j.1528-1167.2007.00923.x. PubMed DOI
Dimakopoulos V., Mégevand P., Boran E., Momjian S., Seeck M., Vulliémoz S., Sarnthein J. Blinded study: Prospectively defined high-frequency oscillations predict seizure outcome in individual patients. Brain Commun. 2021;3:fcab209. doi: 10.1093/braincomms/fcab209. PubMed DOI PMC
Ahmed R., Otsubo H., Snead III C., Donner E., Widjaja E., Ochi A., Drake J.M., Rutka J.T. Diagnostic evaluation and surgical management of pediatric insular epilepsy utilizing magnetoencephalography and invasive EEG monitoring. Epilepsy Res. 2018;140:72–81. doi: 10.1016/j.eplepsyres.2017.12.011. PubMed DOI
Andrade-Valenca L., Dubeau F., Mari F., Zelmann R., Gotman J. Interictal scalp fast oscillations as a marker of the seizure onset zone. Neurology. 2011;77:524–531. doi: 10.1212/WNL.0b013e318228bee2. PubMed DOI PMC
Goldenholz D.M., Gotman J., Seyal M., Bateman L.M., Andrade-Valenca L., Zelmann R., Dubeau F. Interictal Scalp Fast Oscillations as a Marker of the Seizure Onset ZoneAuthor Response. Neurology. 2012;78:224–225. doi: 10.1212/01.wnl.0000410956.29629.4d. PubMed DOI PMC
Al-Bakri A.F., Yaghouby F., Besio W., Ding L., Modur P., Sunderam S. Effect of Vigilance Changes on the Incidence of High Frequency Oscillations in the Epileptic Brain; Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Honolulu, HI, USA. 18–21 July 2018; pp. 991–994. PubMed
Li A., Chennuri B., Subramanian S., Yaffe R., Gliske S., Stacey W., Norton R., Jordan A., Zaghloul K.A., Inati S.K., et al. Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy. Netw. Neurosci. 2018;2:218–240. doi: 10.1162/netn_a_00043. PubMed DOI PMC
Tassi L., Jayakar P., Pieper T., Kahane P. 6. Intracranial and electrical EEG stimulation recordings. Pediatr. Epilepsy Surg. 2016:61.
Graef A., Flamm C., Pirker S., Baumgartner C., Deistler M., Matz G. Automatic ictal HFO detection for determination of initial seizure spread; Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Osaka, Japan. 3–7 July 2013; pp. 2096–2099. PubMed
Wong S.M., Arski O.N., Workewych A.M., Donner E., Ochi A., Otsubo H., Snead III O.C., Ibrahim G.M. Detection of high-frequency oscillations in electroencephalography: A scoping review and an adaptable open-source framework. Seizure. 2021;84:23–33. doi: 10.1016/j.seizure.2020.11.009. PubMed DOI
Cimbálník J., Hewitt A., Worrell G., Stead M. The CS algorithm: A novel method for high frequency oscillation detection in EEG. J. Neurosci. Methods. 2018;293:6–16. doi: 10.1016/j.jneumeth.2017.08.023. PubMed DOI PMC
Gardner A.B., Worrell G.A., Marsh E., Dlugos D., Litt B. Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings. Clin. Neurophysiol. 2007;118:1134–1143. doi: 10.1016/j.clinph.2006.12.019. PubMed DOI PMC
Gliske S.V., Irwin Z.T., Davis K.A., Sahaya K., Chestek C., Stacey W.C. Universal automated high frequency oscillation detector for real-time, long term EEG. Clin. Neurophysiol. 2016;127:1057–1066. doi: 10.1016/j.clinph.2015.07.016. PubMed DOI PMC
Wu M., Qin H., Wan X., Du Y. HFO detection in epilepsy: A stacked denoising autoencoder and sample weight adjusting factors-based method. IEEE Trans. Neural Syst. Rehabil. Eng. 2021;29:1965–1976. doi: 10.1109/TNSRE.2021.3113293. PubMed DOI
Worrell G.A., Parish L., Cranstoun S.D., Jonas R., Baltuch G., Litt B. High-frequency oscillations and seizure generation in neocortical epilepsy. Brain. 2004;127:1496–1506. doi: 10.1093/brain/awh149. PubMed DOI
Crépon B., Navarro V., Hasboun D., Clemenceau S., Martinerie J., Baulac M., Adam C., Le Van Quyen M. Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy. Brain. 2010;133:33–45. doi: 10.1093/brain/awp277. PubMed DOI
Chaibi S., Sakka Z., Lajnef T., Samet M., Kachouri A. Automated detection and classification of high frequency oscillations (HFOs) in human intracereberal EEG. Biomed. Signal Process. Control. 2013;8:927–934. doi: 10.1016/j.bspc.2013.08.009. DOI
Gliske S.V., Stacey W.C., Moon K.R., Hero A.O. The intrinsic value of HFO features as a biomarker of epileptic activity; Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); Shanghai, China. 20–25 March 2016; pp. 6290–6294. PubMed PMC
Wagenaar J.B., Worrell G.A., Ives Z., Dümpelmann M., Litt B., Schulze-Bonhage A. Collaborating and sharing data in epilepsy research. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 2015;32:235. doi: 10.1097/WNP.0000000000000159. PubMed DOI PMC
Misiūnas A.V.M., Meškauskas T., Samaitienė R. Algorithm for automatic EEG classification according to the epilepsy type: Benign focal childhood epilepsy and structural focal epilepsy. Biomed. Signal Process. Control. 2019;48:118–127. doi: 10.1016/j.bspc.2018.10.006. DOI
Sharmila A. Epilepsy detection from EEG signals: A review. J. Med Eng. Technol. 2018;42:368–380. doi: 10.1080/03091902.2018.1513576. PubMed DOI
Misiūnas A.V.M., Meškauskas T., Juozapavičius A. On the implementation and improvement of automatic EEG spike detection algorithm. Liet. Mat. Rinkinys. Ser. A. 2015;56:60–65. doi: 10.15388/LMR.A.2015.11. DOI
Jankowski M. Erosion, dilation and related operators; Proceedings of the 8th International Mathematica Symposium; Kuressaare, Estonia. 3–5 July 2006; pp. 1–10.