Monitoring MCS patients on the intensive care unit: integrating haemodynamic assessment, laboratory data, and imaging techniques for timely detection of deterioration and recovery
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38093766
PubMed Central
PMC10715942
DOI
10.1093/eurheartjsupp/suad130
PII: suad130
Knihovny.cz E-zdroje
- Klíčová slova
- ECMELLA, ICU management, Micro-axial flow pump, Monitoring, V-A ECMO,
- Publikační typ
- časopisecké články MeSH
Monitoring of the patient supported with a temporary mechanical circulatory support (tMCS) is crucial in achieving the best possible outcome. Monitoring is a continuous and labour-intensive process, as cardiogenic shock (CS) patients can rapidly deteriorate and may require new interventions within a short time period. Echocardiography and invasive haemodynamic monitoring form the cornerstone of successful tMCS support. During monitoring, it is particularly important to ensure that adequate end-organ perfusion is achieved and maintained. Here, we provide a comprehensive overview of best practices for monitoring the CS patient supported by a micro-axial flow pump, veno-arterial extracorporeal membrane oxygenation, and both devices simultaneously (ECMELLA approach). It is a complex process that encompasses device control, haemodynamic control and stabilization, monitoring of interventions, and assessment of end-organ function. The combined, continuous, and preferably protocol-based approach of echocardiography, evaluation of biomarkers, end-organ assessment, and haemodynamic parameters is crucial in assessing this critically ill CS patient population.
Department of Anaesthesia and Intensive Care IRCCS San Raffaele Scientific Institute Milan Italy
Department of Cardiology Odense University Hospital Odense Denmark
Department of Cardiology Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
Department of Cardiovascular Diseases University Hospitals Leuven Herestraat 49 3000 Leuven Belgium
Department of Cardiovascular Sciences KU Leuven Herestraat 49 3000 Leuven Belgium
Groupe Cardio Vasculaire Interventionnel Clinique Pasteur Toulouse France
Zobrazit více v PubMed
Bernhardt AM, Copeland H, Deswal A, Gluck J, Givertz MM. The International Society for Heart and Lung Transplantation/Heart Failure Society of America guideline on acute mechanical circulatory support. J Heart Lung Transplant 2023;42:e1–e64. PubMed
Møller JE, Sionis A, Aissaoui N, Ariza A, Bělohlávek J, De Backer D. et al. Step by step daily management of short-term mechanical circulatory support for cardiogenic shock in adults in the intensive cardiac care unit: a clinical consensus statement of the Association for Acute CardioVascular Care of the European Society of Cardiology SC, the European Society of Intensive Care Medicine, the European branch of the Extracorporeal Life Support Organization, and the European Association for Cardio-Thoracic Surgery. Eur Hear Journal Acute Cardiovasc Care 2023;12:475–485. PubMed
Rossello X, Vila M, Rivas-Lasarte M, Ferrero-Gregori A, Sans-Roselló J, Duran-Cambra A, et al. Impact of pulmonary artery catheter use on short- and long-term mortality in patients with cardiogenic shock. Cardiology 2017;136:61–69. PubMed
Tehrani BN, Truesdell AG, Sherwood MW, Desai S, Tran HA, Epps KC, et al. Standardized team-based care for cardiogenic shock. J Am Coll Cardiol 2019;73:1659–1669. PubMed
Coletti K, Griffiths M, Nies M, Brandal S, Everett AD, Bembea MM. Cardiac dysfunction biomarkers are associated with potential for successful separation from extracorporeal membrane oxygenation in children. ASAIO J 2023;69:198–204. PubMed PMC
Heise G, Lemmer J, Weng Y, Hübler M, Alexi-Meskishvili V, Böttcher W, et al. Biomarker responses during mid-term mechanical cardiac support in children. J Hear Lung Transplant 2008;27:150–157. PubMed
Jarai R, Fellner B, Haoula D, Jordanova N, Heinz G, Karth GD, et al. Early assessment of outcome in cardiogenic shock: relevance of plasma N-terminal pro-B-type natriuretic peptide and interleukin-6 levels. Crit Care Med 2009;37:1837–1844. PubMed
Lindholm MG, Hongisto M, Lassus J, Spinar J, Parissis J, Banaszewski M, et al. Serum lactate and a relative change in lactate as predictors of mortality in patients with cardiogenic shock—results from the CardShock study. Shock 2020;53:43–49. PubMed
Vandenbriele C, Arachchillage DJ, Frederiks P, Giustino G, Gorog DA, Gramegna M, et al. Anticoagulation for percutaneous ventricular assist device-supported cardiogenic shock: JACC review topic of the week. J Am Coll Cardiol 2022;79:1949–1962. PubMed
Baldetti L, Beneduce A, Romagnolo D, Frias A, Gramegna M, Sacchi S. et al. Impella malrotation within the left ventricle is associated with adverse in-hospital outcomes in cardiogenic shock. Cardiovasc Interv 2023;16:739–741. PubMed
Nakamura M, Imamura T, Fukui T, Hori M, Ueno Y, Uen H, et al. Impact of the angle between aortic and mitral annulus on the occurrence of hemolysis during Impella support. J Artif Organs 2020;23:207–213. PubMed
Balthazar T, Vandenbriele C, Verbrugge FH, Den Uil C, Engström A, Janssens S, et al. Managing patients with short-term mechanical circulatory support: JACC review topic of the week. J Am Coll Cardiol 2021;77:1243–1256. PubMed
Garan AR, Kanwar M, Thayer KL, Whitehead E, Zweck E, Hernandez-Montfort J. et al. Complete hemodynamic profiling with pulmonary artery catheters in cardiogenic shock is associated with lower in-hospital mortality. Heart Fail 2020;8:903–913. PubMed
O’Neill WW, Grines C, Schreiber T, Moses J, Maini B, Dixon SR, et al. Analysis of outcomes for 15,259 US patients with acute myocardial infarction cardiogenic shock (AMICS) supported with the Impella device. Am Heart J 2018;202:33–38. PubMed
Tavazzi G, Alviar CL, Colombo CNJ, Dammassa V, Price S, Vandenbriele C. How to unload the left ventricle during veno-arterial extracorporeal membrane oxygenation. Eur Hear J Cardiovasc Imaging 2023;24:696–698. PubMed
Donker DW, Sallisalmi M, Broomé M. Right-left ventricular interaction in left-sided heart failure with and without venoarterial extracorporeal membrane oxygenation support—a simulation study. ASAIO J 2021;67:297. PubMed PMC
Saxena A, Garan AR, Kapur NK, O’Neill WW, Lindenfeld J, Pinney SP, et al. Value of hemodynamic monitoring in patients with cardiogenic shock undergoing mechanical circulatory support. Circulation 2020;141:1184–1197. PubMed
Cheng R, Hachamovitch R, Kittleson M, Patel J, Arabia F, Moriguchi J, et al. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: a meta-analysis of 1,866 adult patients. Ann Thorac Surg 2014;97:610–616. PubMed
Falk L, Sallisalmi M, Lindholm JA, Lindfors M, Frenckner B, Broomé M, et al. Differential hypoxemia during venoarterial extracorporeal membrane oxygenation. Perfusion 2019;34:22–29. PubMed
Chanan EL, Bingham N, Smith DE, Nunnally ME. Early detection, prevention, and management of acute limb ischemia in adults supported with venoarterial extracorporeal membrane oxygenation. J Cardiothorac Vasc Anesth 2020;34:3125–3132. PubMed
Charbonneau F, Chahinian K, Bebawi E, Lavigueur O, Lévesque É, Lamarche Y, et al. Parameters associated with successful weaning of veno-arterial extracorporeal membrane oxygenation: a systematic review. Crit Care 2022;26:1–23. PubMed PMC
Gjesdal G, Braun O, Smith JG, Scherstén F, Tydén P. Blood lactate is a predictor of short-term mortality in patients with myocardial infarction complicated by heart failure but without cardiogenic shock. BMC Cardiovasc Disord 2018;18:1–8. PubMed PMC
Bertoldi LF, Delmas C, Hunziker P, Pappalardo F. Escalation and de-escalation of mechanical circulatory support in cardiogenic shock. Eur Heart J Suppl 2021;23:A35–A40. PubMed PMC
Nakamura M, Imamura T. Practical management of ECPELLA. Int Heart J 2020;61:1094–1096. PubMed
Kochav SM, Flores RJ, Truby LK, Topkara VK. Prognostic impact of pulmonary artery pulsatility index (PAPi) in patients with advanced heart failure: insights from the ESCAPE trial. J Card Fail 2018;24:453–459. PubMed
Bertoldi LF, Bertoglio L, Pappalardo F. Concomitant use of Impella while on peripheral veno-arterial extracorporeal membrane oxygenation: de-escalate and ambulate. Ann Cardiothorac Surg 2019;8:160–162. PubMed PMC
Esposito ML, Jablonski J, Kras A, Krasney S, Kapur NK. Maximum level of mobility with axillary deployment of the Impella 5.0 is associated with improved survival. Int J Artif Organs 2018;41:236–239. PubMed
Tschöpe C, Van Linthout S, Klein O, Mairinger T, Krackhardt F, Potapov EV, et al. Mechanical unloading by fulminant myocarditis: LV-IMPELLA, ECMELLA, BI-PELLA, and PROPELLA concepts. J Cardiovasc Transl Res 2019;12:116–123. PubMed PMC
Tavazzi G, Corradi F, Vandenbriele C, Alviar CL. Multimodality imaging in cardiogenic shock: state-of-the art. Curr Opin Crit Care 2023;29:381–391. PubMed
Kadosh BS, Berg DD, Bohula EA, Park JG, Baird-Zars VM, Alviar C, et al. Pulmonary artery catheter use and mortality in the cardiac intensive care unit. JACC Hear Fail 2023;11:903–914. PubMed PMC
Van Diepen S, Katz JN, Albert NM, Henry TD, Jacobs AK, Kapur NK, et al. Contemporary management of cardiogenic shock: a scientific statement from the American Heart Association. Circulation 2017;136:e232-68. PubMed
Balthazar T, Vandenbriele C. Handbook on mechanical circulatory support: part 9 Impella troubleshooting and resuscitation. Eur Soc Cardiol 2022; pp. 112–125. Available at: https://www.escardio.org/static-file/Escardio/Subspecialty/ACCA/Publications/ACVCHandbookMCS2022/ESC-HandbookMCS-IMPELLATROUBLESHOOTINGANDRESUSCITATION.pdf