Spatial variation in high-frequency oscillation rates and amplitudes in intracranial EEG
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 NS063039
NINDS NIH HHS - United States
R01 NS078136
NINDS NIH HHS - United States
PubMed
29367441
PubMed Central
PMC5818159
DOI
10.1212/wnl.0000000000004998
PII: WNL.0000000000004998
Knihovny.cz E-zdroje
- MeSH
- elektrokortikografie * MeSH
- kohortové studie MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku MeSH
- mozek diagnostické zobrazování patofyziologie MeSH
- periodicita MeSH
- počítačová rentgenová tomografie MeSH
- počítačové zpracování signálu MeSH
- předoperační péče MeSH
- refrakterní epilepsie diagnostické zobrazování patofyziologie terapie MeSH
- záchvaty diagnostické zobrazování patofyziologie terapie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
OBJECTIVE: To assess the variation in baseline and seizure onset zone interictal high-frequency oscillation (HFO) rates and amplitudes across different anatomic brain regions in a large cohort of patients. METHODS: Seventy patients who had wide-bandwidth (5 kHz) intracranial EEG (iEEG) recordings during surgical evaluation for drug-resistant epilepsy between 2005 and 2014 who had high-resolution MRI and CT imaging were identified. Discrete HFOs were identified in 2-hour segments of high-quality interictal iEEG data with an automated detector. Electrode locations were determined by coregistering the patient's preoperative MRI with an X-ray CT scan acquired immediately after electrode implantation and correcting electrode locations for postimplant brain shift. The anatomic locations of electrodes were determined using the Desikan-Killiany brain atlas via FreeSurfer. HFO rates and mean amplitudes were measured in seizure onset zone (SOZ) and non-SOZ electrodes, as determined by the clinical iEEG seizure recordings. To promote reproducible research, imaging and iEEG data are made freely available (msel.mayo.edu). RESULTS: Baseline (non-SOZ) HFO rates and amplitudes vary significantly in different brain structures, and between homologous structures in left and right hemispheres. While HFO rates and amplitudes were significantly higher in SOZ than non-SOZ electrodes when analyzed regardless of contact location, SOZ and non-SOZ HFO rates and amplitudes were not separable in some lobes and structures (e.g., frontal and temporal neocortex). CONCLUSIONS: The anatomic variation in SOZ and non-SOZ HFO rates and amplitudes suggests the need to assess interictal HFO activity relative to anatomically accurate normative standards when using HFOs for presurgical planning.
Zobrazit více v PubMed
Van Gompel JJ, Worrell GA, Bell ML, et al. . Intracranial electroencephalography with subdural grid electrodes: techniques, complications, and outcomes. Neurosurgery 2008;63:498–505; discussion 505–506. PubMed
Berg AT, Vickrey BG, Langfitt JT, et al. . The multicenter study of epilepsy surgery: recruitment and selection for surgery. Epilepsia 2003;44:1425–1433. PubMed
Tellez-Zenteno JF, Dhar R, Wiebe S. Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain 2005;128:1188–1198. PubMed
Bell ML, Rao S, So EL, et al. . Epilepsy surgery outcomes in temporal lobe epilepsy with a normal MRI. Epilepsia 2009;50:2053–2060. PubMed PMC
Noe K, Sulc V, Wong-Kisiel L, et al. . Long-term outcomes after nonlesional extratemporal lobe epilepsy surgery. JAMA Neurol 2013;70:1003–1008. PubMed PMC
Najm I, Jehi L, Palmini A, Gonzalez-Martinez J, Paglioli E, Bingaman W. Temporal patterns and mechanisms of epilepsy surgery failure. Epilepsia 2013;54:772–782. PubMed
Bragin A, Wilson CL, Staba RJ, Reddick M, Fried I, Engel J. Interictal high-frequency oscillations (80–500 Hz) in the human epileptic brain: entorhinal cortex. Ann Neurol 2002;52:407–415. PubMed
Jefferys JG, de La Prida LM, Wendling F, et al. . Mechanisms of physiological and epileptic HFO generation. Prog Neurobiol 2012;98:250–264. PubMed PMC
Worrell GA, Gardner AB, Stead SM, et al. . High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings. Brain 2008;131:928–937. PubMed PMC
Bragin A, Wilson CL, Almajano J, Mody I, Engel J Jr. High-frequency oscillations after status epilepticus: epileptogenesis and seizure genesis. Epilepsia 2004;45:1017–1023. PubMed
Blanco JA, Stead M, Krieger A, et al. . Unsupervised classification of high-frequency oscillations in human neocortical epilepsy and control patients. J Neurophysiol 2010;104:2900–2912. PubMed PMC
Engel J, Bragin A, Staba R, Mody I. High-frequency oscillations: what is normal and what is not? Epilepsia 2009;50:598–604. PubMed
Jacobs J, LeVan P, Chander R, Hall J, Dubeau F, Gotman J. Interictal high-frequency oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia 2008;49:1893–1907. PubMed PMC
van't Klooster MA, van Klink NE, Leijten FS, et al. . Residual fast ripples in the intraoperative corticogram predict epilepsy surgery outcome. Neurology 2015;85:120–128. PubMed
Jacobs J, Zijlmans M, Zelmann R, et al. . High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery. Ann Neurol 2010;67:209–220. PubMed PMC
Zijlmans M, Jiruska P, Zelmann R, Leijten FSS, Jefferys JGR, Gotman J. High-frequency oscillations as a new biomarker in epilepsy. Ann Neurol 2012;71:169–178. PubMed PMC
Kucewicz MT, Cimbalnik J, Matsumoto JY, et al. . High frequency oscillations are associated with cognitive processing in human recognition memory. Brain 2014;137:2231–2244. PubMed PMC
Sakura Y, Terada K, Usui K, et al. . Very high-frequency oscillations (over 1000 Hz) of somatosensory-evoked potentials directly recorded from the human brain. J Clin Neurophysiol 2009;26:414–421. PubMed
Matsumoto A, Brinkmann BH, Stead SM, et al. . Pathological and physiological high-frequency oscillations in focal human epilepsy. J Neurophysiol 2013;110:1958–1964. PubMed PMC
Marder E, Goaillard J-M. Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 2006;7:563. PubMed
Brinkmann BH, Bower MR, Stengel KA, Worrell GA, Stead M. Large-scale electrophysiology: acquisition, compression, encryption, and storage of big data. J Neurosci Methods 2009;180:185–192. PubMed PMC
Desikan RS, Ségonne F, Fischl B, et al. . An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31:968–980. PubMed
Hastreiter P, Rezk-Salama C, Soza G, et al. . Strategies for brain shift evaluation. Med image Anal 2004;8:447–464. PubMed
Hill DL, Castellano Smith AD, Simmons A, et al. . Sources of error in comparing functional magnetic resonance imaging and invasive electrophysiological recordings. J Neurosurg 2000;93:214–223. PubMed
Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002;17:825–841. PubMed
Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal 2001;5:143–156. PubMed
Yang AI, Wang X, Doyle WK, et al. . Localization of dense intracranial electrode arrays using magnetic resonance imaging. Neuroimage 2012;63:157–165. PubMed PMC
Groppe DM, Bickel S, Dykstra AR, et al. . iELVis: an open source MATLAB toolbox for localizing and visualizing human intracranial electrode data. J Neurosci Methods 2017;281:40–48. PubMed
Cimbalnik J, Hewitt A, Worrell G, Stead M. The CS algorithm: a novel method for high frequency oscillation detection in EEG. J Neurosci Methods 2017;293:6–16. PubMed PMC
Worrell GA, Jerbi K, Kobayashi K, Lina JM, Zelmann R, Le Van Quyen M. Recording and analysis techniques for high-frequency oscillations. Prog Neurobiol 2012;98:265–278. PubMed PMC
Barkmeier DT, Shah AK, Flanagan D, et al. . High inter-reviewer variability of spike detection on intracranial EEG addressed by an automated multi-channel algorithm. Clin Neurophysiol 2012;123:1088–1095. PubMed PMC
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 1995:289–300.
Igawa M, Atsumi Y, Takahashi K, et al. . Activation of visual cortex in REM sleep measured by 24-channel NIRS imaging. Psychiatry Clin Neurosci 2001;55:187–188. PubMed
Fedele T, van 't Klooster M, Burnos S, et al. . Automatic detection of high frequency oscillations during epilepsy surgery predicts seizure outcome. Clin Neurophysiol 2016;127:3066–3074. PubMed
Zijlmans M, Jacobs J, Zelmann R, Dubeau F, Gotman J. High frequency oscillations and seizure frequency in patients with focal epilepsy. Epilepsy Res 2009;85:287–292. PubMed PMC
Gliske SV, Irwin ZT, Davis KA, Sahaya K, Chestek C, Stacey WC. Universal automated high frequency oscillation detector for real-time, long term EEG. Clin Neurophysiol 2016;127:1057–1066. PubMed PMC
Alkawadri R, Gaspard N, Goncharova II, et al. . The spatial and signal characteristics of physiologic high frequency oscillations. Epilepsia 2014;55:1986–1995. PubMed PMC
Pearce A, Wulsin D, Blanco JA, Krieger A, Litt B, Stacey WC. Temporal changes of neocortical high-frequency oscillations in epilepsy. J Neurophysiol 2013;110:1167–1179. PubMed PMC
Devinsky O, Romanelli P, Orbach D, Pacia S, Doyle W. Surgical treatment of multifocal epilepsy involving eloquent cortex. Epilepsia 2003;44:718–723. PubMed
Phase-Amplitude Coupling Localizes Pathologic Brain with Aid of Behavioral Staging in Sleep
Multi-feature localization of epileptic foci from interictal, intracranial EEG