From seagrass roots to saline soils: discovery of two new genera in Lulworthiales (Sordariomycetes) from osmotically stressed habitats
Status In-Process Jazyk angličtina Země Bulharsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40842674
PubMed Central
PMC12365678
DOI
10.3897/imafungus.16.157688
PII: 157688
Knihovny.cz E-zdroje
- Klíčová slova
- Dictyoconidia, Thalassodendron, holoblastic conidiogenesis, marine, monilioid, new taxa, phylogenetics, saprobic, symbiotic,
- Publikační typ
- časopisecké články MeSH
As part of an ongoing study of marine fungi associated with seagrasses, we discovered a novel root-fungus symbiosis in the Indo-Pacific species Thalassodendronciliatum from Mauritius. Culturing its mycobionts yielded dozens of morphologically and genetically uniform isolates, all representing a previously unknown fungus. A second undescribed fungus was isolated from saline soils in Czechia. Phylogenetic analyses based on three rDNA markers confirmed both taxa as distinct, hitherto unknown lineages within the Lulworthiales, which are introduced here as Thalassodendromycespurpureus gen. et sp. nov. and Halomyrmapluriseptata gen. et sp. nov., respectively. Both species developed characteristic structures under culture conditions that enabled their morphological characterisation: T.purpureus forms distinctive clusters of dark brown monilioid hyphae, while H.pluriseptata is characterised by holoblastic conidiogenesis and solitary, dark brown, multicellular conidia. Thalassodendromyces clustered in a strongly supported clade with Spathulospora, a parasitic genus of the red macroalga Ballia, while the closest relatives of Halomyrma were identified as the asexual genera Halazoon and Halophilomyces (nom. inval. Art. 40.7). An analysis of published metabarcoding ITS rDNA data from environmental samples in the GlobalFungi database indicated that H.pluriseptata is widely distributed across temperate, subtropical, and tropical regions in the Northern and Southern Hemispheres. The species exhibits a strong preference for aquatic biomes, particularly marine and estuarine, with a few records in terrestrial ecosystems. In contrast, no record of T.purpureus was retrieved from GlobalFungi, suggesting narrower ecological specialisation, a close association with its seagrass host, and/or a restricted geographical range. Our findings expand the ecological and phylogenetic scope of the Lulworthiales, bridging marine and terrestrial fungal communities, and highlight seagrass roots as an important source of novel symbiotic marine fungi. Recent discoveries of the Lulworthiales in saline inland soils challenge their marine exclusivity and raise important questions about their ecological plasticity, dispersal mechanisms, and adaptive strategies. In light of current observations, we discuss the taxonomic challenges of the Spathulosporales and the lulworthialean fungi, integrating molecular and morphological perspectives. We address the importance of combining morphological and molecular approaches to accurately delineate new fungal taxa, as well as the value of environmental DNA metabarcoding for uncovering cryptic fungal diversity and enhancing our understanding of fungal distribution and ecological functions.
Zobrazit více v PubMed
Abdel-Wahab MA, Bahkali AH, et al. (2021) High-throughput amplicon sequencing of fungi and microbial eukaryotes associated with the seagrass DOI
Abdel-Wahab MA, Pang KL, et al. (2010) Phylogenetic evaluation of anamorphic species of DOI
Abdel-Wahab MA, Dayarathne MC, et al. (2017) New saprobic marine fungi and a new combination. Botanica Marina 60: 469–488. 10.1515/bot-2016-0118 DOI
Alzarhani AK, Clark DR, et al. (2019) Are drivers of root-associated fungal community structure context specific? The ISME Journal 13: 1330–1344. 10.1038/s41396-019-0350-y PubMed DOI PMC
Anastasiou CJ. (1963) The genus DOI
Azevedo E, Barata M, et al. (2017) PubMed DOI
Barghoorn ES, Linder DH. (1944) Marine fungi: their taxonomy and biology. Farlowia 1: 395–467. 10.5962/p.315987 DOI
Borovec O, Vohník M. (2018) Ontogenetic transition from specialized root hairs to specific root-fungus symbiosis in the dominant Mediterranean seagrass PubMed DOI PMC
Braconcini M, Gorrasi S, et al. (2024) PubMed DOI PMC
Butinar L, Sonjak S, et al. (2011) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Botanica Marina 48: 73–79. 10.1515/BOT.2005.010 DOI
Cai L, Tsui CKM, et al. (2002) Aquatic fungi from Lake Fuxian, Yunnan, China. Fungal Diversity 9: 57–70.
Campbell J. (2005) Neotypification of PubMed DOI
Campbell J, Inderbitzin P, et al. (2009) PubMed DOI
Campbell J, Shearer CA, et al. (2002)
Campbell J, Volkmann-Kohlmeyer B, et al. (2005) A re-evaluation of PubMed DOI
Cantrell SA, Casillas-Martínez L, Molina M. (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycological Research 110: 962–970. 10.1016/j.mycres.2006.06.005 PubMed DOI
Cantrell SA, Dianese JC, et al. (2011) Unusual fungal niches. Mycologia 103: 1161–1174. 10.3852/11-108 PubMed DOI
Cavaliere AR, Johnson Jr TW. (1965) A new marine ascomycete from Australia. Mycologia 57: 927–932. 10.1080/00275514.1965.12018282 DOI
Chung D, Kim H, Choi HS. (2019) Fungi in salterns. Journal of Microbiology 57(9): 717–724. 10.1007/s12275-019-9195-3 PubMed DOI
Chittavichai T, Sathitnaitham S, et al. (2025) Limitations of 18S rDNA sequence in species-level classification of dictyostelids. Microorganisms 13(2): 275. 10.3390/microorganisms13020275 PubMed DOI PMC
Cribb AB, Cribb JW. (1956) Marine fungi from Queensland. II. Papers of the Department of Botany University of Queensland 3(12): 97–105.
Crous PW, Gams W, et al. (2004) MycoBank: an online initiative to launch mycology into the 21
Crous PW, Verkley GJM, et al. (2019) Fungal Biodiversity. Westerdijk Laboratory Manual Series No. 1. Westerdijk Fungal Biodiversity Institute, Utrecht, 1–425.
Cuomo V, Vanzanella F, et al. (1985) Fungal flora of DOI
Darriba D, Taboada GL, et al. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8): 772. 10.1038/nmeth.2109 PubMed DOI PMC
Dayarathne MC, Jones EBG, et al. (2025) Towards an integrative morpho-molecular classification of the DOI
Devarajan PT, Suryanarayanan TS, Geetha V. (2002) Endophytic fungi associated with the tropical seagrass
De Hoog GS, Gerrits van den Ende AHG. (1998) Molecular diagnostics of clinical strains of filamentous PubMed DOI
Estee LM. (1913) Fungus galls on
Ettinger CL, Eisen JA. (2019) Characterization of the mycobiome of the seagrass, PubMed DOI PMC
Ettinger CL, Vann LE, Eisen JA. (2021) Global diversity and biogeography of the PubMed DOI PMC
Frasca S, Alabiso A, et al. (2024a) Diversity and Composition of DOI
Frasca S, Alabiso A, et al. (2024b) Uncovering the Fungal Community Composition of Alive and Dead PubMed DOI PMC
Frøslev TG, Kjøller R, et al. (2019) Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients? Biological Conservation 233: 201–212. 10.1016/j.biocon.2019.02.038 DOI
Gargas A, Taylor JW. (1992) Polymerase chain reaction (PCR) primers for amplifying and sequencing nuclear SSU rDNA from lichenized fungi. Mycologia 84: 589–592. 10.2307/3760327 DOI
George PBL, Lallias D, et al. (2019) Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nature Communications 10: 1107. 10.1038/s41467-019-09031-1 PubMed DOI PMC
Gnavi G, Ercole E, et al. (2014) PubMed DOI PMC
Gonçalves MFM, Abreu A, et al. (2021) Diversity of marine fungi associated with wood baits in the estuary Ria de Aveiro, with descriptions of PubMed DOI
Gonçalves MFM, Esteves AC, Alves A. (2022) Marine Fungi: Opportunities and Challenges. Encyclopedia 2: 559–577. 10.3390/encyclopedia2010037 DOI
Gostinčar C, Lenassi M, et al. (2011) Fungal adaptation to extremely high salt concentrations. Advances in Applied Microbiology 77: 71–96. 10.1016/B978-0-12-387044-5.00003-0 PubMed DOI
Gouy M, Guindon S, Gascuel O. (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27: 221–224. 10.1093/molbev/msp259 PubMed DOI
Green EP, Short FT. (2003) World atlas of seagrasses. University of California Press, Berkeley.
Guindon S, Gascuel O. (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52: 696–704. 10.1080/10635150390235520 PubMed DOI
Gunde-Cimerman N, Zalar P, et al. (2000) Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiology Ecology 32(3): 235–240. 10.1111/j.1574-6941.2000.tb00716.x PubMed DOI
Hagestad OC, Andersen JH, et al. (2020) Cultivable marine fungi from the Arctic Archipelago of Svalbard and their antibacterial activity. Mycology 11: 230–242. 10.1080/21501203.2019.1708492 PubMed DOI PMC
Hall TA. (1999) BioEdit 5.0.9: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
Harvey JBJ, Goff LJ. (2010) Genetic covariation of the marine fungal symbiont PubMed DOI
Huang X, Liu S, et al. (2020) Plant pathological condition is associated with fungal community succession triggered by root exudates in the plant-soil system. Soil Biology and Biochemistry 151: 108046. 10.1016/j.soilbio.2020.108046 DOI
Hujslová M, Kubátová A, et al. (2010) Diversity of fungal communities in saline and acidic soils in the Soos National Natural Reserve, Czech Republic. Mycological Progress 9: 1–15. 10.1007/s11557-009-0611-7 DOI
Hyde KD, Jones EBG. (1989) Ecological observations on marine fungi from the Seychelles. Botanical Journal of the Linnean Society 100: 237–254. 10.1111/j.1095-8339.1989.tb01720.x DOI
Inderbitzin P, Lim SR, et al. (2004) The phylogenetic position of PubMed DOI
Johnson TW, Sparrow FK. (1961) Fungi in Oceans and Estuaries. XXII + 668 p., 7 figs., 19 tabs., 17 pls., Weinheim: J. Cramer. Preis DM. [Reprint 2005] 10.1126/science.137.3531.662-b DOI
Johnson Jr TW. (1958) Marine fungi. IV. DOI
Jones EBG. (2011) Are there more marine fungi to be described? Botanica Marina 54: 343–354. 10.1515/bot.2011.043 DOI
Jones EBG, Johnson RG, Moss ST. (1983) Taxonomic studies of the DOI
Jones EBG, Klaysuban A, Pang K-L. (2008) Ribosomal DNA phylogeny of marine anamorphic fungi:
Jones EBG, Suetrong S, et al. (2015) Classification of marine DOI
Katoh K, Standley DM. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. 10.1093/molbev/mst010 PubMed DOI PMC
Kauff F, Lutzoni F. (2002) Phylogeny of the PubMed DOI
Kinamot V, Monotilla A. (2023) Identification and diversity of endophytic fungi associated with the seagrasses of Cebu, Central Philippines. Biotropia 30: 91–105. 10.11598/btb.2023.30.1.1861 DOI
Klopper RR, Knapp S, Kusber WH et al. [Eds] (2025) International Code of Nomenclature for algae, fungi, and plants (Madrid Code). University of Chicago Press, Chicago, 288 pp. 10.7208/chicago/9780226839479.001.0001 DOI
Kralj Kuncic M, Kogej T, et al. (2010) Morphological response of the halophilic fungal genus PubMed DOI PMC
Koch J, Jones EBG. (1984)
Koch J, Pang KL, Jones EBG. (2007) DOI
Kohlmeyer J. (1973) DOI
Kohlmeyer J. (1975) Revision of algicolous
Kohlmeyer J. (1984) Tropical marine fungi. Marine Ecology 5(4): 329–378. 10.1111/j.1439-0485.1984.tb00130.x DOI
Kohlmeyer J, Kohlmeyer E. (1979) Marine Mycology. The Higher Fungi. Academic Press, New York, 685 pp.
Kohlmeyer J, Volkmann-Kohlmeyer B. (1987a) DOI
Kohlmeyer J, Volkmann-Kohlmeyer B. (1987b) Marine fungi from Aldagra, the Galapagos, and other tropical islands. Canadian Journal of Botany 65: 571–582. 10.1139/b87-073 DOI
Kohlmeyer J, Volkmann-Kohlmeyer B. (1989) A new DOI
Kohlmeyer J, Volkmann-Kohlmeyer B. (1991) Illustrated key to the filamentous higher marine fungi. Botanica Marina 34: 1–61. 10.1515/botm.1991.34.1.1 DOI
Kohlmeyer J, Volkmann-Kohlmeyer B. (2003) Marine ascomycetes from algae and animal host. Botanica Marina 46: 285–306. 10.1515/BOT.2003.026 DOI
Kohlmeyer J, Spatafora JW, Volkmann-Kohlmeyer B. (2000) DOI
Kolátková V, Vohník M. (2019) Adaptive traits in the seagrass DOI
Kumar V, Sarma VV, et al. (2021) Ecology and evolution of marine fungi with their adaptation to climate change. Frontiers in Microbiology 12: 2527. 10.3389/fmicb.2021.719000 PubMed DOI PMC
Landvik S. (1996) DOI
Lefebvre L, Compère P, Gobert S. (2023) The formation of aegagropiles from the Mediterranean seagrass DOI
Lenassi M, Gostinčar C, et al. (2013) Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast PubMed DOI PMC
Le Renard L, Stockey RA, et al. (2021) Extending the fossil record for foliicolous PubMed DOI
Li PD, Jeewon R, et al. (2019) Metabarcoding reveals differences in fungal communities between unflooded versus tidal flat soil in coastal saline ecosystem. Science of the Total Environment 690: 911–922. 10.1016/j.scitotenv.2019.07.254 PubMed DOI
Lin M, Simons AL, et al. (2021) Landscape analyses using eDNA metabarcoding and Earth observation predict community biodiversity in California. Ecological Applications 31(6): e02379. 10.1002/eap.2379 PubMed DOI PMC
Lynum CA, Bulseco AN, et al. (2020) Microbial community response to a passive salt marsh restoration. Estuaries and Coasts 43: 1439–1455. 10.1007/s12237-020-00719-y DOI
Luo J, Zhang Z, et al. (2021) Exploring microbial resource of different rhizocompartments of dominant plants along the salinity gradient around the hypersaline Lake Ejinur. Frontiers in Microbiology 12: 698479. 10.3389/fmicb.2021.698479 PubMed DOI PMC
Maharachchikumbura SSN, Hyde KD, et al. (2016) Families of
Malloch D. (1981) Moulds: Their isolation, cultivation and identification. University of Toronto Press, Toronto, 97 pp.
Mata JL, Cebrián J. (2013) Fungal endophytes of the seagrasses DOI
Miller MA, Pfeiffer W, Schwartz T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, 1–8. 10.1109/GCE.2010.5676129 DOI
Meyers SP. (1965)
Meyers SP. (1969) DOI
Moore RT, Meyers SP. (1962) DOI
Nakagiri A. (1984) Two new species of
Nakagiri A. (1989) Marine fungi in sea foam from Japanese coast. IFO Research Communications 14: 52–79.
Nakagiri A. (1993) A new marine Ascomycete in DOI
Nakagiri A, Ito T. (1997) DOI
Nakagiri A, Tubaki K. (1983) DOI
Nambiar GR, Raveendran K. (2015) Frequency of marine fungi on animal substrates along the west coast of India. Current Research in Environmental & Applied Mycology 5: 394–397. 10.5943/cream/5/4/11 DOI
Newell S. (1981) Fungi and bacteria in or on leaves of Eelgrass ( PubMed DOI PMC
Okrasińska A, Decewicz P, et al. (2022) Marginal lands and fungi – linking the type of soil contamination with fungal community composition. Environmental Microbiology 24: 3809–3825. 10.1111/1462-2920.16007 PubMed DOI PMC
Orpurt PA, Meyers SP, et al. (1964)
Pang KL, Chen IA, et al. (2023) Arenicolous marine fungi of sandy beaches of Taiwan. Botanica Marina 66: 131–139. 10.1515/bot-2022-0057 DOI
Panno L, Voyron S, et al. (2011) Biodiversity of marine fungi associated with the seagrass
Pasqualetti M, Giovannini V, et al. (2020) Diversity and ecology of culturable marine fungi associated with DOI
Poli A, Bovio E, et al. (2020) Fungal diversity in the Neptune Forest: Comparison of the mycobiota of PubMed DOI PMC
Poli A, Prigione V, et al. (2021) Insights on PubMed DOI PMC
Rajakaruna O, Wijayawardene NN, et al. (2024) Exploring fungal diversity in seagrass ecosystems for pharmaceutical and ecological insights. Journal of Fungi 10: 627. 10.3390/jof10090627 PubMed DOI PMC
Rämä T, Nordén J, et al. (2014) Fungi ahoy! Diversity on marine wooden substrata in the high north. Fungal Ecology 8: 46–58. 10.1016/j.funeco.2013.12.002 DOI
Rambaut A. (2010) FigTree v.1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh.
R Core Team (2024) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org
Réblová M, Fournier J, Hyde KD. (2010) DOI
Réblová M, Fournier J, Štěpánek V. (2015) PubMed DOI PMC
Réblová M, Hernández-Restrepo M, et al. (2020) New insights into the systematics of PubMed DOI PMC
Réblová M, Hernández-Restrepo M, et al. (2022) Consolidation of PubMed DOI PMC
Retter A, Nilsson RH, Bourlat SJ. (2019) Exploring the taxonomic composition of two fungal communities on the Swedish west coast through metabarcoding. Biodiversity Data Journal 7: e35332. 10.3897/BDJ.7.e35332 PubMed DOI PMC
Richards TA, Jones MD, et al. (2012) Marine fungi: their ecology and molecular diversity. Annual Review of Marine Science 4: 495–522. 10.1146/annurev-marine-120710-100802 PubMed DOI
Ronquist F, Teslenko M, et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. 10.1093/sysbio/sys029 PubMed DOI PMC
Roy-Bolduc A, Bell TH, et al. (2015) Comprehensive sampling of an isolated dune system demonstrates clear patterns in soil fungal communities across a successional gradient. Environmental Microbiology Reports 7: 839–848. 10.1111/1758-2229.12312 PubMed DOI
Sakayaroj J, Preedanon S, et al. (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass DOI
Samson RA, Houbraken J, et al. (2019) Food and Indoor Fungi, 2
Sayers EW, Cavanaugh M, et al. (2019) GenBank. Nucleic Acids Research 47(D1): D94–D99. 10.1093/nar/gky989 PubMed DOI PMC
Schmidt I. (1985) Types and type collections of new higher marine and fresh-water fungi from the Baltic coast. Mycotaxon 24: 419–421.
Schoch CL, Seifert KA, et al. (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proceedings of the National Academy of Sciences 109: 6241–6246. 10.1073/pnas.1117018109 PubMed DOI PMC
Schoch CL, Sung GH, et al. (2009) The PubMed DOI
Shoemaker G, Wyllie-Echeverria S. (2013) Occurrence of rhizomal endophytes in three temperate Northeast Pacific seagrasses. Aquatic Botany 111: 71–73. 10.1016/j.aquabot.2013.05.010 DOI
Short FT, Coles R, et al. (2008)
Spatafora JW, Sung GH, et al. (2006) A five-gene phylogeny of PubMed DOI
Stamatakis A. (2014) RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC
Supaphon P, Phongpaichit S, et al. (2017) Phylogenetic community structure of fungal endophytes in seagrass species. Botanica Marina 60: 489–501. 10.1515/bot-2016-0089 DOI
Sutherland GK. (1915) Additional notes on marine pyrenomycetes. Transactions of the British Mycological Society 5: 257–263. 10.1016/S0007-1536(14)80029-6 DOI
Tasdemir D, Scarpato S, et al. (2024) Epiphytic and endophytic microbiome of the seagrass PubMed DOI
Tibell S, Tibell L, et al. (2020) Marine fungi of the Baltic Sea. Mycology 11(3): 195–213. 10.1080/21501203.2020.1729886 PubMed DOI PMC
Tomasello A, Perrone R, et al. (2018) Root hair anatomy and morphology in DOI
Torta L, Burruano S, et al. (2022) Cultivable fungal endophytes in roots, rhizomes and leaves of PubMed DOI PMC
Torta L, Lo Piccolo S, et al. (2015) PubMed DOI
Ugarellia K, Jagels A, et al. (2024) Fungal endophytes from DOI
Ullah A, Asghari B, Naeem K. (2021) Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress. Frontiers in Sustainable Food Systems 5: 618092. 10.3389/fsufs.2021.618092 DOI
van Rijssel SQ, Veen GFC, et al. (2022) Soil microbial diversity and community composition during conversion from conventional to organic agriculture. Molecular Ecology 31: 4017–4030. 10.1111/mec.16571 PubMed DOI PMC
Venkatachalam A, Thirunavukkarasu N, Suryanarayanan TS. (2015) Distribution and diversity of endophytes in seagrasses. Fungal Ecology 13: 60–65. 10.1016/j.funeco.2014.07.003 DOI
Větrovský T, Baldrian P, Morais D. (2018) SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34: 2292–2294. 10.1093/bioinformatics/bty071 PubMed DOI PMC
Větrovský T, Morais D, et al. (2020) GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Scientific Data 7: 228. 10.1038/s41597-020-00647-3 PubMed DOI PMC
Vilgalys R, Hester M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several PubMed DOI PMC
Vohník M. (2020) Ericoid mycorrhizal symbiosis: Theoretical background and methods for its comprehensive investigation. Mycorrhiza 30: 671–695. 10.1007/s00572-020-00989-1 PubMed DOI PMC
Vohník M. (2021) Bioerosion and fungal colonization of the invasive foraminiferan DOI
Vohník M. (2022) Are lulworthioid fungi dark septate endophytes of the dominant Mediterranean seagrass PubMed DOI
Vohník M, Josefiová J. (2024) Novel epiphytic root-fungus symbiosis in the Indo-Pacific seagrass PubMed DOI PMC
Vohník M, Borovec O, Kolařík M. (2016) Communities of cultivable root mycobionts of the seagrass PubMed DOI
Vohník M, Borovec O, et al. (2017) Fungal root symbionts of the seagrass DOI
Vohník M, Borovec O, et al. (2019) Extensive sampling and high-throughput sequencing reveal PubMed DOI PMC
Vohník M, Borovec O, et al. (2015) Anatomically and morphologically unique dark septate endophytic association in the roots of the Mediterranean endemic seagrass PubMed DOI
Vu D, Groenewald M, et al. (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92: 135–154. 10.1016/j.simyco.2018.05.001 PubMed DOI PMC
Walker DC, Hughes GC, Bisalputra T. (1979) A new interpretation of the interfacial zone between DOI
Wang X, Pecoraro L, et al. (2024) PubMed DOI PMC
White TJ, Bruns TD, et al. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ. (Eds) PCR Protocols: A Guide to Methods and Applications.Academic Press, New York, 315–322. 10.1016/B978-0-12-372180-8.50042-1 DOI
Wilson D. (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73: 274–276. 10.2307/3545919 DOI
Wilson IM. (1956) Some new marine DOI
Wu S, Xiong J, Yu Y. (2015) Taxonomic resolutions based on 18S rRNA genes: a case study of subclass Copepoda. PLOS ONE 10(6): e0131498. 10.1371/journal.pone.0131498 PubMed DOI PMC
Xiao R, Guo Y, et al. (2020) Stronger network connectivity with lower diversity of soil fungal community was presented in coastal marshes after sixteen years of freshwater restoration. Science of the Total Environment 744: 140623. 10.1016/j.scitotenv.2020.140623 PubMed DOI
Zalar P, de Hoog GS, et al. (2007) Phylogeny and ecology of the ubiquitous saprobe PubMed DOI PMC
Zhang Z, Schwartz S, et al. (2000) A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 7(1–2): 203–214. 10.1089/10665270050081478 PubMed DOI
Zhang W, Chen R, et al. (2021) Ecosystem functioning is linked to microbial evenness and community composition along depth gradient in a semiarid lake. Ecological Indicators 132: 108314. 10.1016/j.ecolind.2021.108314 DOI
Zhao J, Zhou X, et al. (2018) Distinct impacts of reductive soil disinfestation and chemical soil disinfestation on soil fungal communities and memberships. Applied Microbiology and Biotechnology 102: 7623–7634. 10.1007/s00253-018-9107-1 PubMed DOI