Spectral and network investigation reveals distinct power and connectivity patterns between phasic and tonic REM sleep
Status In-Process Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
RGPIN2020-04127
Natural Sciences and Engineering Research Council of Canada
PJT-175056
CIHR - Canada
PubMed
40394955
PubMed Central
PMC12351276
DOI
10.1093/sleep/zsaf133
PII: 8139669
Knihovny.cz E-zdroje
- Klíčová slova
- REM, connectivity, microstate, phasic REM, spectrum, tonic REM,
- Publikační typ
- časopisecké články MeSH
Although rapid eye movement (REM) sleep is often thought of as a singular state, it consists of two substates, phasic and tonic REM, defined by the presence (respectively absence) of bursts of rapid eye movements. These two substates have distinct EEG signatures and functional properties. However, whether they exhibit regional specificities remains unknown. Using intracranial EEG recordings from 31 patients, we analyzed expert-labeled segments from tonic and phasic REM and contrasted them with wakefulness segments. We assessed the spectral and connectivity content of these segments using Welch's method to estimate power spectral density and the phase locking value to assess functional connectivity. Overall, we found a widespread power gradient between low and high frequencies (p < 0.05, Cohen's d = 0.17 ± 0.20), with tonic REM being dominated by lower frequencies (p < 0.01, d = 0.18 ± 0.08), and phasic REM by higher frequencies (p < 0.01, d = 0.18 ± 0.19). However, some regions, such as the occipito-temporal areas as well as medial frontal regions, exhibit opposite trends. Connectivity was overall higher in all bands except in the low and high ripple frequency bands in most networks during tonic REM (p < 0.01, d = 0.08 ± 0.09) compared to phasic REM. Yet, functional connections involving the visual network were always stronger during phasic REM when compared to tonic REM. These findings highlight the spatiotemporal heterogeneity of REM sleep which is consistent with the concept of focal sleep in humans.
Analytical Neurophysiological Lab Department of Neurology Duke University Durham North Carolina USA
Analytical Neurophysiology Lab McGill University Montreal Quebec Canada
Department of Biomedical Engineering Duke Pratt School of Engineering Durham North Carolina USA
Institute of Scientific Instruments Czech Academy of Sciences Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Zobrazit více v PubMed
Aserinsky E, Kleitman N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. In: Science. Vol 118: American Association for the Advancement of Science; 1953:273–274. PubMed
Moruzzi G. Active processes in the brain stem during sleep. Harvey Lect. 1963;58:233–297. PubMed
Walker MP, van der Helm E. Overnight therapy? The role of sleep in emotional brain processing. Psychol Bull. 2009;135(5):731–748. doi: https://doi.org/ 10.1037/a0016570 PubMed DOI PMC
Peever J, Fuller PM. The biology of REM sleep. Curr Biol. 2017;27(22):R1237–R1248. doi: https://doi.org/ 10.1016/j.cub.2017.10.026 PubMed DOI
Andrillon T, Pressnitzer D, Leger D, Kouider S. Formation and suppression of acoustic memories during human sleep. Nat Commun. 2017;8(1):179. doi: https://doi.org/ 10.1038/s41467-017-00071-z PubMed DOI PMC
van den Berg NH, Gibbings A, Baena D, et al. Eye movements during phasic versus tonic rapid eye movement sleep are biomarkers of dissociable electroencephalogram processes for the consolidation of novel problem-solving skills. Sleep. 2023;46(8):zsad151. doi: https://doi.org/ 10.1093/sleep/zsad151 PubMed DOI
Academy of Sleep Medicine A. The AASM manual for the scoring of sleep and associated events summary of updates in version 2.5. J Clin Sleep Med. 2020.
Simor P, van der Wijk G, Nobili L, Peigneux P. The microstructure of REM sleep: Why phasic and tonic? Sleep Med Rev. 2020;52:101305. doi: https://doi.org/ 10.1016/j.smrv.2020.101305 PubMed DOI
Price LJ, Kremen I. Variations in behavioral response threshold within the REM period of human sleep. Psychophysiology. 1980;17(2):133–140. doi: https://doi.org/ 10.1111/j.1469-8986.1980.tb00125.x PubMed DOI
Ermis U, Krakow K, Voss U. Arousal thresholds during human tonic and phasic REM sleep. J Sleep Res. 2010;19(3):400–406. doi: https://doi.org/ 10.1111/j.1365-2869.2010.00831.x PubMed DOI
Sallinen M, Kaartinen J, Lyytinen H. Processing of auditory stimuli during tonic and phasic periods of REM sleep as revealed by event-related brain potentials. J Sleep Res. 1996;5(4):220–228. doi: https://doi.org/ 10.1111/j.1365-2869.1996.00220.x PubMed DOI
Wehrle R, Kaufmann C, Wetter TC, et al. Functional microstates within human REM sleep: first evidence from fMRI of a thalamocortical network specific for phasic REM periods. Eur J Neurosci. 2007;25(3):863–871. doi: https://doi.org/ 10.1111/j.1460-9568.2007.05314.x PubMed DOI
Takahara M, Nittono H, Hori T. Comparison of the event-related potentials between tonic and phasic periods of rapid eye movement sleep. Psychiatry Clin Neurosci. 2002;56(3):257–258. doi: https://doi.org/ 10.1046/j.1440-1819.2002.00999.x PubMed DOI
Takahara M, Nittono H, Hori T. Effect of voluntary attention on auditory processing during REM sleep. Sleep. 2006;29(7):975–982. doi: https://doi.org/ 10.1093/sleep/29.7.975 PubMed DOI
Stuart K, Conduit R. Auditory inhibition of rapid eye movements and dream recall from REM sleep. Sleep. 2009;32(3):399–408. doi: https://doi.org/ 10.1093/sleep/32.3.399 PubMed DOI PMC
Berger RJ, Oswald I. Eye movements during active and passive dreams. Science. 1962;137(3530):601. doi: https://doi.org/ 10.1126/science.137.3530.601 PubMed DOI
Bosman CA, Lansink CS, Pennartz CMA. Functions of gamma-band synchronization in cognition: From single circuits to functional diversity across cortical and subcortical systems. Eur J Neurosci. 2014;39:1982–1999. doi: https://doi.org/ 10.1111/ejn.12606 PubMed DOI
Herrmann CS, Frund I, Lenz D. Human gamma-band activity: a review on cognitive and behavioral correlates and network models. Neurosci Biobehav Rev. 2010;34(7):981–992. doi: https://doi.org/ 10.1016/j.neubiorev.2009.09.001 PubMed DOI
Modolo J, Hassan M, Wendling F, Benquet P. Decoding the circuitry of consciousness: From local microcircuits to brain-scale networks. Netw Neurosci. 2020;4(2):315–337. doi: https://doi.org/ 10.1162/netn_a_00119 PubMed DOI PMC
Simor P, Gombos F, Blaskovich B, Bódizs R. Long-range alpha and beta and short-range gamma EEG synchronization distinguishes phasic and tonic REM periods. Sleep. 2018;41(3):zsx210. doi: 10.1093/sleep/zsx210 PubMed DOI
Simor P, van Der Wijk G, Gombos F, Kovács I. The paradox of rapid eye movement sleep in the light of oscillatory activity and cortical synchronization during phasic and tonic microstates. Neuroimage. 2019;202:116066. doi: https://doi.org/ 10.1016/j.neuroimage.2019.116066 PubMed DOI
Muthukumaraswamy SD. High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front Hum Neurosci. 2013;7:138. doi: https://doi.org/ 10.3389/fnhum.2013.00138 PubMed DOI PMC
He B, Sohrabpour A, Brown E, Liu Z. Electrophysiological source imaging: a noninvasive window to brain dynamics. Annu Rev Biomed Eng. 2018;20:171–196. doi: https://doi.org/ 10.1146/annurev-bioeng-062117-120853 PubMed DOI PMC
Afnan J, von Ellenrieder N, Lina JM, et al. Validating MEG source imaging of resting state oscillatory patterns with an intracranial EEG atlas. Neuroimage. 2023;274:120158. doi: https://doi.org/ 10.1016/j.neuroimage.2023.120158 PubMed DOI
Andrillon T, Nir Y, Staba RJ, et al. Sleep spindles in humans: Insights from intracranial EEG and unit recordings. J Neurosci. 2011;31:17821–17834. doi: https://doi.org/ 10.1523/JNEUROSCI.2604-11.2011. PubMed DOI PMC
von Ellenrieder N, Gotman J, Zelmann R, et al. How the human brain sleeps: direct cortical recordings of normal brain activity. Ann Neurol. 2020;87:289–301. doi: https://doi.org/ 10.1002/ana.25651 PubMed DOI
Nir Y, Staba RJ, Andrillon T, et al. Regional slow waves and spindles in human sleep. Neuron. 2011;70:153–169. doi: https://doi.org/ 10.1016/j.neuron.2011.02.043 PubMed DOI PMC
Peter-Derex L, von Ellenrieder N, van Rosmalen F, et al. Regional variability in intracerebral properties of NREM to REM sleep transitions in humans. Proc Natl Acad Sci U S A. 2023;120(26):e2300387120. doi: https://doi.org/ 10.1073/pnas.2300387120 PubMed DOI PMC
Gross DW, Gotman J. Correlation of high-frequency oscillations with the sleep-wake cycle and cognitive activity in humans. Neuroscience. 1999;94(4):1005–1018. doi: https://doi.org/ 10.1016/s0306-4522(99)00343-7 PubMed DOI
Nishida M, Uchida S, Hirai N, et al. High frequency activities in the human orbitofrontal cortex in sleep-wake cycle. Neurosci Lett. 2005;379:110–115. doi: https://doi.org/ 10.1016/j.neulet.2004.12.069 PubMed DOI
De Carli F, Proserpio P, Morrone E, et al. Activation of the motor cortex during phasic rapid eye movement sleep. Ann Neurol. 2016;79:326–330. doi: https://doi.org/ 10.1002/ana.24556 PubMed DOI PMC
Simor P, Szalardy O, Gombos F, et al. REM sleep microstates in the human anterior thalamus. J Neurosci. 2021;41(26):5677–5686. doi: https://doi.org/ 10.1523/JNEUROSCI.1899-20.2021 PubMed DOI PMC
von Ellenrieder N, Gotman J, Zelmann R, et al. How the human brain sleeps: direct cortical recordings of normal brain activity. In: Annals of Neurology. Vol 87: John Wiley and Sons Inc.; 2020:289–301. PubMed
Campana C, Zubler F, Gibbs S, et al. Suppression of interictal spikes during phasic rapid eye movement sleep: a quantitative stereo-electroencephalography study. J Sleep Res. 2017;26(5):606–613. doi: https://doi.org/ 10.1111/jsr.12533 PubMed DOI
Frauscher B, von Ellenrieder N, Dolezalova I, Bouhadoun S, Gotman J, Peter-Derex L. Rapid eye movement sleep sawtooth waves are associated with widespread cortical activations. J Neurosci. 2020;40(46):8900–8912. doi: https://doi.org/ 10.1523/JNEUROSCI.1586-20.2020 PubMed DOI PMC
Frauscher B, von Ellenrieder N, Zelmann R, et al. Atlas of the normal intracranial electroencephalogram: neurophysiological awake activity in different cortical areas. Brain. 2018;141(4):1130–1144. doi: https://doi.org/ 10.1093/brain/awy035 PubMed DOI
Zelmann R, Frauscher B, Aro RP, Gueziri HE, Collins DL. SEEGAtlas: a framework for the identification and classification of depth electrodes using clinical images. J Neural Eng. 2023;20(3):036021. doi: https://doi.org/ 10.1088/1741-2552/acd6bd PubMed DOI
Yeo BT, Krienen FM, Sepulcre J, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(3):1125–1165. doi: https://doi.org/ 10.1152/jn.00338.2011 PubMed DOI PMC
Avigdor T, Ren G, Abdallah C, Dubeau F, Grova C, Frauscher B. The awakening brain is characterized by a widespread and spatiotemporally heterogeneous increase in high frequencies. Adv Sci (Weinh). 2025;12:e2409608. doi: https://doi.org/ 10.1002/advs.202409608 PubMed DOI PMC
Snipes S. Iota oscillations (25-35 Hz) during wake and REM sleep in children and young adults. bioRxiv. 2024: 2024.2008.2006.606898. PubMed
Lachaux JP, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain signals. Hum Brain Mapp. 1999;8(4):194–208. doi: https://doi.org/ 10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c PubMed DOI PMC
Banks MI, Krause BM, Endemann CM, et al. Cortical functional connectivity indexes arousal state during sleep and anesthesia. Neuroimage. 2020;211:116627. doi: https://doi.org/ 10.1016/j.neuroimage.2020.116627 PubMed DOI PMC
von Ellenrieder N, Beltrachini L, Muravchik CH. Electrode and brain modeling in stereo-EEG. Clin Neurophysiol. 2012;123(9):1745–1754. doi: https://doi.org/ 10.1016/j.clinph.2012.01.019 PubMed DOI
Stam CJ, Nolte G, Daffertshofer A. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp. 2007;28:1178–1193. doi: https://doi.org/ 10.1002/hbm.20346 PubMed DOI PMC
Jian WJ, Chen MY, McFarland DJ. EEG based zero-phase phase-locking value (PLV) and effects of spatial filtering during actual movement. Brain Res Bull. 2017;130:156–164. doi: https://doi.org/ 10.1016/j.brainresbull.2017.01.023 PubMed DOI PMC
Simor P, Gombos F, Szakadat S, Sandor P, Bodizs R. EEG spectral power in phasic and tonic REM sleep: different patterns in young adults and children. J Sleep Res. 2016;25(3):269–277. doi: https://doi.org/ 10.1111/jsr.12376 PubMed DOI
Corsi-Cabrera M, Guevara MA, del Rio-Portilla Y. Brain activity and temporal coupling related to eye movements during REM sleep: EEG and MEG results. Brain Res. 2008;1235:82–91. doi: https://doi.org/ 10.1016/j.brainres.2008.06.052 PubMed DOI
Abe T, Matsuoka T, Ogawa K, Nittono H, Hori T. Gamma band EEG activity is enhanced after the occurrence of rapid eye movement during human REM sleep. Sleep Biol Rhythms. 2008;6(1):26–33. doi: https://doi.org/ 10.1111/j.1479-8425.2008.00332.x DOI
Frauscher B, Gschliesser V, Brandauer E, Ulmer H, Poewe W, Hogl B. The relation between abnormal behaviors and REM sleep microstructure in patients with REM sleep behavior disorder. Sleep Med. 2009;10(2):174–181. doi: https://doi.org/ 10.1016/j.sleep.2008.01.003 PubMed DOI
Sunwoo JS, Cha KS, Byun JI, et al. Abnormal activation of motor cortical network during phasic REM sleep in idiopathic REM sleep behavior disorder. Sleep. 2019;42(2):zsy227. doi: https://doi.org/ 10.1093/sleep/zsy227 PubMed DOI
Ogawa K, Abe T, Nittono H, Yamazaki K, Hori T. Phasic brain activity related to the onset of rapid eye movements during rapid eye movement sleep: study of event-related potentials and standardized low-resolution brain electromagnetic tomography. J Sleep Res. 2010;19(3):407–414. doi: https://doi.org/ 10.1111/j.1365-2869.2009.00809.x PubMed DOI
Hong CC, Harris JC, Pearlson GD, et al. fMRI evidence for multisensory recruitment associated with rapid eye movements during sleep. Hum Brain Mapp. 2009;30(5):1705–1722. doi: https://doi.org/ 10.1002/hbm.20635 PubMed DOI PMC
Hong CC, Gillin JC, Dow BM, Wu J, Buchsbaum MS. Localized and lateralized cerebral glucose metabolism associated with eye movements during REM sleep and wakefulness: a positron emission tomography (PET) study. Sleep. 1995;18(7):570–580. doi: https://doi.org/ 10.1093/sleep/18.7.570 PubMed DOI
Siclari F, Baird B, Perogamvros L, et al. The neural correlates of dreaming. In: Nature Neuroscience. Vol 20: Nature Publishing Group; 2017:872–878. PubMed PMC
Foulkes D, Bradley L. Phasic activity and dream recall in 5- to 8-yr.-olds. Percept Mot Skills. 1989;69(1):290. doi: https://doi.org/ 10.2466/pms.1989.69.1.290 PubMed DOI
Hodoba D, Hrabric K, Krmpotic P, Brecic P, Kujundzic-Tiljak M, Majdaneic Z. Dream recall after night awakenings from tonic/phasic REM sleep. Coll Antropol. 2008;32(Suppl 1):69–73. PubMed
Hong CC, Potkin SG, Antrobus JS, Dow BM, Callaghan GM, Gillin JC. REM sleep eye movement counts correlate with visual imagery in dreaming: a pilot study. Psychophysiology. 1997;34(3):377–381. doi: https://doi.org/ 10.1111/j.1469-8986.1997.tb02408.x PubMed DOI
Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron. 2017;93(4):747–765. doi: https://doi.org/ 10.1016/j.neuron.2017.01.014 PubMed DOI PMC
Andrillon T, Nir Y, Cirelli C, Tononi G, Fried I. Single-neuron activity and eye movements during human REM sleep and awake vision. In. Nature Communications. Vol 6: Nature Publishing Group; 2015:1–10. PubMed PMC
Churchill L, Chen YC, Lewis SJG, Matar E. Understanding REM Sleep Behavior Disorder through Functional MRI: A Systematic Review. Mov Disord. 2024;39(10):1679–1696. doi: https://doi.org/ 10.1002/mds.29898 PubMed DOI
Peter-Derex L, Avigdor T, Rheims S, et al. Enhanced thalamocortical functional connectivity during rapid-eye-movement sleep sawtooth waves. Sleep. 2023;46(6):zsad097. doi: https://doi.org/ 10.1093/sleep/zsad097 PubMed DOI
Saalmann YB, Kastner S. Cognitive and perceptual functions of the visual thalamus. Neuron. 2011;71(2):209–223. doi: https://doi.org/ 10.1016/j.neuron.2011.06.027 PubMed DOI PMC
Titone S, Samogin J, Peigneux P, Swinnen SP, Mantini D, Albouy G. Frequency-dependent connectivity in large-scale resting-state brain networks during sleep. Eur J Neurosci. 2024;59(4):686–702. doi: https://doi.org/ 10.1111/ejn.16080 PubMed DOI
Bastuji H, Daoud M, Magnin M, Garcia-Larrea L. REM sleep remains paradoxical: sub-states determined by thalamo-cortical and cortico-cortical functional connectivity. J Physiol. 2024;602:5269–5287. doi: https://doi.org/ 10.1113/JP286074 PubMed DOI
Burke JF, Ramayya AG, Kahana MJ. Human intracranial high-frequency activity during memory processing: neural oscillations or stochastic volatility? Curr Opin Neurobiol. 2015;31:104–110. doi: https://doi.org/ 10.1016/j.conb.2014.09.003 PubMed DOI PMC
Kucewicz MT, Cimbalnik J, Garcia-Salinas JS, Brazdil M, Worrell GA. High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams? Brain. 2024;147(9):2966–2982. doi: https://doi.org/ 10.1093/brain/awae159 PubMed DOI PMC
Ray S, Niebur E, Hsiao SS, Sinai A, Crone NE. High-frequency gamma activity (80-150Hz) is increased in human cortex during selective attention. Clin Neurophysiol. 2008;119(1):116–133. doi: https://doi.org/ 10.1016/j.clinph.2007.09.136 PubMed DOI PMC
Duraivel S, Rahimpour S, Chiang CH, et al. High-resolution neural recordings improve the accuracy of speech decoding. Nat Commun. 2023;14(1):6938. doi: https://doi.org/ 10.1038/s41467-023-42555-1 PubMed DOI PMC
John ER. The neurophysics of consciousness. Brain Res Brain Res Rev. 2002;39(1):1–28. doi: https://doi.org/ 10.1016/s0165-0173(02)00142-x PubMed DOI
Ferrari-Marinho T, Perucca P, Amiri M, Dubeau F, Gotman J, Caboclo LO. High-frequency oscillations in the scalp EEG of intensive care unit patients with altered level of consciousness. J Clin Neurophysiol. 2020;37(3):246–252. doi: https://doi.org/ 10.1097/WNP.0000000000000624 PubMed DOI
Dickey CW, Verzhbinsky IA, Jiang X, et al. Cortical ripples during NREM sleep and waking in humans. J Neurosci. 2022;42(42):7931–7946. doi: https://doi.org/ 10.1523/JNEUROSCI.0742-22.2022 PubMed DOI PMC
Dickey CW, Verzhbinsky IA, Jiang X, et al. Widespread ripples synchronize human cortical activity during sleep, waking, and memory recall. Proc Natl Acad Sci U S A. 2022;119(28):e2107797119. doi: https://doi.org/ 10.1073/pnas.2107797119 PubMed DOI PMC
Frauscher B, von Ellenrieder N, Dolezalova I, Bouhadoun S, Gotman J, Peter-Derex L. REM sleep sawtooth waves are associated with widespread cortical activations. J Neurosci. 2020;40:8900–8912. doi: https://doi.org/ 10.1523/jneurosci.1586-20.2020 PubMed DOI PMC
Frauscher B, Von Ellenrieder N, Dubeau F, Gotman J. EEG desynchronization during phasic REM sleep suppresses interictal epileptic activity in humans. In: Epilepsia. Vol 57: Blackwell Publishing Inc.; 2016:879–888. PubMed PMC
Ng M, Pavlova M. Why are seizures rare in rapid eye movement sleep? Review of the frequency of seizures in different sleep stages. Epilepsy Res Treat. 2013;2013:932790. doi: https://doi.org/ 10.1155/2013/932790 PubMed DOI PMC