Spectral and network investigation reveals distinct power and connectivity patterns between phasic and tonic REM sleep

. 2025 Aug 14 ; 48 (8) : .

Status In-Process Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40394955

Grantová podpora
RGPIN2020-04127 Natural Sciences and Engineering Research Council of Canada
PJT-175056 CIHR - Canada

Although rapid eye movement (REM) sleep is often thought of as a singular state, it consists of two substates, phasic and tonic REM, defined by the presence (respectively absence) of bursts of rapid eye movements. These two substates have distinct EEG signatures and functional properties. However, whether they exhibit regional specificities remains unknown. Using intracranial EEG recordings from 31 patients, we analyzed expert-labeled segments from tonic and phasic REM and contrasted them with wakefulness segments. We assessed the spectral and connectivity content of these segments using Welch's method to estimate power spectral density and the phase locking value to assess functional connectivity. Overall, we found a widespread power gradient between low and high frequencies (p < 0.05, Cohen's d = 0.17 ± 0.20), with tonic REM being dominated by lower frequencies (p < 0.01, d = 0.18 ± 0.08), and phasic REM by higher frequencies (p < 0.01, d = 0.18 ± 0.19). However, some regions, such as the occipito-temporal areas as well as medial frontal regions, exhibit opposite trends. Connectivity was overall higher in all bands except in the low and high ripple frequency bands in most networks during tonic REM (p < 0.01, d = 0.08 ± 0.09) compared to phasic REM. Yet, functional connections involving the visual network were always stronger during phasic REM when compared to tonic REM. These findings highlight the spatiotemporal heterogeneity of REM sleep which is consistent with the concept of focal sleep in humans.

Zobrazit více v PubMed

Aserinsky  E, Kleitman  N.  Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. In: Science. Vol 118: American Association for the Advancement of Science; 1953:273–274. PubMed

Moruzzi  G.  Active processes in the brain stem during sleep. Harvey Lect.  1963;58:233–297. PubMed

Walker  MP, van der Helm  E.  Overnight therapy? The role of sleep in emotional brain processing. Psychol Bull.  2009;135(5):731–748. doi: https://doi.org/ 10.1037/a0016570 PubMed DOI PMC

Peever  J, Fuller  PM.  The biology of REM sleep. Curr Biol.  2017;27(22):R1237–R1248. doi: https://doi.org/ 10.1016/j.cub.2017.10.026 PubMed DOI

Andrillon  T, Pressnitzer  D, Leger  D, Kouider  S.  Formation and suppression of acoustic memories during human sleep. Nat Commun.  2017;8(1):179. doi: https://doi.org/ 10.1038/s41467-017-00071-z PubMed DOI PMC

van den Berg  NH, Gibbings  A, Baena  D, et al.  Eye movements during phasic versus tonic rapid eye movement sleep are biomarkers of dissociable electroencephalogram processes for the consolidation of novel problem-solving skills. Sleep.  2023;46(8):zsad151. doi: https://doi.org/ 10.1093/sleep/zsad151 PubMed DOI

Academy of Sleep Medicine  A.  The AASM manual for the scoring of sleep and associated events summary of updates in version 2.5. J Clin Sleep Med.  2020.

Simor  P, van der Wijk  G, Nobili  L, Peigneux  P.  The microstructure of REM sleep: Why phasic and tonic? Sleep Med Rev.  2020;52:101305. doi: https://doi.org/ 10.1016/j.smrv.2020.101305 PubMed DOI

Price  LJ, Kremen  I.  Variations in behavioral response threshold within the REM period of human sleep. Psychophysiology.  1980;17(2):133–140. doi: https://doi.org/ 10.1111/j.1469-8986.1980.tb00125.x PubMed DOI

Ermis  U, Krakow  K, Voss  U.  Arousal thresholds during human tonic and phasic REM sleep. J Sleep Res.  2010;19(3):400–406. doi: https://doi.org/ 10.1111/j.1365-2869.2010.00831.x PubMed DOI

Sallinen  M, Kaartinen  J, Lyytinen  H.  Processing of auditory stimuli during tonic and phasic periods of REM sleep as revealed by event-related brain potentials. J Sleep Res.  1996;5(4):220–228. doi: https://doi.org/ 10.1111/j.1365-2869.1996.00220.x PubMed DOI

Wehrle  R, Kaufmann  C, Wetter  TC, et al.  Functional microstates within human REM sleep: first evidence from fMRI of a thalamocortical network specific for phasic REM periods. Eur J Neurosci.  2007;25(3):863–871. doi: https://doi.org/ 10.1111/j.1460-9568.2007.05314.x PubMed DOI

Takahara  M, Nittono  H, Hori  T.  Comparison of the event-related potentials between tonic and phasic periods of rapid eye movement sleep. Psychiatry Clin Neurosci.  2002;56(3):257–258. doi: https://doi.org/ 10.1046/j.1440-1819.2002.00999.x PubMed DOI

Takahara  M, Nittono  H, Hori  T.  Effect of voluntary attention on auditory processing during REM sleep. Sleep.  2006;29(7):975–982. doi: https://doi.org/ 10.1093/sleep/29.7.975 PubMed DOI

Stuart  K, Conduit  R.  Auditory inhibition of rapid eye movements and dream recall from REM sleep. Sleep.  2009;32(3):399–408. doi: https://doi.org/ 10.1093/sleep/32.3.399 PubMed DOI PMC

Berger  RJ, Oswald  I.  Eye movements during active and passive dreams. Science.  1962;137(3530):601. doi: https://doi.org/ 10.1126/science.137.3530.601 PubMed DOI

Bosman  CA, Lansink  CS, Pennartz  CMA.  Functions of gamma-band synchronization in cognition: From single circuits to functional diversity across cortical and subcortical systems. Eur J Neurosci.  2014;39:1982–1999. doi: https://doi.org/ 10.1111/ejn.12606 PubMed DOI

Herrmann  CS, Frund  I, Lenz  D.  Human gamma-band activity: a review on cognitive and behavioral correlates and network models. Neurosci Biobehav Rev.  2010;34(7):981–992. doi: https://doi.org/ 10.1016/j.neubiorev.2009.09.001 PubMed DOI

Modolo  J, Hassan  M, Wendling  F, Benquet  P.  Decoding the circuitry of consciousness: From local microcircuits to brain-scale networks. Netw Neurosci. 2020;4(2):315–337. doi: https://doi.org/ 10.1162/netn_a_00119 PubMed DOI PMC

Simor  P, Gombos  F, Blaskovich  B, Bódizs  R.  Long-range alpha and beta and short-range gamma EEG synchronization distinguishes phasic and tonic REM periods. Sleep.  2018;41(3):zsx210. doi: 10.1093/sleep/zsx210 PubMed DOI

Simor  P, van Der Wijk  G, Gombos  F, Kovács  I.  The paradox of rapid eye movement sleep in the light of oscillatory activity and cortical synchronization during phasic and tonic microstates. Neuroimage.  2019;202:116066. doi: https://doi.org/ 10.1016/j.neuroimage.2019.116066 PubMed DOI

Muthukumaraswamy  SD.  High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front Hum Neurosci.  2013;7:138. doi: https://doi.org/ 10.3389/fnhum.2013.00138 PubMed DOI PMC

He  B, Sohrabpour  A, Brown  E, Liu  Z.  Electrophysiological source imaging: a noninvasive window to brain dynamics. Annu Rev Biomed Eng.  2018;20:171–196. doi: https://doi.org/ 10.1146/annurev-bioeng-062117-120853 PubMed DOI PMC

Afnan  J, von Ellenrieder  N, Lina  JM, et al.  Validating MEG source imaging of resting state oscillatory patterns with an intracranial EEG atlas. Neuroimage.  2023;274:120158. doi: https://doi.org/ 10.1016/j.neuroimage.2023.120158 PubMed DOI

Andrillon  T, Nir  Y, Staba  RJ, et al.  Sleep spindles in humans: Insights from intracranial EEG and unit recordings. J Neurosci. 2011;31:17821–17834. doi: https://doi.org/ 10.1523/JNEUROSCI.2604-11.2011. PubMed DOI PMC

von Ellenrieder  N, Gotman  J, Zelmann  R, et al.  How the human brain sleeps: direct cortical recordings of normal brain activity. Ann Neurol.  2020;87:289–301. doi: https://doi.org/ 10.1002/ana.25651 PubMed DOI

Nir  Y, Staba  RJ, Andrillon  T, et al.  Regional slow waves and spindles in human sleep. Neuron.  2011;70:153–169. doi: https://doi.org/ 10.1016/j.neuron.2011.02.043 PubMed DOI PMC

Peter-Derex  L, von Ellenrieder  N, van Rosmalen  F, et al.  Regional variability in intracerebral properties of NREM to REM sleep transitions in humans. Proc Natl Acad Sci U S A.  2023;120(26):e2300387120. doi: https://doi.org/ 10.1073/pnas.2300387120 PubMed DOI PMC

Gross  DW, Gotman  J.  Correlation of high-frequency oscillations with the sleep-wake cycle and cognitive activity in humans. Neuroscience.  1999;94(4):1005–1018. doi: https://doi.org/ 10.1016/s0306-4522(99)00343-7 PubMed DOI

Nishida  M, Uchida  S, Hirai  N, et al.  High frequency activities in the human orbitofrontal cortex in sleep-wake cycle. Neurosci Lett.  2005;379:110–115. doi: https://doi.org/ 10.1016/j.neulet.2004.12.069 PubMed DOI

De Carli  F, Proserpio  P, Morrone  E, et al.  Activation of the motor cortex during phasic rapid eye movement sleep. Ann Neurol.  2016;79:326–330. doi: https://doi.org/ 10.1002/ana.24556 PubMed DOI PMC

Simor  P, Szalardy  O, Gombos  F, et al.  REM sleep microstates in the human anterior thalamus. J Neurosci.  2021;41(26):5677–5686. doi: https://doi.org/ 10.1523/JNEUROSCI.1899-20.2021 PubMed DOI PMC

von Ellenrieder  N, Gotman  J, Zelmann  R, et al.  How the human brain sleeps: direct cortical recordings of normal brain activity. In: Annals of Neurology. Vol 87: John Wiley and Sons Inc.; 2020:289–301. PubMed

Campana  C, Zubler  F, Gibbs  S, et al.  Suppression of interictal spikes during phasic rapid eye movement sleep: a quantitative stereo-electroencephalography study. J Sleep Res.  2017;26(5):606–613. doi: https://doi.org/ 10.1111/jsr.12533 PubMed DOI

Frauscher  B, von Ellenrieder  N, Dolezalova  I, Bouhadoun  S, Gotman  J, Peter-Derex  L.  Rapid eye movement sleep sawtooth waves are associated with widespread cortical activations. J Neurosci.  2020;40(46):8900–8912. doi: https://doi.org/ 10.1523/JNEUROSCI.1586-20.2020 PubMed DOI PMC

Frauscher  B, von Ellenrieder  N, Zelmann  R, et al.  Atlas of the normal intracranial electroencephalogram: neurophysiological awake activity in different cortical areas. Brain.  2018;141(4):1130–1144. doi: https://doi.org/ 10.1093/brain/awy035 PubMed DOI

Zelmann  R, Frauscher  B, Aro  RP, Gueziri  HE, Collins  DL.  SEEGAtlas: a framework for the identification and classification of depth electrodes using clinical images. J Neural Eng.  2023;20(3):036021. doi: https://doi.org/ 10.1088/1741-2552/acd6bd PubMed DOI

Yeo  BT, Krienen  FM, Sepulcre  J, et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol.  2011;106(3):1125–1165. doi: https://doi.org/ 10.1152/jn.00338.2011 PubMed DOI PMC

Avigdor  T, Ren  G, Abdallah  C, Dubeau  F, Grova  C, Frauscher  B.  The awakening brain is characterized by a widespread and spatiotemporally heterogeneous increase in high frequencies. Adv Sci (Weinh). 2025;12:e2409608. doi: https://doi.org/ 10.1002/advs.202409608 PubMed DOI PMC

Snipes  S.  Iota oscillations (25-35 Hz) during wake and REM sleep in children and young adults. bioRxiv. 2024: 2024.2008.2006.606898. PubMed

Lachaux  JP, Rodriguez  E, Martinerie  J, Varela  FJ.  Measuring phase synchrony in brain signals. Hum Brain Mapp.  1999;8(4):194–208. doi: https://doi.org/ 10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c PubMed DOI PMC

Banks  MI, Krause  BM, Endemann  CM, et al.  Cortical functional connectivity indexes arousal state during sleep and anesthesia. Neuroimage.  2020;211:116627. doi: https://doi.org/ 10.1016/j.neuroimage.2020.116627 PubMed DOI PMC

von Ellenrieder  N, Beltrachini  L, Muravchik  CH.  Electrode and brain modeling in stereo-EEG. Clin Neurophysiol.  2012;123(9):1745–1754. doi: https://doi.org/ 10.1016/j.clinph.2012.01.019 PubMed DOI

Stam  CJ, Nolte  G, Daffertshofer  A.  Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp.  2007;28:1178–1193. doi: https://doi.org/ 10.1002/hbm.20346 PubMed DOI PMC

Jian  WJ, Chen  MY, McFarland  DJ.  EEG based zero-phase phase-locking value (PLV) and effects of spatial filtering during actual movement. Brain Res Bull.  2017;130:156–164. doi: https://doi.org/ 10.1016/j.brainresbull.2017.01.023 PubMed DOI PMC

Simor  P, Gombos  F, Szakadat  S, Sandor  P, Bodizs  R.  EEG spectral power in phasic and tonic REM sleep: different patterns in young adults and children. J Sleep Res.  2016;25(3):269–277. doi: https://doi.org/ 10.1111/jsr.12376 PubMed DOI

Corsi-Cabrera  M, Guevara  MA, del Rio-Portilla  Y.  Brain activity and temporal coupling related to eye movements during REM sleep: EEG and MEG results. Brain Res.  2008;1235:82–91. doi: https://doi.org/ 10.1016/j.brainres.2008.06.052 PubMed DOI

Abe  T, Matsuoka  T, Ogawa  K, Nittono  H, Hori  T.  Gamma band EEG activity is enhanced after the occurrence of rapid eye movement during human REM sleep. Sleep Biol Rhythms. 2008;6(1):26–33. doi: https://doi.org/ 10.1111/j.1479-8425.2008.00332.x DOI

Frauscher  B, Gschliesser  V, Brandauer  E, Ulmer  H, Poewe  W, Hogl  B.  The relation between abnormal behaviors and REM sleep microstructure in patients with REM sleep behavior disorder. Sleep Med.  2009;10(2):174–181. doi: https://doi.org/ 10.1016/j.sleep.2008.01.003 PubMed DOI

Sunwoo  JS, Cha  KS, Byun  JI, et al.  Abnormal activation of motor cortical network during phasic REM sleep in idiopathic REM sleep behavior disorder. Sleep.  2019;42(2):zsy227. doi: https://doi.org/ 10.1093/sleep/zsy227 PubMed DOI

Ogawa  K, Abe  T, Nittono  H, Yamazaki  K, Hori  T.  Phasic brain activity related to the onset of rapid eye movements during rapid eye movement sleep: study of event-related potentials and standardized low-resolution brain electromagnetic tomography. J Sleep Res.  2010;19(3):407–414. doi: https://doi.org/ 10.1111/j.1365-2869.2009.00809.x PubMed DOI

Hong  CC, Harris  JC, Pearlson  GD, et al.  fMRI evidence for multisensory recruitment associated with rapid eye movements during sleep. Hum Brain Mapp.  2009;30(5):1705–1722. doi: https://doi.org/ 10.1002/hbm.20635 PubMed DOI PMC

Hong  CC, Gillin  JC, Dow  BM, Wu  J, Buchsbaum  MS.  Localized and lateralized cerebral glucose metabolism associated with eye movements during REM sleep and wakefulness: a positron emission tomography (PET) study. Sleep.  1995;18(7):570–580. doi: https://doi.org/ 10.1093/sleep/18.7.570 PubMed DOI

Siclari  F, Baird  B, Perogamvros  L, et al.  The neural correlates of dreaming. In: Nature Neuroscience. Vol 20: Nature Publishing Group; 2017:872–878. PubMed PMC

Foulkes  D, Bradley  L.  Phasic activity and dream recall in 5- to 8-yr.-olds. Percept Mot Skills.  1989;69(1):290. doi: https://doi.org/ 10.2466/pms.1989.69.1.290 PubMed DOI

Hodoba  D, Hrabric  K, Krmpotic  P, Brecic  P, Kujundzic-Tiljak  M, Majdaneic  Z.  Dream recall after night awakenings from tonic/phasic REM sleep. Coll Antropol.  2008;32(Suppl 1):69–73. PubMed

Hong  CC, Potkin  SG, Antrobus  JS, Dow  BM, Callaghan  GM, Gillin  JC.  REM sleep eye movement counts correlate with visual imagery in dreaming: a pilot study. Psychophysiology.  1997;34(3):377–381. doi: https://doi.org/ 10.1111/j.1469-8986.1997.tb02408.x PubMed DOI

Scammell  TE, Arrigoni  E, Lipton  JO.  Neural Circuitry of Wakefulness and Sleep. Neuron.  2017;93(4):747–765. doi: https://doi.org/ 10.1016/j.neuron.2017.01.014 PubMed DOI PMC

Andrillon  T, Nir  Y, Cirelli  C, Tononi  G, Fried  I.  Single-neuron activity and eye movements during human REM sleep and awake vision. In. Nature Communications. Vol 6: Nature Publishing Group; 2015:1–10. PubMed PMC

Churchill  L, Chen  YC, Lewis  SJG, Matar  E.  Understanding REM Sleep Behavior Disorder through Functional MRI: A Systematic Review. Mov Disord.  2024;39(10):1679–1696. doi: https://doi.org/ 10.1002/mds.29898 PubMed DOI

Peter-Derex  L, Avigdor  T, Rheims  S, et al.  Enhanced thalamocortical functional connectivity during rapid-eye-movement sleep sawtooth waves. Sleep.  2023;46(6):zsad097. doi: https://doi.org/ 10.1093/sleep/zsad097 PubMed DOI

Saalmann  YB, Kastner  S.  Cognitive and perceptual functions of the visual thalamus. Neuron.  2011;71(2):209–223. doi: https://doi.org/ 10.1016/j.neuron.2011.06.027 PubMed DOI PMC

Titone  S, Samogin  J, Peigneux  P, Swinnen  SP, Mantini  D, Albouy  G.  Frequency-dependent connectivity in large-scale resting-state brain networks during sleep. Eur J Neurosci.  2024;59(4):686–702. doi: https://doi.org/ 10.1111/ejn.16080 PubMed DOI

Bastuji  H, Daoud  M, Magnin  M, Garcia-Larrea  L.  REM sleep remains paradoxical: sub-states determined by thalamo-cortical and cortico-cortical functional connectivity. J Physiol.  2024;602:5269–5287. doi: https://doi.org/ 10.1113/JP286074 PubMed DOI

Burke  JF, Ramayya  AG, Kahana  MJ.  Human intracranial high-frequency activity during memory processing: neural oscillations or stochastic volatility? Curr Opin Neurobiol.  2015;31:104–110. doi: https://doi.org/ 10.1016/j.conb.2014.09.003 PubMed DOI PMC

Kucewicz  MT, Cimbalnik  J, Garcia-Salinas  JS, Brazdil  M, Worrell  GA.  High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams? Brain.  2024;147(9):2966–2982. doi: https://doi.org/ 10.1093/brain/awae159 PubMed DOI PMC

Ray  S, Niebur  E, Hsiao  SS, Sinai  A, Crone  NE.  High-frequency gamma activity (80-150Hz) is increased in human cortex during selective attention. Clin Neurophysiol.  2008;119(1):116–133. doi: https://doi.org/ 10.1016/j.clinph.2007.09.136 PubMed DOI PMC

Duraivel  S, Rahimpour  S, Chiang  CH, et al.  High-resolution neural recordings improve the accuracy of speech decoding. Nat Commun.  2023;14(1):6938. doi: https://doi.org/ 10.1038/s41467-023-42555-1 PubMed DOI PMC

John  ER.  The neurophysics of consciousness. Brain Res Brain Res Rev.  2002;39(1):1–28. doi: https://doi.org/ 10.1016/s0165-0173(02)00142-x PubMed DOI

Ferrari-Marinho  T, Perucca  P, Amiri  M, Dubeau  F, Gotman  J, Caboclo  LO.  High-frequency oscillations in the scalp EEG of intensive care unit patients with altered level of consciousness. J Clin Neurophysiol.  2020;37(3):246–252. doi: https://doi.org/ 10.1097/WNP.0000000000000624 PubMed DOI

Dickey  CW, Verzhbinsky  IA, Jiang  X, et al.  Cortical ripples during NREM sleep and waking in humans. J Neurosci.  2022;42(42):7931–7946. doi: https://doi.org/ 10.1523/JNEUROSCI.0742-22.2022 PubMed DOI PMC

Dickey  CW, Verzhbinsky  IA, Jiang  X, et al.  Widespread ripples synchronize human cortical activity during sleep, waking, and memory recall. Proc Natl Acad Sci U S A.  2022;119(28):e2107797119. doi: https://doi.org/ 10.1073/pnas.2107797119 PubMed DOI PMC

Frauscher  B, von Ellenrieder  N, Dolezalova  I, Bouhadoun  S, Gotman  J, Peter-Derex  L.  REM sleep sawtooth waves are associated with widespread cortical activations. J Neurosci.  2020;40:8900–8912. doi: https://doi.org/ 10.1523/jneurosci.1586-20.2020 PubMed DOI PMC

Frauscher  B, Von Ellenrieder  N, Dubeau  F, Gotman  J.  EEG desynchronization during phasic REM sleep suppresses interictal epileptic activity in humans. In: Epilepsia. Vol 57: Blackwell Publishing Inc.; 2016:879–888. PubMed PMC

Ng  M, Pavlova  M.  Why are seizures rare in rapid eye movement sleep? Review of the frequency of seizures in different sleep stages. Epilepsy Res Treat. 2013;2013:932790. doi: https://doi.org/ 10.1155/2013/932790 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...