microstate
Dotaz
Zobrazit nápovědu
The pathophysiology of recurrent isolated sleep paralysis (RISP) has yet to be fully clarified. Very little research has been performed on electroencephalographic (EEG) signatures outside RISP episodes. This study aimed to investigate whether sleep is disturbed even without the occurrence of a RISP episode and in a stage different than conventional REM sleep. 17 RISP patients and 17 control subjects underwent two consecutive full-night video-polysomnography recordings. Spectral analysis was performed on all sleep stages in the delta, theta, and alpha band. EEG microstate (MS) analysis was performed on the NREM 3 phase due to the overall high correlation of subject template maps with canonical templates. Spectral analysis showed a significantly higher power of theta band activity in REM and NREM 2 sleep stages in RISP patients. The observed rise was also apparent in other sleep stages. Conversely, alpha power showed a downward trend in RISP patients' deep sleep. MS maps similar to canonical topographies were obtained indicating the preservation of prototypical EEG generators in RISP patients. RISP patients showed significant differences in the temporal dynamics of MS, expressed by different transitions between MS C and D and between MS A and B. Both spectral analysis and MS characteristics showed abnormalities in the sleep of non-episodic RISP subjects. Our findings suggest that in order to understand the neurobiological background of RISP, there is a need to extend the analyzes beyond REM-related processes and highlight the value of EEG microstate dynamics as promising functional biomarkers of RISP.
- Publikační typ
- časopisecké články MeSH
Over the last decade, EEG resting-state microstate analysis has evolved from a niche existence to a widely used and well-accepted methodology. The rapidly increasing body of empirical findings started to yield overarching patterns of associations of biological and psychological states and traits with specific microstate classes. However, currently, this cross-referencing among apparently similar microstate classes of different studies is typically done by "eyeballing" of printed template maps by the individual authors, lacking a systematic procedure. To improve the reliability and validity of future findings, we present a tool to systematically collect the actual data of template maps from as many published studies as possible and present them in their entirety as a matrix of spatial similarity. The tool also allows importing novel template maps and systematically extracting the findings associated with specific microstate maps from ongoing or published studies. The tool also allows importing novel template maps and systematically extracting the findings associated with specific microstate maps in the literature. The analysis of 40 included sets of template maps indicated that: (i) there is a high degree of similarity of template maps across studies, (ii) similar template maps were associated with converging empirical findings, and (iii) representative meta-microstates can be extracted from the individual studies. We hope that this tool will be useful in coming to a more comprehensive, objective, and overarching representation of microstate findings.
- MeSH
- elektroencefalografie * MeSH
- lidé MeSH
- mozek * MeSH
- oči MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Analysis of EEG microstates is a promising topographical method that is currently being studied for diagnosis of neuro-psychiatric diseases such as schizophrenia, dementia, etc. The aim of our study is to describe the possibility of using the microstate analysis of electroencephalographic recordings (EEG) for examination of the epileptic activity. The EEG recordings were measured on patients with epilepsy and on control subjects (with no epileptic pathology) in the system 10 - 20. The data are analysed in average montage and filtered with bandpass from 0.5 to 30.0 Hz. We calculate the global field power (GFP) curve to extract microstates from the EEG recordings. We take local maxima (peaks) of GFP curve to create amplitude topographic maps. The microstate 1 seems to have higher occurrence for the non-epileptic controls than the patients with epilepsy. The duration of the microstate 4 seems to be higher in the epileptic patients than the non-epileptic controls. We have found that there is a significant difference in the duration, occurrence and contribution of the amplitude topographic maps between the non-epileptic controls and the patients with epilepsy.
- MeSH
- elektroencefalografie * metody MeSH
- epilepsie * diagnóza MeSH
- lidé MeSH
- mozkové vlny MeSH
- psychofyziologie MeSH
- záchvaty diagnostické zobrazování diagnóza MeSH
- zraková percepce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
Mechanisms of deep brain stimulation (DBS) on cortical networks were explored mainly by fMRI. Advanced analysis of high-density EEG is a source of additional information and may provide clinically useful biomarkers. The presented study evaluates EEG microstates in Parkinson's disease and the effect of DBS of the subthalamic nucleus (STN). The association between revealed spatiotemporal dynamics of brain networks and changes in oscillatory activity and clinical examination were assessed. Thirty-seven patients with Parkinson's disease treated by STN-DBS underwent two sessions (OFF and ON stimulation conditions) of resting-state EEG. EEG microstates were analyzed in patient recordings and in a matched healthy control dataset. Microstate parameters were then compared across groups and were correlated with clinical and neuropsychological scores. Of the five revealed microstates, two differed between Parkinson's disease patients and healthy controls. Another microstate differed between ON and OFF stimulation conditions in the patient group and restored parameters in the ON stimulation state toward to healthy values. The mean beta power of that microstate was the highest in patients during the OFF stimulation condition and the lowest in healthy controls; sources were localized mainly in the supplementary motor area. Changes in microstate parameters correlated with UPDRS and neuropsychological scores. Disease specific alterations in the spatiotemporal dynamics of large-scale brain networks can be described by EEG microstates. The approach can reveal changes reflecting the effect of DBS on PD motor symptoms as well as changes probably related to non-motor symptoms not influenced by DBS.
- Publikační typ
- časopisecké články MeSH
Background: The few previous studies on resting-state electroencephalography (EEG) microstates in depressive patients suggest altered temporal characteristics of microstates compared to those of healthy subjects. We tested whether resting-state microstate temporal characteristics could capture large-scale brain network dynamic activity relevant to depressive symptomatology. Methods: To evaluate a possible relationship between the resting-state large-scale brain network dynamics and depressive symptoms, we performed EEG microstate analysis in 19 patients with moderate to severe depression in bipolar affective disorder, depressive episode, and recurrent depressive disorder and in 19 healthy controls. Results: Microstate analysis revealed six classes of microstates (A-F) in global clustering across all subjects. There were no between-group differences in the temporal characteristics of microstates. In the patient group, higher depressive symptomatology on the Montgomery-Åsberg Depression Rating Scale correlated with higher occurrence of microstate A (Spearman's rank correlation, r = 0.70, p < 0.01). Conclusion: Our results suggest that the observed interindividual differences in resting-state EEG microstate parameters could reflect altered large-scale brain network dynamics relevant to depressive symptomatology during depressive episodes. Replication in larger cohort is needed to assess the utility of the microstate analysis approach in an objective depression assessment at the individual level.
- Publikační typ
- časopisecké články MeSH
Background: Neuroimaging studies provided evidence for disrupted resting-state functional brain network activity in bipolar disorder (BD). Electroencephalographic (EEG) studies found altered temporal characteristics of functional EEG microstates during depressive episode within different affective disorders. Here we investigated whether euthymic patients with BD show deviant resting-state large-scale brain network dynamics as reflected by altered temporal characteristics of EEG microstates. Methods: We used high-density EEG to explore between-group differences in duration, coverage, and occurrence of the resting-state functional EEG microstates in 17 euthymic adults with BD in on-medication state and 17 age- and gender-matched healthy controls. Two types of anxiety, state and trait, were assessed separately with scores ranging from 20 to 80. Results: Microstate analysis revealed five microstates (A-E) in global clustering across all subjects. In patients compared to controls, we found increased occurrence and coverage of microstate A that did not significantly correlate with anxiety scores. Conclusion: Our results provide neurophysiological evidence for altered large-scale brain network dynamics in BD patients and suggest the increased presence of A microstate to be an electrophysiological trait characteristic of BD.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Electrophysiological markers of prodromal dementia with Lewy bodies were described in the spectral domain. The sub-second temporal resolution may provide additional information. OBJECTIVE: To evaluate electroencephalography (EEG) microstates in patients with mild cognitive impairment with Lewy bodies and to assess the association between their temporal dynamics and the spectral marker. METHODS: Temporal parameters of microstates were compared between 21 patients with mild cognitive impairment with Lewy bodies and 21 healthy controls. The dominant alpha frequency was correlated with microstate parameters. RESULTS: Microstates A-D showed higher occurrence in the patient group. Microstate B additionally revealed shorter mean duration and increased time coverage; its occurrence correlated with the dominant alpha frequency in the patient group. CONCLUSIONS: Temporal dynamics of all EEG microstates were altered in medication-naïve subjects with prodromal dementia with Lewy bodies. Longitudinal follow-up may reveal how EEG microstates reflect progression of brain function deficits and effects of treatment manipulations. © 2021 International Parkinson and Movement Disorder Society.
- MeSH
- demence s Lewyho tělísky * MeSH
- elektroencefalografie MeSH
- kognitivní dysfunkce * etiologie MeSH
- Lewyho tělíska MeSH
- lidé MeSH
- mozek MeSH
- odpočinek MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Complex continuous wavelet coherence (WTC) can be used for non-stationary signals, such as electroencephalograms. Areas of the WTC with a coherence higher than the calculated optimal threshold were obtained, and the sum of their areas was used as a criterion to differentiate between groups of experienced insight-focused meditators, calm-focused meditators and a control group. This method demonstrated the highest accuracy for the real WTC parts in the frontal region, while for the imaginary parts, the highest accuracy was shown for the frontal occipital pairs of electrodes. In the frontal area, in the broadband frequency, both types of experienced meditators demonstrated an enlargement of the increased coherence areas for the real WTC parts. For the imaginary parts unaffected by the volume conduction and global artefacts, the most significant increase occurred for the frontal occipital pair of electrodes.
- MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- imaginace fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- meditace psychologie MeSH
- mladý dospělý MeSH
- mozková kůra fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- elektroencefalografie * MeSH
- lidé MeSH
- mapování mozku MeSH
- mladý dospělý MeSH
- mozkové vlny fyziologie MeSH
- pilotní projekty MeSH
- schizofrenie patofyziologie terapie MeSH
- transkraniální magnetická stimulace metody MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH