Transcriptomic signatures shaped by cell proportions shed light on comparative developmental biology
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28202034
PubMed Central
PMC5312534
DOI
10.1186/s13059-017-1157-7
PII: 10.1186/s13059-017-1157-7
Knihovny.cz E-zdroje
- Klíčová slova
- Comparative transcriptomics, Developmental biology, Heterochrony, Serial homology, Temporal dynamics of gene expression, Tooth, Transcriptomic signature,
- MeSH
- epitel embryologie metabolismus MeSH
- mezoderm embryologie metabolismus MeSH
- moláry embryologie metabolismus MeSH
- morfogeneze genetika MeSH
- mozaicismus MeSH
- myši MeSH
- organogeneze genetika MeSH
- signální transdukce MeSH
- transkriptom * MeSH
- vývojová biologie * metody MeSH
- vývojová regulace genové exprese * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Comparative transcriptomics can answer many questions in developmental and evolutionary developmental biology. Most transcriptomic studies start by showing global patterns of variation in transcriptomes that differ between species or organs through developmental time. However, little is known about the kinds of expression differences that shape these patterns. RESULTS: We compared transcriptomes during the development of two morphologically distinct serial organs, the upper and lower first molars of the mouse. We found that these two types of teeth largely share the same gene expression dynamics but that three major transcriptomic signatures distinguish them, all of which are shaped by differences in the relative abundance of different cell types. First, lower/upper molar differences are maintained throughout morphogenesis and stem from differences in the relative abundance of mesenchyme and from constant differences in gene expression within tissues. Second, there are clear time-shift differences in the transcriptomes of the two molars related to cusp tissue abundance. Third, the transcriptomes differ most during early-mid crown morphogenesis, corresponding to exaggerated morphogenetic processes in the upper molar involving fewer mitotic cells but more migrating cells. From these findings, we formulate hypotheses about the mechanisms enabling the two molars to reach different phenotypes. We also successfully applied our approach to forelimb and hindlimb development. CONCLUSIONS: Gene expression in a complex tissue reflects not only transcriptional regulation but also abundance of different cell types. This knowledge provides valuable insights into the cellular processes underpinning differences in organ development. Our approach should be applicable to most comparative developmental contexts.
Zobrazit více v PubMed
Roux J, Rosikiewicz M, Robinson-Rechavi M. What to compare and how: Comparative transcriptomics for Evo-Devo. J Exp Zool B Mol Dev Evol. 2015;324:372–82. doi: 10.1002/jez.b.22618. PubMed DOI PMC
Pantalacci S, Semon M. Transcriptomics of developing embryos and organs: A raising tool for evo-devo. J Exp Zool B Mol Dev Evol. 2015;324:363–71. doi: 10.1002/jez.b.22595. PubMed DOI
Papatsenko D, Levine M, Goltsev Y. Clusters of temporal discordances reveal distinct embryonic patterning mechanisms in Drosophila and anopheles. PLoS Biol. 2011;9:e1000584. doi: 10.1371/journal.pbio.1000584. PubMed DOI PMC
Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509:371–5. doi: 10.1038/nature13173. PubMed DOI PMC
Scialdone A, Tanaka Y, Jawaid W, Moignard V, Wilson NK, Macaulay IC, et al. Resolving early mesoderm diversification through single-cell expression profiling. Nature. 2016;535:289–93. doi: 10.1038/nature18633. PubMed DOI PMC
Anavy L, Levin M, Khair S, Nakanishi N, Fernandez-Valverde SL, Degnan BM, et al. BLIND ordering of large-scale transcriptomic developmental timecourses. Development. 2014;141:1161–6. doi: 10.1242/dev.105288. PubMed DOI
Gerrard DT, Berry AA, Jennings RE, Piper Hanley K, Bobola N, Hanley NA. An integrative transcriptomic atlas of organogenesis in human embryos. Elife. 2016;5:e15657. doi: 10.7554/eLife.15657. PubMed DOI PMC
Francesconi M, Lehner B. Reconstructing and analysing cellular states, space and time from gene expression profiles of many cells and single cells. Mol Biosyst. 2015;11:2690–8. doi: 10.1039/C5MB00339C. PubMed DOI
Pankey MS, Minin VN, Imholte GC, Suchard MA, Oakley TH. Predictable transcriptome evolution in the convergent and complex bioluminescent organs of squid. Proc Natl Acad Sci U S A. 2014;111:E4736–4742. doi: 10.1073/pnas.1416574111. PubMed DOI PMC
Tian X, Strassmann JE, Queller DC. Dictyostelium development shows a novel pattern of evolutionary conservation. Mol Biol Evol. 2013;30:977–84. doi: 10.1093/molbev/mst007. PubMed DOI
Levin M, Anavy L, Cole AG, Winter E, Mostov N, Khair S, et al. The mid-developmental transition and the evolution of animal body plans. Nature. 2016;531:637–41. doi: 10.1038/nature16994. PubMed DOI PMC
Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL, Jarrells J, et al. Gene expression divergence recapitulates the developmental hourglass model. Nature. 2010;468:811–4. doi: 10.1038/nature09634. PubMed DOI
Levin M, Hashimshony T, Wagner F, Yanai I. Developmental milestones punctuate gene expression in the Caenorhabditis embryo. Dev Cell. 2012;22:1101–8. doi: 10.1016/j.devcel.2012.04.004. PubMed DOI
Wang Z, Young RL, Xue H, Wagner GP. Transcriptomic analysis of avian digits reveals conserved and derived digit identities in birds. Nature. 2011;477:583–6. doi: 10.1038/nature10391. PubMed DOI
Tschopp P, Sherratt E, Sanger TJ, Groner AC, Aspiras AC, Hu JK, et al. A relative shift in cloacal location repositions external genitalia in amniote evolution. Nature. 2014;516:391–4. doi: 10.1038/nature13819. PubMed DOI PMC
Kin K, Nnamani MC, Lynch VJ, Michaelides E, Wagner GP. Cell-type phylogenetics and the origin of endometrial stromal cells. Cell Rep. 2015;10:1398–409. doi: 10.1016/j.celrep.2015.01.062. PubMed DOI
Angelini DR, Kaufman TC. Insect appendages and comparative ontogenetics. Dev Biol. 2005;286:57–77. doi: 10.1016/j.ydbio.2005.07.006. PubMed DOI
Ruvinsky I, Gibson-Brown JJ. Genetic and developmental bases of serial homology in vertebrate limb evolution. Development. 2000;127:5233–44. PubMed
Duboc V, Logan MP. Regulation of limb bud initiation and limb-type morphology. Dev Dyn. 2011;240:1017–27. doi: 10.1002/dvdy.22582. PubMed DOI
Weatherbee SD, Carroll SB. Selector genes and limb identity in arthropods and vertebrates. Cell. 1999;97:283–6. doi: 10.1016/S0092-8674(00)80737-0. PubMed DOI
Van Valen L. Serial homology: the crests and cusps of mammalian teeth. Acta Palaeontol Pol. 1994;38:145–58.
Weiss K, Stock D, Zhao Z, Buchanan A, Ruddle F, Shashikant C. Perspectives on genetic aspects of dental patterning. Eur J Oral Sci. 1998;106(Suppl 1):55–63. doi: 10.1111/j.1600-0722.1998.tb02154.x. PubMed DOI
Mann RS, Carroll SB. Molecular mechanisms of selector gene function and evolution. Curr Opin Genet Dev. 2002;12:592–600. doi: 10.1016/S0959-437X(02)00344-1. PubMed DOI
Cobourne MT, Sharpe PT. Tooth and jaw: molecular mechanisms of patterning in the first branchial arch. Arch Oral Biol. 2003;48:1–14. doi: 10.1016/S0003-9969(02)00208-X. PubMed DOI
Bininda-Emonds OR, Jeffery JE, Sanchez-Villagra MR, Hanken J, Colbert M, Pieau C, et al. Forelimb-hindlimb developmental timing changes across tetrapod phylogeny. BMC Evol Biol. 2007;7:182. doi: 10.1186/1471-2148-7-182. PubMed DOI PMC
Richardson MK, Gobes SM, van Leeuwen AC, Polman JA, Pieau C, Sanchez-Villagra MR. Heterochrony in limb evolution: developmental mechanisms and natural selection. J Exp Zool B Mol Dev Evol. 2009;312:639–64. doi: 10.1002/jez.b.21250. PubMed DOI
Taher L, Collette NM, Murugesh D, Maxwell E, Ovcharenko I, Loots GG. Global gene expression analysis of murine limb development. PLoS One. 2011;6:e28358. doi: 10.1371/journal.pone.0028358. PubMed DOI PMC
Laugel-Haushalter V, Paschaki M, Thibault-Carpentier C, Dembele D, Dolle P, Bloch-Zupan A. Molars and incisors: show your microarray IDs. BMC Res Notes. 2013;6:113. doi: 10.1186/1756-0500-6-113. PubMed DOI PMC
Jernvall J, Thesleff I. Tooth shape formation and tooth renewal: evolving with the same signals. Development. 2012;139:3487–97. doi: 10.1242/dev.085084. PubMed DOI
Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet. 2004;5:499–508. doi: 10.1038/nrg1380. PubMed DOI
Weiss KM, Stock DW, Zhao Z. Dynamic interactions and the evolutionary genetics of dental patterning. Crit Rev Oral Biol Med. 1998;9:369–98. doi: 10.1177/10454411980090040101. PubMed DOI
Ferguson CA, Tucker AS, Sharpe PT. Temporospatial cell interactions regulating mandibular and maxillary arch patterning. Development. 2000;127:403–12. PubMed
Zhao Z, Stock D, Buchanan A, Weiss K. Expression of Dlx genes during the development of the murine dentition. Dev Genes Evol. 2000;210:270–5. doi: 10.1007/s004270050314. PubMed DOI
Salazar-Ciudad I. Tooth morphogenesis in vivo, in vitro, and in silico. Curr Top Dev Biol. 2008;81:341–71. doi: 10.1016/S0070-2153(07)81012-X. PubMed DOI
Salazar-Ciudad I. Tooth patterning and evolution. Curr Opin Genet Dev. 2012;22:585–92. doi: 10.1016/j.gde.2012.10.006. PubMed DOI
Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev. 2000;92:19–29. doi: 10.1016/S0925-4773(99)00322-6. PubMed DOI
Thesleff I, Keranen S, Jernvall J. Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res. 2001;15:14–8. doi: 10.1177/08959374010150010401. PubMed DOI
Landin MA, Nygard S, Shabestari MG, Babaie E, Reseland JE, Osmundsen H. Mapping the global mRNA transcriptome during development of the murine first molar. Front Genet. 2015;6:47. doi: 10.3389/fgene.2015.00047. PubMed DOI PMC
O’Connell DJ, Ho JW, Mammoto T, Turbe-Doan A, O’Connell JT, Haseley PS, et al. A Wnt-bmp feedback circuit controls intertissue signaling dynamics in tooth organogenesis. Sci Signal. 2012;5:ra4. PubMed PMC
Peterkova R, Hovorakova M, Peterka M, Lesot H. Three-dimensional analysis of the early development of the dentition. Aust Dent J. 2014;59(Suppl 1):55–80. doi: 10.1111/adj.12130. PubMed DOI PMC
Cam Y, Fausser JL, Vonesch JL, Peterkova R, Peterka M, Halaskova M, et al. Asymmetrical morphogenesis and medio-lateral positioning of molars during mouse development. Eur J Oral Sci. 2002;110:35–43. doi: 10.1034/j.1600-0722.2002.00140.x. PubMed DOI
Biben C, Wang CC, Harvey RP. NK-2 class homeobox genes and pharyngeal/oral patterning: Nkx2-3 is required for salivary gland and tooth morphogenesis. Int J Dev Biol. 2002;46:415–22. PubMed
Mitsiadis TA, Drouin J. Deletion of the Pitx1 genomic locus affects mandibular tooth morphogenesis and expression of the Barx1 and Tbx1 genes. Dev Biol. 2008;313:887–96. doi: 10.1016/j.ydbio.2007.10.055. PubMed DOI
Ferguson CA, Tucker AS, Christensen L, Lau AL, Matzuk MM, Sharpe PT. Activin is an essential early mesenchymal signal in tooth development that is required for patterning of the murine dentition. Genes Dev. 1998;12:2636–49. doi: 10.1101/gad.12.16.2636. PubMed DOI PMC
Jia S, Zhou J, Gao Y, Baek JA, Martin JF, Lan Y, et al. Roles of Bmp4 during tooth morphogenesis and sequential tooth formation. Development. 2013;140:423–32. doi: 10.1242/dev.081927. PubMed DOI PMC
Aberg T, Wang XP, Kim JH, Yamashiro T, Bei M, Rice R, et al. Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev Biol. 2004;270:76–93. doi: 10.1016/j.ydbio.2004.02.012. PubMed DOI
Wang XP, Suomalainen M, Jorgez CJ, Matzuk MM, Wankell M, Werner S, et al. Modulation of activin/bone morphogenetic protein signaling by follistatin is required for the morphogenesis of mouse molar teeth. Dev Dyn. 2004;231:98–108. doi: 10.1002/dvdy.20118. PubMed DOI
Qiu M, Bulfone A, Ghattas I, Meneses JJ, Christensen L, Sharpe PT, et al. Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev Biol. 1997;185:165–84. doi: 10.1006/dbio.1997.8556. PubMed DOI
Thomas BL, Tucker AS, Qui M, Ferguson CA, Hardcastle Z, Rubenstein JL, et al. Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. Development. 1997;124:4811–8. PubMed
Jeong J, Li X, McEvilly RJ, Rosenfeld MG, Lufkin T, Rubenstein JL. Dlx genes pattern mammalian jaw primordium by regulating both lower jaw-specific and upper jaw-specific genetic programs. Development. 2008;135:2905–16. doi: 10.1242/dev.019778. PubMed DOI PMC
Schmitt R, Lesot H, Vonesch JL, Ruch JV. Mouse odontogenesis in vitro: the cap-stage mesenchyme controls individual molar crown morphogenesis. Int J Dev Biol. 1999;43:255–60. PubMed
Tooth and Craniofacial Development Group of the Developmental Biology Programme IoB, University of Helsinki: Bite-it database. Tooth and Craniofacial Development Group of the Developmental Biology Programme, Institute of Biotechnology, University of Helsinki. http://bite-it.helsinki.fi.
Kaur H, Mao S, Li Q, Sameni M, Krawetz SA, Sloane BF, et al. RNA-Seq of human breast ductal carcinoma in situ models reveals aldehyde dehydrogenase isoform 5A1 as a novel potential target. PLoS One. 2012;7:e50249. doi: 10.1371/journal.pone.0050249. PubMed DOI PMC
Lisi S, Peterkova R, Peterka M, Vonesch JL, Ruch JV, Lesot H. Tooth morphogenesis and pattern of odontoblast differentiation. Connect Tissue Res. 2003;44(Suppl 1):167–70. doi: 10.1080/03008200390152278. PubMed DOI
Harjunmaa E, Kallonen A, Voutilainen M, Hamalainen K, Mikkola ML, Jernvall J. On the difficulty of increasing dental complexity. Nature. 2012;483:324–7. doi: 10.1038/nature10876. PubMed DOI
Rutishauser R, Moline P. Evo-devo and the search for homology (“sameness”) in biological systems. Theory Biosci. 2005;124:213–41. doi: 10.1007/BF02814485. PubMed DOI
Minelli A. The origin and evolution of appendages. Int J Dev Biol. 2003;47:573–81. PubMed
Hu B, Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Peters H, Lesot H. Tissue engineering of tooth crown, root, and periodontium. Tissue Eng. 2006;12:2069–75. doi: 10.1089/ten.2006.12.2069. PubMed DOI
Ouimette JF, Jolin ML, L’Honore A, Gifuni A, Drouin J. Divergent transcriptional activities determine limb identity. Nat Commun. 2010;1:35. doi: 10.1038/ncomms1036. PubMed DOI PMC
Moullec N. Contribution to the morphological study of mouse odontogenesis. Causality of tooth differentiation (author’s transl) Arch Anat Histol Embryol. 1978;61:151–75. PubMed
Salazar-Ciudad I, Jernvall J. A computational model of teeth and the developmental origins of morphological variation. Nature. 2010;464:583–6. doi: 10.1038/nature08838. PubMed DOI
Irie N, Kuratani S. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat Commun. 2011;2:248. doi: 10.1038/ncomms1248. PubMed DOI PMC
Piasecka B, Lichocki P, Moretti S, Bergmann S, Robinson-Rechavi M. The hourglass and the early conservation models--co-existing patterns of developmental constraints in vertebrates. PLoS Genet. 2013;9:e1003476. doi: 10.1371/journal.pgen.1003476. PubMed DOI PMC
Quint M, Drost HG, Gabel A, Ullrich KK, Bonn M, Grosse I. A transcriptomic hourglass in plant embryogenesis. Nature. 2012;490:98–101. doi: 10.1038/nature11394. PubMed DOI
Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, et al. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet. 2013;45:701–6. doi: 10.1038/ng.2615. PubMed DOI PMC
Lesot H, Hovorakova M, Peterka M, Peterkova R. Three-dimensional analysis of molar development in the mouse from the cap to bell stage. Aust Dent J. 2014;59(Suppl 1):81–100. doi: 10.1111/adj.12132. PubMed DOI
Rothova M, Peterkova R, Tucker AS. Fate map of the dental mesenchyme: dynamic development of the dental papilla and follicle. Dev Biol. 2012;366:244–54. doi: 10.1016/j.ydbio.2012.03.018. PubMed DOI
Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003;21:1624–36. doi: 10.1200/JCO.2003.05.063. PubMed DOI
Duncan T, Su TT. Embryogenesis: coordinating cell division with gastrulation. Curr Biol. 2004;14:R305–307. doi: 10.1016/j.cub.2004.03.050. PubMed DOI
Francesconi M, Lehner B. The effects of genetic variation on gene expression dynamics during development. Nature. 2014;505:208–11. doi: 10.1038/nature12772. PubMed DOI
Tsang JC, Yu Y, Burke S, Buettner F, Wang C, Kolodziejczyk AA, et al. Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells. Genome Biol. 2015;16:178. doi: 10.1186/s13059-015-0739-5. PubMed DOI PMC
Kowalczyk MS, Tirosh I, Heckl D, Rao TN, Dixit A, Haas BJ, et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 2015;25:1860–72. doi: 10.1101/gr.192237.115. PubMed DOI PMC
Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015;33:155–60. doi: 10.1038/nbt.3102. PubMed DOI
O’Duibhir E, Lijnzaad P, Benschop JJ, Lenstra TL, van Leenen D, Groot Koerkamp MJ, et al. Cell cycle population effects in perturbation studies. Mol Syst Biol. 2014;10:732. doi: 10.15252/msb.20145172. PubMed DOI PMC
Israel JW, Martik ML, Byrne M, Raff EC, Raff RA, McClay DR, et al. Comparative developmental transcriptomics reveals rewiring of a highly conserved gene regulatory network during a major life history switch in the sea urchin genus Heliocidaris. PLoS Biol. 2016;14:e1002391. doi: 10.1371/journal.pbio.1002391. PubMed DOI PMC
Fushan AA, Turanov AA, Lee SG, Kim EB, Lobanov AV, Yim SH, et al. Gene expression defines natural changes in mammalian lifespan. Aging Cell. 2015;14:352–65. doi: 10.1111/acel.12283. PubMed DOI PMC
Brawand D, Soumillon M, Necsulea A, Julien P, Csardi G, Harrigan P, et al. The evolution of gene expression levels in mammalian organs. Nature. 2011;478:343–8. doi: 10.1038/nature10532. PubMed DOI
Gould S. Ontogeny and Phylogeny. Cambridge: Belknap Press of Harvard University Press; 1977.
Liu X, Somel M, Tang L, Yan Z, Jiang X, Guo S, et al. Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques. Genome Res. 2012;22:611–22. doi: 10.1101/gr.127324.111. PubMed DOI PMC
Somel M, Franz H, Yan Z, Lorenc A, Guo S, Giger T, et al. Transcriptional neoteny in the human brain. Proc Natl Acad Sci U S A. 2009;106:5743–8. doi: 10.1073/pnas.0900544106. PubMed DOI PMC
Somel M, Rohlfs R, Liu X. Transcriptomic insights into human brain evolution: acceleration, neutrality, heterochrony. Curr Opin Genet Dev. 2014;29:110–9. doi: 10.1016/j.gde.2014.09.001. PubMed DOI
Yanai I, Peshkin L, Jorgensen P, Kirschner MW. Mapping gene expression in two Xenopus species: evolutionary constraints and developmental flexibility. Dev Cell. 2011;20:483–96. doi: 10.1016/j.devcel.2011.03.015. PubMed DOI PMC
Yuan Y, Chen YP, Ni S, Xu AG, Tang L, Vingron M, et al. Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series. BMC Bioinf. 2011;12:347. doi: 10.1186/1471-2105-12-347. PubMed DOI PMC
Raff RAWG. Heterochrony: developmental mechanisms and evolutionary results. J Evol Biol. 1989;2:409–34. doi: 10.1046/j.1420-9101.1989.2060409.x. DOI
Peterka M, Lesot H, Peterkova R. Body weight in mouse embryos specifies staging of tooth development. Connect Tissue Res. 2002;43:186–90. doi: 10.1080/03008200290000673. PubMed DOI
Jernvall J, Aberg T, Kettunen P, Keranen S, Thesleff I. The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development. 1998;125:161–9. PubMed
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. doi: 10.1186/gb-2013-14-4-r36. PubMed DOI PMC
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9. doi: 10.1093/bioinformatics/btu638. PubMed DOI PMC
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2016. https://www.R-project.org/.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2009.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Dray S, Dufour A-B. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw. 2007;22:1–20. doi: 10.18637/jss.v022.i04. DOI
Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinf. 2009;10:48. doi: 10.1186/1471-2105-10-48. PubMed DOI PMC
Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23:257–8. doi: 10.1093/bioinformatics/btl567. PubMed DOI
Hashimshony T, Feder M, Levin M, Hall BK, Yanai I. Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer. Nature. 2015;519:219–22. doi: 10.1038/nature13996. PubMed DOI PMC
Gaujoux R, Seoighe C. Cell Mix: a comprehensive toolbox for gene expression deconvolution. Bioinformatics. 2013;29:2211–2. doi: 10.1093/bioinformatics/btt351. PubMed DOI
Zhong Y, Wan YW, Pang K, Chow LM, Liu Z. Digital sorting of complex tissues for cell type-specific gene expression profiles. BMC Bioinf. 2013;14:89. doi: 10.1186/1471-2105-14-89. PubMed DOI PMC
Gruneberg H. Genes and genotypes affecting the teeth of the mouse. J Embryol Exp Morphol. 1965;14:137–59. PubMed
Lochovska K, Peterkova R, Pavlikova Z, Hovorakova M. Sprouty gene dosage influences temporal-spatial dynamics of primary enamel knot formation. BMC Dev Biol. 2015;15:21. doi: 10.1186/s12861-015-0070-0. PubMed DOI PMC
Prochazka J, Pantalacci S, Churava S, Rothova M, Lambert A, Lesot H, et al. Patterning by heritage in mouse molar row development. Proc Natl Acad Sci U S A. 2010;107:15497–502. doi: 10.1073/pnas.1002784107. PubMed DOI PMC
Cameron TL, Belluoccio D, Farlie PG, Brachvogel B, Bateman JF. Global comparative transcriptome analysis of cartilage formation in vivo. BMC Dev Biol. 2009;9:20. doi: 10.1186/1471-213X-9-20. PubMed DOI PMC