Amaryllidaceae Alkaloids of Norbelladine-Type as Inspiration for Development of Highly Selective Butyrylcholinesterase Inhibitors: Synthesis, Biological Activity Evaluation, and Docking Studies
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu hodnotící studie, časopisecké články
Grantová podpora
SVV UK 260 548, 260 547; Progres/UK Q42
Univerzita Karlova v Praze
20-29633J
Czech Science Foundation
VT2019-2021
Univerzita Hradec Králové
CZ.02.1.01/0.0/0.0/16_019/0000841
Ministerstvo Školství, Mládeže a Tělovýchovy
SAF2016-76693-R
MICU
LM2015042
CESNET
LM2015085
CERIT Scientific Cloud
PubMed
34361074
PubMed Central
PMC8348983
DOI
10.3390/ijms22158308
PII: ijms22158308
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, amaryllidaceae alkaloid, butyrylcholinesterase, docking studies, norbelladine-type,
- MeSH
- acetylcholinesterasa chemie MeSH
- alkaloidy amarylkovitých chemie MeSH
- butyrylcholinesterasa chemie MeSH
- cholinesterasové inhibitory chemie farmakologie MeSH
- lidé MeSH
- nádorové buňky kultivované MeSH
- neuroblastom farmakoterapie patologie MeSH
- počítačová simulace MeSH
- proliferace buněk MeSH
- simulace molekulového dockingu * MeSH
- tyramin analogy a deriváty chemie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- alkaloidy amarylkovitých MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- norbelladine MeSH Prohlížeč
- tyramin MeSH
Alzheimer's disease (AD) is a multifactorial neurodegenerative condition of the central nervous system (CNS) that is currently treated by cholinesterase inhibitors and the N-methyl-d-aspartate receptor antagonist, memantine. Emerging evidence strongly supports the relevance of targeting butyrylcholinesterase (BuChE) in the more advanced stages of AD. Within this study, we have generated a pilot series of compounds (1-20) structurally inspired from belladine-type Amaryllidaceae alkaloids, namely carltonine A and B, and evaluated their acetylcholinesterase (AChE) and BuChE inhibition properties. Some of the compounds exhibited intriguing inhibition activity for human BuChE (hBuChE), with a preference for BuChE over AChE. Seven compounds were found to possess a hBuChE inhibition profile, with IC50 values below 1 µM. The most potent one, compound 6, showed nanomolar range activity with an IC50 value of 72 nM and an excellent selectivity pattern over AChE, reaching a selectivity index of almost 1400. Compound 6 was further studied by enzyme kinetics, along with in-silico techniques, to reveal the mode of inhibition. The prediction of CNS availability estimates that all the compounds in this survey can pass through the blood-brain barrier (BBB), as disclosed by the BBB score.
Zobrazit více v PubMed
Cummings J.L. Alzheimer’s disease. N. Engl. J. Med. 2004;351:56–67. doi: 10.1056/NEJMra040223. PubMed DOI
Nichols E., Szoeke C.E.I., Vollset S.E., Abbasi N., Abd-Allah F., Abdela J., Aichour M.T.E., Akinyemi R.O., Alahdab F., Asgedom S.W., et al. Global, Regional, and National Burden of Alzheimer’s Disease and Other Dementias, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:88–106. doi: 10.1016/S1474-4422(18)30403-4. PubMed DOI PMC
Davies P., Maloney A.J. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 1976;308:1403. doi: 10.1016/S0140-6736(76)91936-X. PubMed DOI
Selkoe D.J., Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016;8:595–608. doi: 10.15252/emmm.201606210. PubMed DOI PMC
Liu Y., Nguyen M., Robert A., Meunier B. Metal Ions in Alzheimer’s Disease: A Key Role or Not? Acc. Chem. Res. 2019;52:2026–2035. doi: 10.1021/acs.accounts.9b00248. PubMed DOI
Rukhsana S., Patrizia M., Francesca M., Roberta C., Maurob B., Allan B.D. Increased protein and lipid oxidative damage in mitochondria isolated from lymphocytes from patients with Alzheimer’s disease: Insights into the role of oxidative stress in Alzheimer’s disease and initial investigations into a potential biomarker for this dementing disorder. J. Alzheimer’s Dis. 2011;24:77–84. doi: 10.3233/JAD-2011-101425. PubMed DOI
Hampel H., Mesulam M., Cuello A.C., Farlow M.R., Giacobini E., Grossberg G.T., Khachaturian A.S., Vergallo A., Cavedo E., Snyder P.J., et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141:1917–1933. doi: 10.1093/brain/awy132. PubMed DOI PMC
Zemek F., Drtinova L., Nepovimova E., Sepsova V., Korabecny J., Klimes J., Zemek K.K. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf. 2014;13:759–774. doi: 10.1517/14740338.2014.914168. PubMed DOI
Reid G.A., Chilukuri N., Darvesh S. Butyrylcholinesterase and the cholinergic system. Neuroscience. 2013;234:53–68. doi: 10.1016/j.neuroscience.2012.12.054. PubMed DOI
Ramos-Rodriguez J.J., Pacheco-Herrero M., Thyssen D., Murillo-Carretero M.I., Berrocoso E., Spires-Jones T.L., Bacskai B.J., Garcia-Alloza M. Rapid β-amyloid deposition and cognitive impairment after cholinergic denervation in APP/PS1 mice. J. Neuropathol. Exp. Neurol. 2013;72:272–285. doi: 10.1097/NEN.0b013e318288a8dd. PubMed DOI PMC
Mori F., Lai C.C., Fusi F., Giacobini E. Cholinesterase inhibitors increase secretion of APPs in rat brain cortex. Neuroreport. 1995;6:633–636. doi: 10.1097/00001756-199503000-00012. PubMed DOI
Inestrosa N.C., Alvarez A., Pérez C.A., Moreno R.D., Vicente M., Linker C., Casanueva O.I., Soto C., Garrido J. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: Possible role of the peripheral site of the enzyme. Neuron. 1996;16:881–891. doi: 10.1016/S0896-6273(00)80108-7. PubMed DOI
Bartolini M., Bertucci C., Cavrini V., Andrisano V. Beta-Amyloid aggregation induced by human acetylcholinesterase: Inhibition studies. Biochem. Pharmacol. 2003;65:407–416. doi: 10.1016/S0006-2952(02)01514-9. PubMed DOI
Darvesh S., Cash M.K., Reid G.A., Martin E., Mitnitski A., Geula C. Butyrylcholinesterase is associated with β-amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease. J. Neuropathol. Exp. Neurol. 2012;71:2–14. doi: 10.1097/NEN.0b013e31823cc7a6. PubMed DOI PMC
Sridhar G.R., Nirmala G., Apparao A., Madhavi A.S., Sreelatha S., Rani J.S., Vijayalakshmi P. Serum butyrylcholinesterase in type 2 diabetes mellitus: A biochemical and bioinformatics approach. Lipids Health Dis. 2005;4:18. doi: 10.1186/1476-511X-4-18. PubMed DOI PMC
Verdile G., Fuller S.J., Martins R.N. The role of type 2 diabetes in neurodegeneration. Neurobiol. Dis. 2015;84:22–38. doi: 10.1016/j.nbd.2015.04.008. PubMed DOI
Padnya P.L., Bayarashov E.E., Zueva I.V., Lushchekina S.V., Lenina O.A., Evtugyn G.E., Osin Y.N., Petrov K.A., Stoikov I.I. Water-soluble betaines and amines based on thiacalix[4]arene scaffold as new cholinesterase inhibitors. Bioorg. Chem. 2020;94:103455. doi: 10.1016/j.bioorg.2019.103455. PubMed DOI
Makhaeva G.F., Kovaleva N.V., Rudakova E.V., Boltneva N.P., Lushchekina S.V., Faingolg I.I., Poletaeva D.A., Soldanova Y.V., Kotelnikova R.A., Serkov I.V., et al. New Multifunctional Agents Based on Conjugates of 4-Amino-2,3-polymethylenequinoline and Butylated Hydroxytoluene for Alzheimer’s Disease Treatment. Molecules. 2020;25:5891. doi: 10.3390/molecules25245891. PubMed DOI PMC
Kos J., Kozik V., Pindjakova D., Jankech T., Smolinski A., Stepankova S., Hosek J., Oravec M., Jampilek J., Bak A. Synthesis and Hybrid SAR Property Modeling of Novel Cholinesterase Inhibitors. Int. J. Mol. Sci. 2021;22:3444. doi: 10.3390/ijms22073444. PubMed DOI PMC
Singh Y.P., Tej G.N.V.C., Pandey A., Priya K., Pandey P., Shankar G., Nayak P.K., Rai G., Chittiboyina A.G., Doerksen R.J., et al. Design, synthesis and biological evaluation of novel naturally-inspired multifunctional molecules for the management of Alzheimer’s disease. Eur. J. Med. Chem. 2020;198:112257. doi: 10.1016/j.ejmech.2020.112257. PubMed DOI
Newman D.J., Cragg G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016;79:629–661. doi: 10.1021/acs.jnatprod.5b01055. PubMed DOI
Wang S., Dong G., Sheng C. Structural Simplification of Natural Products. Chem. Rev. 2019;119:4180–4220. doi: 10.1021/acs.chemrev.8b00504. PubMed DOI
Guo Z. The modification of natural products for medical use. Acta Pharm. Sin. B. 2017;7:119–136. doi: 10.1016/j.apsb.2016.06.003. PubMed DOI PMC
. Wu X., Cai H., Pan L., Cui G., Qin F., Li Y.C., Cai Z. Small Molecule Natural Products and Alzheimer’s Disease. Curr. Top. Med. Chem. 2019;19:187–204. doi: 10.2174/1568026619666190201153257. PubMed DOI
Masondo N.A., Stafford G.I., Aremu A.O., Makunga N.P. Acetylcholinesterase inhibitors from southern African plants: An overview of ethnobotanical, pharmacological potential and phytochemical research including and beyond Alzheimer’s disease treatment. S. Afr. J. Bot. 2019;120:39–64. doi: 10.1016/j.sajb.2018.09.011. DOI
Dey A., Bhattacharya R., Mukherjee A., Pandey D.K. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol. Adv. 2017;35:178–216. doi: 10.1016/j.biotechadv.2016.12.005. PubMed DOI
Houghton P.J., Ren Y., Howes M. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 2006;23:181–199. doi: 10.1039/b508966m. PubMed DOI
Mamun A.A., Maříková J., Hulcová D., Janoušek J., Šafratová M., Nováková L., Kučera T., Hrabinová M., Kuneš J., Korábečný J., et al. Amaryllidaceae Alkaloids of Belladine-Type from Narcissus pseudonarcissus cv. Carlton as New Selective Inhibitors of Butyrylcholinesterase. Biomolecules. 2020;10:800. doi: 10.3390/biom10050800. PubMed DOI PMC
Schulz I., Gerhartz B., Neubauer A., Holloschi A., Heiser U., Hafner M., Demuth H. Modulation of inositol 1,4,5-triphosphate concentration by prolyl endopeptidase inhibition. Eur. J. Biochem. 2002;269:5813–5820. doi: 10.1046/j.1432-1033.2002.03297.x. PubMed DOI
Cahlíková L., Kawano I., Řezáčová M., Blunden G., Hulcová D., Havelek R. The Amaryllidaceae alkaloids haemanthamine, haemanthidine and their semisynthetic derivatives as potential drugs. Phytochem. Rev. 2020;20:303–323. doi: 10.1007/s11101-020-09675-8. DOI
He M., Qu C., Gao O., Hua X., Hong X. Biological and pharmacological activities of amaryllidaceae alkaloids. RSC Adv. 2015;5:16562–16574. doi: 10.1039/C4RA14666B. DOI
Kornienko A., Evidente A. Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chem. Rev. 2008;108:1982–2014. doi: 10.1021/cr078198u. PubMed DOI PMC
Koutová D., Maafi N., Havelek R., Opletal L., Blunden G., Řezáčová M., Cahlíková L. Chemical and Biological Aspects of Montanine-Type Alkaloids Isolated from Plants of the Amaryllidaceae Family. Molecules. 2020;25:2337. doi: 10.3390/molecules25102337. PubMed DOI PMC
Panek D., Wieckowska A., Pasieka A., Godyn J., Jonczyk J., Bajda M., Knez D., Gobec S., Malawska B. Design, Synthesis, and Biological Evaluation of 2-(Benzylamino-2-Hydroxyalkyl)Isoindoline-1,3-Diones Derivatives as Potential Disease-Modifying Multifunctional Anti-Alzheimer Agents. Molecules. 2018;23:347. doi: 10.3390/molecules23020347. PubMed DOI PMC
Panek D., Więckowska A., Wichur T., Bajda M., Godyń J., Jończyk J., Mika K., Janockova J., Soukup O., Knez D., et al. Design, synthesis and biological evaluation of new phthalimide and saccharin derivatives with alicyclic amines targeting cholinesterases, beta-secretase and amyloid beta aggregation. Eur. J. Med. Chem. 2017;125:676–695. doi: 10.1016/j.ejmech.2016.09.078. PubMed DOI
Panek D., Więckowska A., Jonczyk J., Godyn J., Bajda M., Wichur T., Pasieka A., Knez D., Pislar A., Korabecny J., et al. Design, Synthesis, and Biological Evaluation of 1-Benzylamino-2-hydroxyalkyl Derivatives as New Potential Disease-Modifying Multifunctional Anti-Alzheimer’s Agents. ACS Chem. Neurosci. 2018;9:1074–1094. doi: 10.1021/acschemneuro.7b00461. PubMed DOI
Kodama S., Takita H., Kajimoto T., Nishide K., Node M. Synthesis of Amaryllidaceae alkaloids, siculine, oxocrinine, epicrinine, and buflavine. Tetrahedron. 2004;60:4901–4907. doi: 10.1016/j.tet.2004.03.087. DOI
Ellman G.L., Courtney K.D., Andresjr V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Xing S., Li Q., Xiong B., Chen Y., Feng F., Liu W., Sun H. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer’s disease, and fat metabolism. Med. Res. Rev. 2021;41:858–901. doi: 10.1002/med.21745. PubMed DOI
Carmona-Viglianco F., Zaragoza-Puchol D., Parravicini O., Garro A., Enriz R.D., Feresin G.E., Kurina-Sanz M., Orden A.A. Synthesis, biological evaluation and molecular modeling studies of substituted N-benzyl-2-phenylethanamines as cholinesterase inhibitors. New J. Chem. 2020;44:9466–9476. doi: 10.1039/D0NJ00282H. DOI
Tarrago T., Kichik N., Segui J., Giralt E. The natural product berberine is a human prolyl oligopeptidase inhibitor. Chem. Med. Chem. 2007;2:354–359. doi: 10.1002/cmdc.200600303. PubMed DOI
Gupta M., Lee H.J., Barden C.J., Weaver D.F. The Blood–Brain Barrier (BBB) Score. J. Med. Chem. 2019;62:9824–9836. doi: 10.1021/acs.jmedchem.9b01220. PubMed DOI
Meden A., Knez D., Jukič M., Brazzolotto X., Gršič M., Pišlar A., Zahirović A., Kos J., Nachon F., Svete J., et al. Tryptophan-derived butyrylcholinesterase inhibitors as promising leads against Alzheimer’s disease. Chem. Commun. 2019;55:3765–3768. doi: 10.1039/C9CC01330J. PubMed DOI
Brus B., Košak U., Turk S., Pišlar A., Coquelle N., Kos J., Stojan J., Colletier J., Gobec S. Discovery, Biological Evaluation, and Crystal Structure of a Novel Nanomolar Selective Butyrylcholinesterase Inhibitor. J. Med. Chem. 2014;57:8167–8179. doi: 10.1021/jm501195e. PubMed DOI
Hartmann J., Kiewert C., Duysen E.G., Lockridge O., Greig N.H., Klein J. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J. Neurochem. 2007;100:1421–1429. doi: 10.1111/j.1471-4159.2006.04347.x. PubMed DOI
Greig N.H., Utsuki T., Ingram D.K., Wang Y., Pepeu G., Scali C., Yu Q.-S., Mamczarz J., Giordano T., Chen D., et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc. Natl. Acad. Sci. USA. 2005;102:17213–17218. doi: 10.1073/pnas.0508575102. PubMed DOI PMC
Meden A., Knez D., Malikowska-Racia N., Brazzolotto X., Nachon F., Svete J., Sałat K., Grošelj U., Gobec S. Structure-activity relationship study of tryptophan-based butyrylcholinesterase inhibitors. Eur. J. Med. Chem. 2020;208:112766. doi: 10.1016/j.ejmech.2020.112766. PubMed DOI
Knez D., Coquelle N., Pišlar A., Žakelj S., Jukič M., Sova M., Mravljak J., Nachon F., Brazzolotto X., Kos J., et al. Multi-target-directed ligands for treating Alzheimer’s disease: Butyrylcholinesterase inhibitors displaying antioxidant and neuroprotective activities. Eur. J. Med. Chem. 2018;156:598–617. doi: 10.1016/j.ejmech.2018.07.033. PubMed DOI
Henry S., Kidner R., Reisenauer M.R., Magedov I.V., Kiss R., Mathieu V., Lefranc F., Dasari R., Evidente A., Yu X., et al. 5,10b-Ethanophenanthridine amaryllidaceae alkaloids inspire the discovery of novel bicyclic ring systems with activity against drug resistant cancer cells. Eur. J. Med. Chem. 2016;120:313–328. doi: 10.1016/j.ejmech.2016.05.004. PubMed DOI PMC
Hostalkova A., Marikova J., Opletal L., Korabecny J., Hulcova D., Kunes J., Novakova L., Perez D.I., Jun D., Kucera T., et al. Isoquinoline Alkaloids from Berberis vulgaris as Potential Lead Compounds for the Treatment of Alzheimer’s Disease. J. Nat. Prod. 2019;82:239–248. doi: 10.1021/acs.jnatprod.8b00592. PubMed DOI
Mezeiova E., Janockova J., Andrys R., Soukup O., Kobrlova T., Muckova L., Pejchal J., Simunkova M., Hand J., Micankova P., et al. 2-Propargylamino-naphthoquinone derivatives as multipotent agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2021;211:113112. doi: 10.1016/j.ejmech.2020.113112. PubMed DOI
Fotakis G., Timbrell J.A. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett. 2006;160:171–177. doi: 10.1016/j.toxlet.2005.07.001. PubMed DOI
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI
O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33. PubMed DOI PMC
Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Wang J., Wang W., Kollman P.A., Case D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006;25:247–260. doi: 10.1016/j.jmgm.2005.12.005. PubMed DOI
Wang J., Wang W., Kollman P.A., Case D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI
Abraham M.J., Murtola T., Schulz R., Pall S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Mark P., Nilsson L. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. J. Phys. Chem. A. 2001;105:9954–9960. doi: 10.1021/jp003020w. DOI
Carltonine-derived compounds for targeted butyrylcholinesterase inhibition