Cholinesterase and Prolyl Oligopeptidase Inhibitory Activities of Alkaloids from Argemone platyceras (Papaveraceae)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28708094
PubMed Central
PMC6152004
DOI
10.3390/molecules22071181
PII: molecules22071181
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, Argemone platyceras, acetylcholinesterase, alkaloids, butyrylcholinesterase, prolyl oligopeptidase,
- MeSH
- alkaloidy chemie izolace a purifikace farmakologie MeSH
- Alzheimerova nemoc farmakoterapie MeSH
- Argemone chemie MeSH
- butyrylcholinesterasa účinky léků MeSH
- cholinesterasy účinky léků MeSH
- chromatografie na tenké vrstvě metody MeSH
- enzymatické testy metody MeSH
- inhibiční koncentrace 50 MeSH
- inhibitory enzymů chemie farmakologie MeSH
- kořeny rostlin chemie MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie metody MeSH
- objevování léků MeSH
- prolyloligopeptidasy MeSH
- rostlinné extrakty chemie MeSH
- serinové endopeptidasy účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkaloidy MeSH
- butyrylcholinesterasa MeSH
- cholinesterasy MeSH
- inhibitory enzymů MeSH
- PREPL protein, human MeSH Prohlížeč
- prolyloligopeptidasy MeSH
- rostlinné extrakty MeSH
- serinové endopeptidasy MeSH
Alzheimer's disease is an age-related, neurodegenerative disorder, characterized by cognitive impairment and restrictions in activities of daily living. This disease is the most common form of dementia with complex multifactorial pathological mechanisms. Many therapeutic approaches have been proposed. Among them, inhibition of acetylcholinesterase, butyrylcholinesterase, and prolyl oligopeptidase can be beneficial targets in the treatment of Alzheimer's disease. Roots, along with aerial parts of Argemone platyceras, were extracted with ethanol and fractionated on an alumina column using light petrol, chloroform and ethanol. Subsequently, repeated preparative thin-layer chromatography led to the isolation of (+)-laudanosine, protopine, (-)-argemonine, allocryptopine, (-)-platycerine, (-)-munitagine, and (-)-norargemonine belonging to pavine, protopine and benzyltetrahydroisoquinoline structural types. Chemical structures of the isolated alkaloids were elucidated by optical rotation, spectroscopic and spectrometric analysis (NMR, MS), and comparison with literature data. (+)-Laudanosine was isolated from A. platyceras for the first time. Isolated compounds were tested for human blood acetylcholinesterase, human plasma butyrylcholinesterase and recombinant prolyl oligopeptidase inhibitory activity. The alkaloids inhibited the enzymes in a dose-dependent manner. The most active compound (-)-munitagine, a pavine alkaloid, inhibited both acetylcholinesterase and prolyl oligopeptidase with IC50 values of 62.3 ± 5.8 µM and 277.0 ± 31.3 µM, respectively.
Zobrazit více v PubMed
Lleó A. Current therapeutic options for Alzheimer’s disease. Curr. Genom. 2007;8:550–558. doi: 10.2174/138920207783769549. PubMed DOI PMC
Park S.Y. Potential therapeutic agents against Alzheimer’s disease from natural sources. Arch. Pharm. Res. 2010;33:1589–1609. doi: 10.1007/s12272-010-1010-y. PubMed DOI
Rasool M., Malik A., Qureshi M.S., Manan A., Pushparaj P.N., Asif M., Qazi M.H., Qazi A.M., Kamal M.A., Gan S.H., et al. Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evid. Based Complement. Alternat. Med. 2014;2014:7. doi: 10.1155/2014/979730. PubMed DOI PMC
Nordberg A., Ballard C., Bullock R., Darreh-Shori T., Somogyi M. A Review of Butyrylcholinesterase as a Therapeutic Target in the Treatment of Alzheimer’s disease. Prim. Care Companion CNS Disord. 2013;15 doi: 10.4088/PCC.12r01412. PubMed DOI PMC
Standridge J.B. Pharmacotherapeutic approaches to the treatment of Alzheimer’s disease. Clin. Ther. 2004;26:615–630. doi: 10.1016/S0149-2918(04)90064-1. PubMed DOI
Greig N.H., Utsuki T., Yu Q., Zhu X., Holloway H.W., Perry T.A., Lee B., Ingram D.K., Lahiri D.K. A New therapeutic target in Alzheimer’s disease treatment: Attention to butyrylcholinesterase. Curr. Med. Res. Opin. 2001;17:159–165. doi: 10.1185/03007990152673800. PubMed DOI
Perry E.K., Atack J.R., Perry R.H., Hardy J.A., Dodd P.R., Edwardson J.A., Blessed G., Tomlinson B.E., Fairbairn A.F. Intralaminar neurochemical distributions in human midtemporal cortex: Comparison between Alzheimer’s disease and the normal. J. Neurochem. 1984;42:1402–1410. doi: 10.1111/j.1471-4159.1984.tb02801.x. PubMed DOI
Perry E.K., Tomlinson B.E., Blessed G., Bergmann K., Gibson P.H., Perry R.H. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. BMJ. 1978;2:1457–1459. doi: 10.1136/bmj.2.6150.1457. PubMed DOI PMC
Mukherjee P.K., Kumar V., Mal M., Houghton P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine. 2007;14:289–300. doi: 10.1016/j.phymed.2007.02.002. PubMed DOI
Orhan I., Sener B., Choudhary M.I., Khalid A. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. J. Ethnopharmacol. 2004;91:57–60. doi: 10.1016/j.jep.2003.11.016. PubMed DOI
Adsersen A., Gauguin B., Gudiksen L., Jäger A.K. Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase activity. J. Ethnopharmacol. 2006;104:418–422. doi: 10.1016/j.jep.2005.09.032. PubMed DOI
Berkov S., Bastida J., Nikolova M., Viladomat F., Codina C. Rapid TLC/GC-MS identification of acetylcholinesterase inhibitors in alkaloid extracts. Phytochem. Anal. 2008;19:411–419. doi: 10.1002/pca.1066. PubMed DOI
Wilson J., Hayes M., Carney B. Angiotensin-I-converting enzyme and prolyl endopeptidase inhibitory peptides from natural sources with a focus on marine processing by-products. Food Chem. 2011;129:235–244. doi: 10.1016/j.foodchem.2011.04.081. PubMed DOI
López A., Tarragó T., Giralt E. Low molecular weight inhibitors of prolyl oligopeptidase: A review of compounds patented from 2003 to 2010. Expert Opin. Ther. Pat. 2011;21:1023–1044. PubMed
Männistö P.T., García-Horsman J.A. Mechanism of Action of prolyl oligopeptidase (PREP) in degenerative brain diseases: Has peptidase activity only a modulatory role on the interactions of PREP with proteins? Front. Aging Neurosci. 2017;9 doi: 10.3389/fnagi.2017.00027. PubMed DOI PMC
Brandt I., Scharpé S., Lambeir A.M. Suggested functions for prolyl oligopeptidase: A puzzling paradox. Clin. Chim. Acta. 2007;377:50–61. doi: 10.1016/j.cca.2006.09.001. PubMed DOI
Morain P., Lestage P., de Nanteuil G., Jochemsen R., Robin J.L., Guez D., Boyer P.A. S 17092: A prolyl endopeptidase inhibitor as a potential therapeutic drug for memory impairment. Preclinical and clinical studies. CNS Drug Rev. 2002;8:31–52. doi: 10.1111/j.1527-3458.2002.tb00214.x. PubMed DOI PMC
Mellow A.H., Aronson S.M., Giordani B., Berent S. A peptide enhancement strategy in Alzheimer’s disease; Pilot study with TRH_physostigmine infusions. Biol. Psychiatry. 1993;34:271–273. doi: 10.1016/0006-3223(93)90083-P. PubMed DOI
Mellow A.H., Sunderland T.S., Cohen R.M., Lawlor B.A., Hill J.L., Newhouse P.A., Cohen M.R., Murphy D.L. Acute effects of high-dose thyrotrophin-releasing hormone infusions in Alzheimer’s disease. Psychopharmacol. 1989;98:403–407. doi: 10.1007/BF00451695. PubMed DOI
Tezuka Y., Fan W., Kasimu R., Kadota S. Screening of crude drug extracts for prolyl endopeptidase inhibitory activity. Phytomedicine. 1999;6:197–203. doi: 10.1016/S0944-7113(99)80009-9. PubMed DOI
Ishiura S., Tsukahara T., Tabira T., Shimizu T., Arahata K., Sugita H. Identification of a putative amyloid A4-generating enzyme as a prolyl endopeptidase. FEBS Lett. 1990;260:131–134. doi: 10.1016/0014-5793(90)80084-V. DOI
Lawandi J., Gerber-Lemaire S., Juillerat-Jeanneret L., Moitessier N. Inhibitors of prolyl oligopeptidases for the therapy of human diseases: Defining diseases and inhibitors. J. Med. Chem. 2010;53:3423–3438. doi: 10.1021/jm901104g. PubMed DOI
Laitinen K.S.M., van Groen T., Tanila H., Venäläinen J., Männistö P.T., Alafuzoff I. Brain prolyl oligopeptidase activity is associated with neuronal damage rather than β-amyloid accumulation. Neuroreport. 2001;12:3309–3312. doi: 10.1097/00001756-200110290-00032. PubMed DOI
Morain P., Robin J.L., Nanteuil G.D., Jochemsen R., Heidet V., Guez D. Pharmacodynamic and pharmacokinetic profile of S 17092, a new orally active prolyl endopeptidase inhibitor, in elderly healthy volunteers. A phase I study. Br. J. Clin. Pharmacol. 2000;50:350–359. doi: 10.1046/j.1365-2125.2000.00270.x. PubMed DOI PMC
Morain P., Boeijinga P.H., Demazières A., de Nanteuil G., Luthringer R. Psychotropic Profile of S 17092, a prolyl endopeptidase inhibitor, Using quantitative EEG in young healthy volunteers. Neuropsychobiology. 2007;55:176–183. doi: 10.1159/000107070. PubMed DOI
Orhan I.E. Current concepts on selected plant secondary metabolites with promising inhibitory effects against enzymes linked to Alzheimer’s disease. Curr. Med. Chem. 2012;19:2252–2261. doi: 10.2174/092986712800229032. PubMed DOI
Cahlíková L., Hulová L., Hrabinová M., Chlebek J., Hošťálková A., Adamcová M., Šafratová M., Jun D., Opletal L., Ločárek M., et al. Isoquinoline alkaloids as prolyl oligopeptidase inhibitors. Fitoterapia. 2015;103:192–196. doi: 10.1016/j.fitote.2015.04.004. PubMed DOI
Chlebek J., Novák Z., Kassemová D., Šafratová M., Kostelník J., Malý L., Ločárek M., Opletal L., Hošťálková A., Hrabinová M., et al. Isoquinoline alkaloids from Fumaria officinalis L. and their biological activities related to Alzheimer’s disease. Chem. Biodivers. 2016;13:91–99. doi: 10.1002/cbdv.201500033. PubMed DOI
Cahlíková L., Hrabinová M., Kulhánková A., Benešová N., Chlebek J., Jun D., Novák Z., Macáková K., Kuneš J., Kuča K., et al. Alkaloids from Chlidanthus fragrans and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase. Nat. Prod. Commun. 2013;8:1541–1544. PubMed
Schwarzbach A.E., Kadereit J.W. Phylogeny of prickly poppies, Argemone (Papaveraceae), and the evolution of morphological and alkaloid characters based on ITS nrDNA sequence variation. Plant Syst. Evol. 1999;218:257–279. doi: 10.1007/BF01089231. DOI
Fernandez J., Reyes R., Ponce H., Oropeza M., Vancalsteren M.R., Jankowski C., Campos M.G. Isoquercitrin from Argemone platyceras inhibits carbachol and leukotriene D4-induced contraction in guinea-pig airways. Eur. J. Pharmacol. 2005;522:108–115. doi: 10.1016/j.ejphar.2005.08.046. PubMed DOI
Boit H.G., Flentje H. Alkaloide aus Argemone platyceras. Naturwissenschaften. 1960;47:323.
Slavík J., Slavíková L. Alkaloide der Mohngewächse (Papaveraceae) XII. Über die Alkaloide aus Argemone platyceras Link et Otto. Coll. Czech. Chem. Commun. 1963;28:1728–1737. doi: 10.1135/cccc19631728. DOI
Slavík J., Slavíková L., Haisová K. Alkaloids of the Papaveraceae. L. On the quaternary alkaloids from Argemone platyceras Link et Otto. Coll. Czech. Chem. Commun. 1973;38:2513–2517. doi: 10.1135/cccc19732513. DOI
Israilov I.A., Yunusov M.S. Alkaloids of four species of Argemone. Chem. Nat. Comp. 1986;22:189–192. doi: 10.1007/BF00598384. DOI
Chelombitko V.A., Nazarova L.E. Alkaloids from several Argemone species. Pharm. Chem. J. 1988;22:580–585.
Slavík J., Slavíková L. Quaternary alkaloids from the roots of Argemone platyceras Link et Otto. Coll. Czech. Chem. Commun. 1976;41:285–289. doi: 10.1135/cccc19760285. DOI
Cahlíková L., Kučera R., Hošťálková A., Klimeš J., Opletal L. Identification of pavinane alkaloids in the genera Argemone and Eschscholzia by GC-MS. Nat. Prod. Commun. 2012;7:1279–1281. PubMed
Khorana N., Markmee S., Ingkaninan K., Ruchirawat S., Kitbunnadaj R., Pullagurla M.R. Evaluation of new lead for acetylcholinesterase inhibition. Med. Chem. Res. 2009;18:231–241. doi: 10.1007/s00044-008-9122-3. DOI
Castaing N., Benali L., Ducint D., Molimard M., Gromb S., Titier K. Suicide with cisatracurium and thiopental: Forensic and analytical aspects. J. Anal. Toxicol. 2011;35:375–380. doi: 10.1093/anatox/35.6.375. PubMed DOI
Janssen R.H.A.M., Wijkens P., Kruk C., Biessels H.W.A., Menichini F., Theuns H.G. Assignments of 1H and 13C-NMR resonances of some isoquinoline alkaloids. Phytochemistry. 1990;29:3331–3339. doi: 10.1016/0031-9422(90)80210-8. DOI
Takahashi H., Iguchi M., Onda M. Utilization of protopine and related alkaloids. XVII. Spectroscopic studies on the ten-membered ring conformations of protopine and α-allocryptopine. Chem. Pharm. Bull. 1985;33:4775–4782. doi: 10.1248/cpb.33.4775. DOI
Leyva-Peralta M.A., Robles-Zepeda R.E., Garibay-Escobar A., Ruiz-Bustos E., Alvarez-Berber L.P., Gálvez-Ruiz J.C. In vitro anti-proliferative activity of Argemone gracilenta and identification of some active components. BMC Complement. Alternat. Med. 2015;15:13. doi: 10.1186/s12906-015-0532-8. PubMed DOI PMC
Shamma M., Moniot J.L. A novel isoquinoline alkaloid group. The aporphine-pavine dimers. J. Am. Chem. Soc. 1974;96:3338–3340. doi: 10.1021/ja00817a064. DOI
Lee S.S., Doskotch R.W. Four dimeric aporphine-containing alkaloids from Thalictrum fauriei. J. Nat. Prod. 1999;62:803–810. doi: 10.1021/np980311b. PubMed DOI
Stermitz F.R., Seiber J.N. Alkaloids of the Papaveraceae. IV. Argemone hispida and A. munita subspecies routundata. J. Org. Chem. 1966;31:2925–2933. PubMed
Stermitz F.R., Seiber J.N. Alkaloids of Papaveraceae. III. Synthesis and structure of norargemonine. Tetrahedron Lett. 1966;11:1177–1183. doi: 10.1016/S0040-4039(00)72391-4. DOI
Benn M.H., Mitchell R.E. Alkaloids of Argemone grandiflora. Phytochemistry. 1972;11:461–464. doi: 10.1016/S0031-9422(00)90056-6. DOI
Dang T.T.T., Facchini P.J. Characterization of three O-methyltransferases involved in noscapine biosynthesis in opium poppy. Plant Physiol. 2012;159:618–631. doi: 10.1104/pp.112.194886. PubMed DOI PMC
Vacek J., Walterová D., Vrublová E., Šimánek V. The chemical and biological properties of protopine and allocryptopine. Heterocycles. 2010;81:1773–1789. doi: 10.3987/REV-10-673. DOI
Gözler B., Lantz M.S., Shamma M. The pavine and isopavine alkaloids. J. Nat. Prod. 1983;46:293–309. doi: 10.1021/np50027a001. PubMed DOI
Ehret M.J., Chamberlin K.W. Current practices in the treatment of Alzheimer disease: Where is the evidence after the phase III Trials? Clin. Ther. 2015;37:1604–1616. doi: 10.1016/j.clinthera.2015.05.510. PubMed DOI
Anand R., Gill K.D., Mahdi A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology. 2014;76:27–50. doi: 10.1016/j.neuropharm.2013.07.004. PubMed DOI
Schneider L.S., Mangialasche F., Andreasen N., Feldman H., Giacobini E., Jones R., Mantua V., Mecocci P., Pani L., Winblad B., et al. Clinical trials and late-stage drug development for Alzheimer’s disease: An appraisal from 1984 to 2014. J. Intern. Med. 2014;275:251–283. doi: 10.1111/joim.12191. PubMed DOI PMC
Giacobini E. Cholinesterase inhibitors: New roles and therapeutic alternatives. Pharmacol. Res. 2004;50:433–440. doi: 10.1016/j.phrs.2003.11.017. PubMed DOI
Kandiah N., Pai M., Senanarong V., Looi I., Ampil E., Park K.W., Karanam A.K., Christopher S. Rivastigmine: The advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin. Interv. Aging. 2017;12:697–707. doi: 10.2147/CIA.S129145. PubMed DOI PMC
Ellman G.L., Courtney K.D., Andres V., Featherstone R.M. A new rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Cahlíková L., Macáková K., Kuneš J., Kurfürst M., Opletal M., Cvačka J., Chlebek J., Blunden G. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Eschscholzia californica (Papaveraceae) Nat. Prod. Commun. 2010;5:1035–1038. PubMed
Sener B., Orhan I. Discovery of drug candidates from some Turkish plants and conservation of biodiversity. Pure Appl. Chem. 2005;77:53–64. doi: 10.1351/pac200577010053. DOI
Hošt’álková A., Opletal L., Kuneš J., Novák Z., Hrabinová M., Chlebek J., Čegan L., Cahlíková L. Alkaloids from Peumus boldus and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase inhibition activity. Nat. Prod. Commun. 2015;10:577–580. PubMed
Chlebek J., Macáková K., Cahlíková L., Kurfürst M., Kuneš J., Opletal L. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava (Fumariaceae) Nat. Prod. Commun. 2011;6:607–610. PubMed
Markmee S., Ruchirawat S., Prachyawarakorn V., Ingkaninan K., Khorana N. Isoquinoline derivatives as potential acetyl-cholinesterase inhibitors. Bioorg. Med. Chem. Lett. 2006;16:2170–2172. doi: 10.1016/j.bmcl.2006.01.067. PubMed DOI
Sener B., Orhan I. Molecular diversity in the bioactive compounds from Turkish plants–evaluation of acetylcholinesterase inhibitory activity of Fumaria species. J. Chem. Soc. Pak. 2004;26:313–315.
Brunhofer G., Karlsson D., Batista-Gonzalez A., Shinde P.C., Mohan C.G., Vuorela P. Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: The case of chelerythrine. Bioorg. Med. Chem. 2012;20:6669–6679. doi: 10.1016/j.bmc.2012.09.040. PubMed DOI
Ji H.F.J., Shen L. Berberine: A potential multipotent natural product to combat Alzheimer’s disease. Molecules. 2011;9:6732–6740. doi: 10.3390/molecules16086732. PubMed DOI PMC
Jung H.A., Min B.S., Yokozawa T., Lee J.H., Kim Y.S., Choi J.S. Anti-Alzheimer and antioxidant activities of Coptidis rhizoma alkaloids. Biol. Pharm. Bull. 2009;32:1433–1438. doi: 10.1248/bpb.32.1433. PubMed DOI
Kukula-Koch W., Mroczek T. Application of hydrostatic CCC-TLC-HPLC-ESI-TOF-MS for the bioguided fractionation of anticholinesterase alkaloids from Argemone mexicana L. roots. Anal. Bioanal. Chem. 2015;407:2581–2589. doi: 10.1007/s00216-015-8468-x. PubMed DOI PMC
Lu Y.C., Lin Q., Luo G.S., Dai Y.Y. Solubility of berberine chloride in various solvents. J. Chem. Eng. Data. 2006;51:642–644. doi: 10.1021/je0504360. DOI
NCBI PubChem. Pubchem Compound. [(accessed on 15 May 2017)]; Available online: https://www.ncbi.nlm.nih.gov/pccompound.
Steck T.L., Kant J.A. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods Enzymol. 1974;31:172–180. PubMed
Vaněčková N., Hošťálková A., Šafratová M., Kuneš J., Hulcová D., Hrabinová M., Doskočil I., Štěpanková Š., Opletal L., Nováková L., et al. Isolation of Amaryllidaceae alkaloids from Nerine bowdenii W. Watson and their biological activities. RSC Adv. 2016;6:80114. doi: 10.1039/C6RA20205E. DOI
Interactions of Isoquinoline Alkaloids with Transition Metals Iron and Copper