Cholinesterase and Prolyl Oligopeptidase Inhibitory Activities of Alkaloids from Argemone platyceras (Papaveraceae)

. 2017 Jul 14 ; 22 (7) : . [epub] 20170714

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28708094

Alzheimer's disease is an age-related, neurodegenerative disorder, characterized by cognitive impairment and restrictions in activities of daily living. This disease is the most common form of dementia with complex multifactorial pathological mechanisms. Many therapeutic approaches have been proposed. Among them, inhibition of acetylcholinesterase, butyrylcholinesterase, and prolyl oligopeptidase can be beneficial targets in the treatment of Alzheimer's disease. Roots, along with aerial parts of Argemone platyceras, were extracted with ethanol and fractionated on an alumina column using light petrol, chloroform and ethanol. Subsequently, repeated preparative thin-layer chromatography led to the isolation of (+)-laudanosine, protopine, (-)-argemonine, allocryptopine, (-)-platycerine, (-)-munitagine, and (-)-norargemonine belonging to pavine, protopine and benzyltetrahydroisoquinoline structural types. Chemical structures of the isolated alkaloids were elucidated by optical rotation, spectroscopic and spectrometric analysis (NMR, MS), and comparison with literature data. (+)-Laudanosine was isolated from A. platyceras for the first time. Isolated compounds were tested for human blood acetylcholinesterase, human plasma butyrylcholinesterase and recombinant prolyl oligopeptidase inhibitory activity. The alkaloids inhibited the enzymes in a dose-dependent manner. The most active compound (-)-munitagine, a pavine alkaloid, inhibited both acetylcholinesterase and prolyl oligopeptidase with IC50 values of 62.3 ± 5.8 µM and 277.0 ± 31.3 µM, respectively.

Zobrazit více v PubMed

Lleó A. Current therapeutic options for Alzheimer’s disease. Curr. Genom. 2007;8:550–558. doi: 10.2174/138920207783769549. PubMed DOI PMC

Park S.Y. Potential therapeutic agents against Alzheimer’s disease from natural sources. Arch. Pharm. Res. 2010;33:1589–1609. doi: 10.1007/s12272-010-1010-y. PubMed DOI

Rasool M., Malik A., Qureshi M.S., Manan A., Pushparaj P.N., Asif M., Qazi M.H., Qazi A.M., Kamal M.A., Gan S.H., et al. Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evid. Based Complement. Alternat. Med. 2014;2014:7. doi: 10.1155/2014/979730. PubMed DOI PMC

Nordberg A., Ballard C., Bullock R., Darreh-Shori T., Somogyi M. A Review of Butyrylcholinesterase as a Therapeutic Target in the Treatment of Alzheimer’s disease. Prim. Care Companion CNS Disord. 2013;15 doi: 10.4088/PCC.12r01412. PubMed DOI PMC

Standridge J.B. Pharmacotherapeutic approaches to the treatment of Alzheimer’s disease. Clin. Ther. 2004;26:615–630. doi: 10.1016/S0149-2918(04)90064-1. PubMed DOI

Greig N.H., Utsuki T., Yu Q., Zhu X., Holloway H.W., Perry T.A., Lee B., Ingram D.K., Lahiri D.K. A New therapeutic target in Alzheimer’s disease treatment: Attention to butyrylcholinesterase. Curr. Med. Res. Opin. 2001;17:159–165. doi: 10.1185/03007990152673800. PubMed DOI

Perry E.K., Atack J.R., Perry R.H., Hardy J.A., Dodd P.R., Edwardson J.A., Blessed G., Tomlinson B.E., Fairbairn A.F. Intralaminar neurochemical distributions in human midtemporal cortex: Comparison between Alzheimer’s disease and the normal. J. Neurochem. 1984;42:1402–1410. doi: 10.1111/j.1471-4159.1984.tb02801.x. PubMed DOI

Perry E.K., Tomlinson B.E., Blessed G., Bergmann K., Gibson P.H., Perry R.H. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. BMJ. 1978;2:1457–1459. doi: 10.1136/bmj.2.6150.1457. PubMed DOI PMC

Mukherjee P.K., Kumar V., Mal M., Houghton P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine. 2007;14:289–300. doi: 10.1016/j.phymed.2007.02.002. PubMed DOI

Orhan I., Sener B., Choudhary M.I., Khalid A. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. J. Ethnopharmacol. 2004;91:57–60. doi: 10.1016/j.jep.2003.11.016. PubMed DOI

Adsersen A., Gauguin B., Gudiksen L., Jäger A.K. Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase activity. J. Ethnopharmacol. 2006;104:418–422. doi: 10.1016/j.jep.2005.09.032. PubMed DOI

Berkov S., Bastida J., Nikolova M., Viladomat F., Codina C. Rapid TLC/GC-MS identification of acetylcholinesterase inhibitors in alkaloid extracts. Phytochem. Anal. 2008;19:411–419. doi: 10.1002/pca.1066. PubMed DOI

Wilson J., Hayes M., Carney B. Angiotensin-I-converting enzyme and prolyl endopeptidase inhibitory peptides from natural sources with a focus on marine processing by-products. Food Chem. 2011;129:235–244. doi: 10.1016/j.foodchem.2011.04.081. PubMed DOI

López A., Tarragó T., Giralt E. Low molecular weight inhibitors of prolyl oligopeptidase: A review of compounds patented from 2003 to 2010. Expert Opin. Ther. Pat. 2011;21:1023–1044. PubMed

Männistö P.T., García-Horsman J.A. Mechanism of Action of prolyl oligopeptidase (PREP) in degenerative brain diseases: Has peptidase activity only a modulatory role on the interactions of PREP with proteins? Front. Aging Neurosci. 2017;9 doi: 10.3389/fnagi.2017.00027. PubMed DOI PMC

Brandt I., Scharpé S., Lambeir A.M. Suggested functions for prolyl oligopeptidase: A puzzling paradox. Clin. Chim. Acta. 2007;377:50–61. doi: 10.1016/j.cca.2006.09.001. PubMed DOI

Morain P., Lestage P., de Nanteuil G., Jochemsen R., Robin J.L., Guez D., Boyer P.A. S 17092: A prolyl endopeptidase inhibitor as a potential therapeutic drug for memory impairment. Preclinical and clinical studies. CNS Drug Rev. 2002;8:31–52. doi: 10.1111/j.1527-3458.2002.tb00214.x. PubMed DOI PMC

Mellow A.H., Aronson S.M., Giordani B., Berent S. A peptide enhancement strategy in Alzheimer’s disease; Pilot study with TRH_physostigmine infusions. Biol. Psychiatry. 1993;34:271–273. doi: 10.1016/0006-3223(93)90083-P. PubMed DOI

Mellow A.H., Sunderland T.S., Cohen R.M., Lawlor B.A., Hill J.L., Newhouse P.A., Cohen M.R., Murphy D.L. Acute effects of high-dose thyrotrophin-releasing hormone infusions in Alzheimer’s disease. Psychopharmacol. 1989;98:403–407. doi: 10.1007/BF00451695. PubMed DOI

Tezuka Y., Fan W., Kasimu R., Kadota S. Screening of crude drug extracts for prolyl endopeptidase inhibitory activity. Phytomedicine. 1999;6:197–203. doi: 10.1016/S0944-7113(99)80009-9. PubMed DOI

Ishiura S., Tsukahara T., Tabira T., Shimizu T., Arahata K., Sugita H. Identification of a putative amyloid A4-generating enzyme as a prolyl endopeptidase. FEBS Lett. 1990;260:131–134. doi: 10.1016/0014-5793(90)80084-V. DOI

Lawandi J., Gerber-Lemaire S., Juillerat-Jeanneret L., Moitessier N. Inhibitors of prolyl oligopeptidases for the therapy of human diseases: Defining diseases and inhibitors. J. Med. Chem. 2010;53:3423–3438. doi: 10.1021/jm901104g. PubMed DOI

Laitinen K.S.M., van Groen T., Tanila H., Venäläinen J., Männistö P.T., Alafuzoff I. Brain prolyl oligopeptidase activity is associated with neuronal damage rather than β-amyloid accumulation. Neuroreport. 2001;12:3309–3312. doi: 10.1097/00001756-200110290-00032. PubMed DOI

Morain P., Robin J.L., Nanteuil G.D., Jochemsen R., Heidet V., Guez D. Pharmacodynamic and pharmacokinetic profile of S 17092, a new orally active prolyl endopeptidase inhibitor, in elderly healthy volunteers. A phase I study. Br. J. Clin. Pharmacol. 2000;50:350–359. doi: 10.1046/j.1365-2125.2000.00270.x. PubMed DOI PMC

Morain P., Boeijinga P.H., Demazières A., de Nanteuil G., Luthringer R. Psychotropic Profile of S 17092, a prolyl endopeptidase inhibitor, Using quantitative EEG in young healthy volunteers. Neuropsychobiology. 2007;55:176–183. doi: 10.1159/000107070. PubMed DOI

Orhan I.E. Current concepts on selected plant secondary metabolites with promising inhibitory effects against enzymes linked to Alzheimer’s disease. Curr. Med. Chem. 2012;19:2252–2261. doi: 10.2174/092986712800229032. PubMed DOI

Cahlíková L., Hulová L., Hrabinová M., Chlebek J., Hošťálková A., Adamcová M., Šafratová M., Jun D., Opletal L., Ločárek M., et al. Isoquinoline alkaloids as prolyl oligopeptidase inhibitors. Fitoterapia. 2015;103:192–196. doi: 10.1016/j.fitote.2015.04.004. PubMed DOI

Chlebek J., Novák Z., Kassemová D., Šafratová M., Kostelník J., Malý L., Ločárek M., Opletal L., Hošťálková A., Hrabinová M., et al. Isoquinoline alkaloids from Fumaria officinalis L. and their biological activities related to Alzheimer’s disease. Chem. Biodivers. 2016;13:91–99. doi: 10.1002/cbdv.201500033. PubMed DOI

Cahlíková L., Hrabinová M., Kulhánková A., Benešová N., Chlebek J., Jun D., Novák Z., Macáková K., Kuneš J., Kuča K., et al. Alkaloids from Chlidanthus fragrans and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase. Nat. Prod. Commun. 2013;8:1541–1544. PubMed

Schwarzbach A.E., Kadereit J.W. Phylogeny of prickly poppies, Argemone (Papaveraceae), and the evolution of morphological and alkaloid characters based on ITS nrDNA sequence variation. Plant Syst. Evol. 1999;218:257–279. doi: 10.1007/BF01089231. DOI

Fernandez J., Reyes R., Ponce H., Oropeza M., Vancalsteren M.R., Jankowski C., Campos M.G. Isoquercitrin from Argemone platyceras inhibits carbachol and leukotriene D4-induced contraction in guinea-pig airways. Eur. J. Pharmacol. 2005;522:108–115. doi: 10.1016/j.ejphar.2005.08.046. PubMed DOI

Boit H.G., Flentje H. Alkaloide aus Argemone platyceras. Naturwissenschaften. 1960;47:323.

Slavík J., Slavíková L. Alkaloide der Mohngewächse (Papaveraceae) XII. Über die Alkaloide aus Argemone platyceras Link et Otto. Coll. Czech. Chem. Commun. 1963;28:1728–1737. doi: 10.1135/cccc19631728. DOI

Slavík J., Slavíková L., Haisová K. Alkaloids of the Papaveraceae. L. On the quaternary alkaloids from Argemone platyceras Link et Otto. Coll. Czech. Chem. Commun. 1973;38:2513–2517. doi: 10.1135/cccc19732513. DOI

Israilov I.A., Yunusov M.S. Alkaloids of four species of Argemone. Chem. Nat. Comp. 1986;22:189–192. doi: 10.1007/BF00598384. DOI

Chelombitko V.A., Nazarova L.E. Alkaloids from several Argemone species. Pharm. Chem. J. 1988;22:580–585.

Slavík J., Slavíková L. Quaternary alkaloids from the roots of Argemone platyceras Link et Otto. Coll. Czech. Chem. Commun. 1976;41:285–289. doi: 10.1135/cccc19760285. DOI

Cahlíková L., Kučera R., Hošťálková A., Klimeš J., Opletal L. Identification of pavinane alkaloids in the genera Argemone and Eschscholzia by GC-MS. Nat. Prod. Commun. 2012;7:1279–1281. PubMed

Khorana N., Markmee S., Ingkaninan K., Ruchirawat S., Kitbunnadaj R., Pullagurla M.R. Evaluation of new lead for acetylcholinesterase inhibition. Med. Chem. Res. 2009;18:231–241. doi: 10.1007/s00044-008-9122-3. DOI

Castaing N., Benali L., Ducint D., Molimard M., Gromb S., Titier K. Suicide with cisatracurium and thiopental: Forensic and analytical aspects. J. Anal. Toxicol. 2011;35:375–380. doi: 10.1093/anatox/35.6.375. PubMed DOI

Janssen R.H.A.M., Wijkens P., Kruk C., Biessels H.W.A., Menichini F., Theuns H.G. Assignments of 1H and 13C-NMR resonances of some isoquinoline alkaloids. Phytochemistry. 1990;29:3331–3339. doi: 10.1016/0031-9422(90)80210-8. DOI

Takahashi H., Iguchi M., Onda M. Utilization of protopine and related alkaloids. XVII. Spectroscopic studies on the ten-membered ring conformations of protopine and α-allocryptopine. Chem. Pharm. Bull. 1985;33:4775–4782. doi: 10.1248/cpb.33.4775. DOI

Leyva-Peralta M.A., Robles-Zepeda R.E., Garibay-Escobar A., Ruiz-Bustos E., Alvarez-Berber L.P., Gálvez-Ruiz J.C. In vitro anti-proliferative activity of Argemone gracilenta and identification of some active components. BMC Complement. Alternat. Med. 2015;15:13. doi: 10.1186/s12906-015-0532-8. PubMed DOI PMC

Shamma M., Moniot J.L. A novel isoquinoline alkaloid group. The aporphine-pavine dimers. J. Am. Chem. Soc. 1974;96:3338–3340. doi: 10.1021/ja00817a064. DOI

Lee S.S., Doskotch R.W. Four dimeric aporphine-containing alkaloids from Thalictrum fauriei. J. Nat. Prod. 1999;62:803–810. doi: 10.1021/np980311b. PubMed DOI

Stermitz F.R., Seiber J.N. Alkaloids of the Papaveraceae. IV. Argemone hispida and A. munita subspecies routundata. J. Org. Chem. 1966;31:2925–2933. PubMed

Stermitz F.R., Seiber J.N. Alkaloids of Papaveraceae. III. Synthesis and structure of norargemonine. Tetrahedron Lett. 1966;11:1177–1183. doi: 10.1016/S0040-4039(00)72391-4. DOI

Benn M.H., Mitchell R.E. Alkaloids of Argemone grandiflora. Phytochemistry. 1972;11:461–464. doi: 10.1016/S0031-9422(00)90056-6. DOI

Dang T.T.T., Facchini P.J. Characterization of three O-methyltransferases involved in noscapine biosynthesis in opium poppy. Plant Physiol. 2012;159:618–631. doi: 10.1104/pp.112.194886. PubMed DOI PMC

Vacek J., Walterová D., Vrublová E., Šimánek V. The chemical and biological properties of protopine and allocryptopine. Heterocycles. 2010;81:1773–1789. doi: 10.3987/REV-10-673. DOI

Gözler B., Lantz M.S., Shamma M. The pavine and isopavine alkaloids. J. Nat. Prod. 1983;46:293–309. doi: 10.1021/np50027a001. PubMed DOI

Ehret M.J., Chamberlin K.W. Current practices in the treatment of Alzheimer disease: Where is the evidence after the phase III Trials? Clin. Ther. 2015;37:1604–1616. doi: 10.1016/j.clinthera.2015.05.510. PubMed DOI

Anand R., Gill K.D., Mahdi A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology. 2014;76:27–50. doi: 10.1016/j.neuropharm.2013.07.004. PubMed DOI

Schneider L.S., Mangialasche F., Andreasen N., Feldman H., Giacobini E., Jones R., Mantua V., Mecocci P., Pani L., Winblad B., et al. Clinical trials and late-stage drug development for Alzheimer’s disease: An appraisal from 1984 to 2014. J. Intern. Med. 2014;275:251–283. doi: 10.1111/joim.12191. PubMed DOI PMC

Giacobini E. Cholinesterase inhibitors: New roles and therapeutic alternatives. Pharmacol. Res. 2004;50:433–440. doi: 10.1016/j.phrs.2003.11.017. PubMed DOI

Kandiah N., Pai M., Senanarong V., Looi I., Ampil E., Park K.W., Karanam A.K., Christopher S. Rivastigmine: The advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin. Interv. Aging. 2017;12:697–707. doi: 10.2147/CIA.S129145. PubMed DOI PMC

Ellman G.L., Courtney K.D., Andres V., Featherstone R.M. A new rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

Cahlíková L., Macáková K., Kuneš J., Kurfürst M., Opletal M., Cvačka J., Chlebek J., Blunden G. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Eschscholzia californica (Papaveraceae) Nat. Prod. Commun. 2010;5:1035–1038. PubMed

Sener B., Orhan I. Discovery of drug candidates from some Turkish plants and conservation of biodiversity. Pure Appl. Chem. 2005;77:53–64. doi: 10.1351/pac200577010053. DOI

Hošt’álková A., Opletal L., Kuneš J., Novák Z., Hrabinová M., Chlebek J., Čegan L., Cahlíková L. Alkaloids from Peumus boldus and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase inhibition activity. Nat. Prod. Commun. 2015;10:577–580. PubMed

Chlebek J., Macáková K., Cahlíková L., Kurfürst M., Kuneš J., Opletal L. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava (Fumariaceae) Nat. Prod. Commun. 2011;6:607–610. PubMed

Markmee S., Ruchirawat S., Prachyawarakorn V., Ingkaninan K., Khorana N. Isoquinoline derivatives as potential acetyl-cholinesterase inhibitors. Bioorg. Med. Chem. Lett. 2006;16:2170–2172. doi: 10.1016/j.bmcl.2006.01.067. PubMed DOI

Sener B., Orhan I. Molecular diversity in the bioactive compounds from Turkish plants–evaluation of acetylcholinesterase inhibitory activity of Fumaria species. J. Chem. Soc. Pak. 2004;26:313–315.

Brunhofer G., Karlsson D., Batista-Gonzalez A., Shinde P.C., Mohan C.G., Vuorela P. Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: The case of chelerythrine. Bioorg. Med. Chem. 2012;20:6669–6679. doi: 10.1016/j.bmc.2012.09.040. PubMed DOI

Ji H.F.J., Shen L. Berberine: A potential multipotent natural product to combat Alzheimer’s disease. Molecules. 2011;9:6732–6740. doi: 10.3390/molecules16086732. PubMed DOI PMC

Jung H.A., Min B.S., Yokozawa T., Lee J.H., Kim Y.S., Choi J.S. Anti-Alzheimer and antioxidant activities of Coptidis rhizoma alkaloids. Biol. Pharm. Bull. 2009;32:1433–1438. doi: 10.1248/bpb.32.1433. PubMed DOI

Kukula-Koch W., Mroczek T. Application of hydrostatic CCC-TLC-HPLC-ESI-TOF-MS for the bioguided fractionation of anticholinesterase alkaloids from Argemone mexicana L. roots. Anal. Bioanal. Chem. 2015;407:2581–2589. doi: 10.1007/s00216-015-8468-x. PubMed DOI PMC

Lu Y.C., Lin Q., Luo G.S., Dai Y.Y. Solubility of berberine chloride in various solvents. J. Chem. Eng. Data. 2006;51:642–644. doi: 10.1021/je0504360. DOI

NCBI PubChem. Pubchem Compound. [(accessed on 15 May 2017)]; Available online: https://www.ncbi.nlm.nih.gov/pccompound.

Steck T.L., Kant J.A. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods Enzymol. 1974;31:172–180. PubMed

Vaněčková N., Hošťálková A., Šafratová M., Kuneš J., Hulcová D., Hrabinová M., Doskočil I., Štěpanková Š., Opletal L., Nováková L., et al. Isolation of Amaryllidaceae alkaloids from Nerine bowdenii W. Watson and their biological activities. RSC Adv. 2016;6:80114. doi: 10.1039/C6RA20205E. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...