Interactions of Isoquinoline Alkaloids with Transition Metals Iron and Copper

. 2022 Sep 29 ; 27 (19) : . [epub] 20220929

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36234964

Grantová podpora
SVV 260 550 Charles University

Data on alkaloid interactions with the physiologically important transition metals, iron and copper, are mostly lacking in the literature. However, these interactions can have important consequences in the treatment of both Alzheimer's disease and cancer. As isoquinoline alkaloids include galanthamine, an approved drug for Alzheimer's disease, as well as some potentially useful compounds with cytostatic potential, 28 members from this category of alkaloids were selected for a complex screening of interactions with iron and copper at four pathophysiologically relevant pH and in non-buffered conditions (dimethyl sulfoxide) by spectrophotometric methods in vitro. With the exception of the salts, all the alkaloids were able to chelate ferrous and ferric ions in non-buffered conditions, but only five of them (galanthine, glaucine, corydine, corydaline and tetrahydropalmatine) evoked some significant chelation at pH 7.5 and only the first two were also active at pH 6.8. By contrast, none of the tested alkaloids chelated cuprous or cupric ions. All the alkaloids, with the exception of the protopines, significantly reduced the ferric and cupric ions, with stronger effects on the latter. These effects were mostly dependent on the number of free aromatic hydroxyls, but not other hydroxyl groups. The most potent reductant was boldine. As most of the alkaloids chelated and reduced the ferric ions, additional experimental studies are needed to elucidate the biological relevance of these results, as chelation is expected to block reactive oxygen species formation, while reduction could have the opposite effect.

Zobrazit více v PubMed

Derry P.J., Hegde M.L., Jackson G.R., Kayed R., Tour J.M., Tsai A.L., Kent T.A. Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer’s disease from a ferroptosis perspective. Prog. Neurobiol. 2020;184:101716. doi: 10.1016/j.pneurobio.2019.101716. PubMed DOI PMC

Gromadzka G., Tarnacka B., Flaga A., Adamczyk A. Copper Dyshomeostasis in Neurodegenerative Diseases-Therapeutic Implications. Int. J. Mol. Sci. 2020;21:9259. doi: 10.3390/ijms21239259. PubMed DOI PMC

Chevion M., Jiang Y., Har-El R., Berenshtein E., Uretzky G., Kitrossky N. Copper and iron are mobilized following myocardial ischemia: Possible predictive criteria for tissue injury. Proc. Natl. Acad. Sci. USA. 1993;90:1102–1106. doi: 10.1073/pnas.90.3.1102. PubMed DOI PMC

Rhaman M.M., Islam M.R., Akash S., Mim M., Noor alam M., Nepovimova E., Valis M., Kuca K., Sharma R. Exploring the role of nanomedicines for the therapeutic approach of central nervous system dysfunction: At a glance. Front. Cell Dev. Biol. 2022;10:1780. doi: 10.3389/fcell.2022.989471. PubMed DOI PMC

Cao J., Hou J., Ping J., Cai D. Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol. Neurodegener. 2018;13:64. doi: 10.1186/s13024-018-0299-8. PubMed DOI PMC

Yuksel J.M., Noviasky J., Britton S. Aducanumab for Alzheimer’s Disease: Summarized Data From EMERGE, ENGAGE, and PRIME Studies. Sr. Care Pharm. 2022;37:329–334. doi: 10.4140/TCP.n.2022.329. PubMed DOI

Metz C.N., Pavlov V.A. Treating disorders across the lifespan by modulating cholinergic signaling with galantamine. J. Neurochem. 2020;158:1359–1380. doi: 10.1111/jnc.15243. PubMed DOI PMC

Hussain G., Rasul A., Anwar H., Aziz N., Razzaq A., Wei W., Ali M., Li J., Li X. Role of Plant Derived Alkaloids and Their Mechanism in Neurodegenerative Disorders. Int. J. Biol. Sci. 2018;14:341–357. doi: 10.7150/ijbs.23247. PubMed DOI PMC

Shang X.-F., Yang C.-J., Morris-Natschke S.L., Li J.-C., Yin X.-D., Liu Y.-Q., Guo X., Peng J.-W., Goto M., Zhang J.-Y., et al. Biologically active isoquinoline alkaloids covering 2014–2018. Med. Res. Rev. 2020;40:2212–2289. doi: 10.1002/med.21703. PubMed DOI PMC

Kontoghiorghes G.J., Kolnagou A., Kontoghiorghe C.N., Mourouzidis L., Timoshnikov V.A., Polyakov N.E. Trying to Solve the Puzzle of the Interaction of Ascorbic Acid and Iron: Redox, Chelation and Therapeutic Implications. Medicines. 2020;7:45. doi: 10.3390/medicines7080045. PubMed DOI PMC

Gaur K., Vázquez-Salgado A.M., Duran-Camacho G., Dominguez-Martinez I., Benjamín-Rivera J.A., Fernández-Vega L., Sarabia L.C., García A.C., Pérez-Deliz F., Méndez Román J.A., et al. Iron and Copper Intracellular Chelation as an Anticancer Drug Strategy. Inorganics. 2018;6:126. doi: 10.3390/inorganics6040126. PubMed DOI PMC

Wijesinghe T.P., Dharmasivam M., Dai C.C., Richardson D.R. Innovative therapies for neuroblastoma: The surprisingly potent role of iron chelation in up-regulating metastasis and tumor suppressors and down-regulating the key oncogene, N-myc. Pharmacol. Res. 2021;173:105889. doi: 10.1016/j.phrs.2021.105889. PubMed DOI

Macáková K., Afonso R., Saso L., Mladěnka P. The influence of alkaloids on oxidative stress and related signaling pathways. Free Radic. Biol. Med. 2019;134:429–444. doi: 10.1016/j.freeradbiomed.2019.01.026. PubMed DOI

Shirwaikar A., Shirwaikar A., Rajendran K., Punitha I.S. In vitro antioxidant studies on the benzyl tetra isoquinoline alkaloid berberine. Biol. Pharm. Bull. 2006;29:1906–1910. doi: 10.1248/bpb.29.1906. PubMed DOI

Butera D., Tesoriere L., Di Gaudio F., Bongiorno A., Allegra M., Pintaudi A.M., Kohen R., Livrea M.A. Antioxidant activities of sicilian prickly pear (Opuntia ficus indica) fruit extracts and reducing properties of its betalains: Betanin and indicaxanthin. J. Agric. Food Chem. 2002;50:6895–6901. doi: 10.1021/jf025696p. PubMed DOI

Yoon M.A., Jeong T.S., Park D.S., Xu M.Z., Oh H.W., Song K.B., Lee W.S., Park H.Y. Antioxidant effects of quinoline alkaloids and 2,4-di-tert-butylphenol isolated from Scolopendra subspinipes. Biol. Pharm. Bull. 2006;29:735–739. doi: 10.1248/bpb.29.735. PubMed DOI

Zahari A., Ablat A., Omer N., Nafiah M.A., Sivasothy Y., Mohamad J., Khan M.N., Awang K. Ultraviolet-visible study on acid-base equilibria of aporphine alkaloids with antiplasmodial and antioxidant activities from Alseodaphne corneri and Dehaasia longipedicellata. Sci. Rep. 2016;6:21517. doi: 10.1038/srep21517. PubMed DOI PMC

Nasrullah A.A., Zahari A., Mohamad J., Awang K. Antiplasmodial alkaloids from the bark of Cryptocarya nigra (Lauraceae) Molecules. 2013;18:8009–8017. doi: 10.3390/molecules18078009. PubMed DOI PMC

Gülçin I., Elias R., Gepdiremen A., Chea A., Topal F. Antioxidant activity of bisbenzylisoquinoline alkaloids from Stephania rotunda: Cepharanthine and fangchinoline. J. Enzym. Inhib. Med. Chem. 2010;25:44–53. doi: 10.3109/14756360902932792. PubMed DOI

Jang M.H., Kim H.Y., Kang K.S., Yokozawa T., Park J.H. Hydroxyl radical scavenging activities of isoquinoline alkaloids isolated from Coptis chinensis. Arch. Pharm. Res. 2009;32:341–345. doi: 10.1007/s12272-009-1305-z. PubMed DOI

Jung Y.-J., Surh Y.-J. Oxidative DNA damage and cytotoxicity induced by copper-stimulated redox cycling of salsolinol, a neurotoxic tetrahydroisoquinoline alkaloid. Free Radic. Biol. Med. 2001;30:1407–1417. doi: 10.1016/S0891-5849(01)00548-2. PubMed DOI

Zahari A., Cheah F.K., Mohamad J., Sulaiman S.N., Litaudon M., Leong K.H., Awang K. Antiplasmodial and Antioxidant Isoquinoline Alkaloids from Dehaasia longipedicellata. Planta Med. 2014;80:599–603. doi: 10.1055/s-0034-1368349. PubMed DOI

Jang D.S., Lee G.Y., Kim J., Lee Y.M., Kim J.M., Kim Y.S., Kim J.S. A new pancreatic lipase inhibitor isolated from the roots of Actinidia arguta. Arch. Pharmacol. Res. 2008;31:666–670. doi: 10.1007/s12272-001-1210-9. PubMed DOI

Zahari A., Ablat A., Sivasothy Y., Mohamad J., Choudhary M.I., Awang K. In vitro antiplasmodial and antioxidant activities of bisbenzylisoquinoline alkaloids from Alseodaphne corneri Kosterm. Asian Pac. J. Trop. Med. 2016;9:328–332. doi: 10.1016/j.apjtm.2016.03.008. PubMed DOI

Stookey L.L. Ferrozine—A new spectrophotometric reagent for iron. Anal. Chem. 1970;42:779–781. doi: 10.1021/ac60289a016. DOI

Mladěnka P., Macáková K., Filipský T., Zatloukalová L., Jahodář L., Bovicelli P., Silvestri I.P., Hrdina R., Saso L. In vitro analysis of iron chelating activity of flavonoids. J. Inorg. Biochem. 2011;105:693–701. doi: 10.1016/j.jinorgbio.2011.02.003. PubMed DOI

Prachayasittikul V., Prachayasittikul S., Ruchirawat S., Prachayasittikul V. 8-Hydroxyquinolines: A review of their metal chelating properties and medicinal applications. Drug Des. Devel. Ther. 2013;7:1157–1178. doi: 10.2147/DDDT.S49763. PubMed DOI PMC

Mladenka P., Macakova K., Zatloukalova L., Rehakova Z., Singh B.K., Prasad A.K., Parmar V.S., Jahodar L., Hrdina R., Saso L. In vitro interactions of coumarins with iron. Biochimie. 2010;92:1108–1114. doi: 10.1016/j.biochi.2010.03.025. PubMed DOI

Lomozová Z., Hrubša M., Conte P.F., Papastefanaki E., Moravcová M., Catapano M.C., Proietti Silvestri I., Karlíčková J., Kučera R., Macáková K., et al. The effect of flavonoids on the reduction of cupric ions, the copper-driven Fenton reaction and copper-triggered haemolysis. Food Chem. 2022;394:133461. doi: 10.1016/j.foodchem.2022.133461. PubMed DOI

Cahlikova L., Hrabinova M., Kulhankova A., Benesova N., Chlebek J., Jun D., Novak Z., Macakova K., Kunes J., Kuca K., et al. Alkaloids from Chlidanthus fragrans and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase activities. Nat. Prod. Commun. 2013;8:1541–1544. doi: 10.1177/1934578X1300801110. PubMed DOI

Kulhánková A., Cahlíková L., Novák Z., Macáková K., Kuneš J., Opletal L. Alkaloids from Zephyranthes robusta BAKER and their acetylcholinesterase- and butyrylcholinesterase-inhibitory activity. Chem. Biodivers. 2013;10:1120–1127. doi: 10.1002/cbdv.201200144. PubMed DOI

Chlebek J., Macakova K., Cahlikovi L., Kurfurst M., Kunes J., Opletal L. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava (Fumariaceae) Nat. Prod. Commun. 2011;6:607–610. doi: 10.1177/1934578X1100600507. PubMed DOI

Cahlikova L., Macakova K., Kunes J., Kurfurst M., Opletal L., Cvacka J., Chlebek J., Blundene G. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Eschscholzia californica (Papaveraceae) Nat. Prod. Commun. 2010;5:1035–1038. doi: 10.1177/1934578X1000500710. PubMed DOI

Siatka T., Adamcova M., Opletal L., Cahlikova L., Jun D., Hrabinova M., Kunes J., Chlebek J. Cholinesterase and Prolyl Oligopeptidase Inhibitory Activities of Alkaloids from Argemone platyceras (Papaveraceae) Molecules. 2017;22:1181. doi: 10.3390/molecules22071181. PubMed DOI PMC

Chlebek J., Novak Z., Kassemova D., Safratova M., Kostelnik J., Maly L., Locarek M., Opletal L., Host’alkova A., Hrabinova M., et al. Isoquinoline Alkaloids from Fumaria officinalis L. and Their Biological Activities Related to Alzheimer’s Disease. Chem. Biodivers. 2016;13:91–99. doi: 10.1002/cbdv.201500033. PubMed DOI

Říha M., Karlíčková J., Filipský T., Macáková K., Hrdina R., Mladěnka P. Novel method for rapid copper chelation assessment confirmed low affinity of D-penicillamine for copper in comparison with trientine and 8-hydroxyquinolines. J. Inorg. Biochem. 2013;123:80–87. doi: 10.1016/j.jinorgbio.2013.02.011. PubMed DOI

Filipský T., Říha M., Hrdina R., Vávrová K., Mladěnka P. Mathematical calculations of iron complex stoichiometry by direct UV–Vis spectrophotometry. Bioorg. Chem. 2013;49:1–8. doi: 10.1016/j.bioorg.2013.06.002. PubMed DOI

Job P. Formation and stability of inorganic complexes in solution. Ann. Chim. 1928;9:113–203.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...