Exploring the role of nanomedicines for the therapeutic approach of central nervous system dysfunction: At a glance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
36120565
PubMed Central
PMC9478743
DOI
10.3389/fcell.2022.989471
PII: 989471
Knihovny.cz E-zdroje
- Klíčová slova
- blood-brain barrier, drug delivery, nanomedicine and nanocarrier, nanotechnology, neurodegenerative diseases,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In recent decades, research scientists, molecular biologists, and pharmacologists have placed a strong emphasis on cutting-edge nanostructured materials technologies to increase medicine delivery to the central nervous system (CNS). The application of nanoscience for the treatment of neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), Huntington's disease (HD), brain cancer, and hemorrhage has the potential to transform care. Multiple studies have indicated that nanomaterials can be used to successfully treat CNS disorders in the case of neurodegeneration. Nanomedicine development for the cure of degenerative and inflammatory diseases of the nervous system is critical. Nanoparticles may act as a drug transporter that can precisely target sick brain sub-regions, boosting therapy success. It is important to develop strategies that can penetrate the blood-brain barrier (BBB) and improve the effectiveness of medications. One of the probable tactics is the use of different nanoscale materials. These nano-based pharmaceuticals offer low toxicity, tailored delivery, high stability, and drug loading capacity. They may also increase therapeutic effectiveness. A few examples of the many different kinds and forms of nanomaterials that have been widely employed to treat neurological diseases include quantum dots, dendrimers, metallic nanoparticles, polymeric nanoparticles, carbon nanotubes, liposomes, and micelles. These unique qualities, including sensitivity, selectivity, and ability to traverse the BBB when employed in nano-sized particles, make these nanoparticles useful for imaging studies and treatment of NDs. Multifunctional nanoparticles carrying pharmacological medications serve two purposes: they improve medication distribution while also enabling cell dynamics imaging and pharmacokinetic study. However, because of the potential for wide-ranging clinical implications, safety concerns persist, limiting any potential for translation. The evidence for using nanotechnology to create drug delivery systems that could pass across the BBB and deliver therapeutic chemicals to CNS was examined in this study.
Zobrazit více v PubMed
Abhang P., Momin M., Inamdar M., Kar S. J. D. D. L. (2014). Transmucosal drug delivery- an overview. Drug Deliv. Lett. 4, 26–37. 10.2174/22103031113039990011 DOI
Ag Seleci D., Maurer V., Barlas F. B., Porsiel J. C., Temel B., Ceylan E., et al. (2021). Transferrin-decorated niosomes with integrated InP/ZnS quantum dots and magnetic iron oxide nanoparticles: Dual targeting and imaging of glioma. Int. J. Mol. Sci. 22, 4556. 10.3390/ijms22094556 PubMed DOI PMC
Ai X.-L., Liang R.-C., Wang Y.-C., Fang F. (2016). Stem cells combined with nano materials–novel therapeutics for central nervous system diseases. J. Nanosci. Nanotechnol. 16, 8895–8908. 10.1166/jnn.2016.12743 DOI
Aikins M. E., Bazzill J., Moon J. J. J. N. (2017). Vaccine nanoparticles for protection against HIV infection. Nanomedicine 12, 673–682. 10.2217/nnm-2016-0381 PubMed DOI PMC
Aird R. B. J. E. n. (1984). A study of intrathecal, cerebrospinal fluid-to-brain exchange. Exp. Neurol. 86, 342–358. 10.1016/0014-4886(84)90192-4 PubMed DOI
Alam M. I., Beg S., Samad A., Baboota S., Kohli K., Ali J., et al. (2010). Strategy for effective brain drug delivery. Eur. J. Pharm. Sci. 40, 385–403. 10.1016/j.ejps.2010.05.003 PubMed DOI
Alguacil L., Pérez-García C. J. C. D. T.-C., Disorders N. (2003). Histamine H3 receptor: A potential drug target for the treatment of central nervous system disorders. Curr. Drug Targets. CNS Neurol. Disord. 2, 303–313. 10.2174/1568007033482760 PubMed DOI
Aliabadi H. M., Lavasanifar A. J. E. o. o. d. d. (2006). Polymeric micelles for drug delivery. Expert Opin. Drug Deliv. 3, 139–162. 10.1517/17425247.3.1.139 PubMed DOI
Alifieris C., Trafalis D. T. J. P. (2015). Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol. Ther. 152, 63–82. 10.1016/j.pharmthera.2015.05.005 PubMed DOI
Aljiffry M., Walsh M. J., Molinari M. J. W. j. o. g. W. (2009). Advances in diagnosis, treatment and palliation of cholangiocarcinoma. World J. Gastroenterol. 15, 4240. 10.3748/wjg.15.4240 PubMed DOI PMC
Allen T. M., Cullis P. R. J. A. d. d. r. (2013). Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48. 10.1016/j.addr.2012.09.037 PubMed DOI
Alshamrani M. J. P. (2022). Broad-spectrum theranostics and biomedical application of functionalized nanomaterials. Polym. (Basel). 14, 1221. 10.3390/polym14061221 PubMed DOI PMC
Andersen A. J., Hashemi S. H., Galimberti G., Re F., Masserini M., Moghimi S. M. J. J. o. B. (2010). The interaction of complement system with abeta-binding liposomes: Towards engineering of safer vesicles for the management of alzheimer's disease. J. Biotechnol. 150, 97–98. 10.1016/j.jbiotec.2010.08.252 DOI
Andersson U., Grankvist K., Bergenheim A. T., Behnam-Motlagh P., Hedman H., Henriksson R. J. M. O. (2002). Rapid induction of long-lasting drug efflux activity in brain vascular endothelial cells but not malignant glioma following irradiation. Med. Oncol. 19, 1–9. 10.1385/MO:19:1:1 PubMed DOI
Aparicio-Blanco J., Torres-Suárez A.-I. J. A. B. (2018). Towards tailored management of malignant brain tumors with nanotheranostics. Acta Biomater. 73, 52–63. 10.1016/j.actbio.2018.04.029 PubMed DOI
Aryani A., Denecke B. J. M. n. (2016). Exosomes as a nanodelivery system: A key to the future of neuromedicine? Mol. Neurobiol. 53, 818–834. 10.1007/s12035-014-9054-5 PubMed DOI PMC
Attri J. P., Bala N., Chatrath V. J. I. j. o. a. (2012). Psychiatric patient and anaesthesia. Indian J. Anaesth. 56, 8–13. 10.4103/0019-5049.93337 PubMed DOI PMC
Au K., Meng Y., Suppiah S., Nater A., Jalali R., Zadeh G. J. N. A. t. t. M. o. P., et al. (2017). Current management of brain metastases: Overview and teaching cases. New Approaches to the Management of Primary and Secondary CNS Tumors. 10.5772/66310 DOI
Bae Y. H., Park K. J. J. o. c. r. (2011). Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release 153, 198–205. 10.1016/j.jconrel.2011.06.001 PubMed DOI PMC
Ball P. J. N. (2004). Synthetic biology for nanotechnology. Nanotechnology 16, R1–R8. 10.1088/0957-4484/16/1/r01 DOI
Banik A., Brown R. E., Bamburg J., Lahiri D. K., Khurana D., Friedland R. P., et al. (2015). Translation of pre-clinical studies into successful clinical trials for alzheimer’s disease: What are the roadblocks and how can they be overcome? J. Alzheimers Dis. 47, 815–843. 10.3233/JAD-150136 PubMed DOI
Bardella C., Al-Dalahmah O., Krell D., Brazauskas P., Al-Qahtani K., Tomkova M., et al. (2016). Expression of Idh1R132H in the murine subventricular zone stem cell niche recapitulates features of early gliomagenesis. Cancer Cell 30, 578–594. 10.1016/j.ccell.2016.08.017 PubMed DOI PMC
Barreto J. A., O’Malley W., Kubeil M., Graham B., Stephan H., Spiccia L. J. A. m. (2011). Nanomaterials: Applications in cancer imaging and therapy. Adv. Mat. 23, H18–H40. 10.1002/adma.201100140 PubMed DOI
Batrakova E. V., Kabanov A. V. J. J. o. c. r. (2008). Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release 130, 98–106. 10.1016/j.jconrel.2008.04.013 PubMed DOI PMC
Baumann B. C., Kao G. D., Mahmud A., Harada T., Swift J., Chapman C., et al. (2013). Enhancing the efficacy of drug-loaded nanocarriers against brain tumors by targeted radiation therapy. Oncotarget 4, 64–79. 10.18632/oncotarget.777 PubMed DOI PMC
Bawarski W., Chidlowsky E., Bharali D., Mousa S. J. B. M. (2008). Emerging nanopharmaceuticals. Nanomedicine 4, 273–282. 10.1016/j.nano.2008.06.002 PubMed DOI
Bechet D., Auger F., Couleaud P., Marty E., Ravasi L., Durieux N., et al. (2015). Multifunctional ultrasmall nanoplatforms for vascular-targeted interstitial photodynamic therapy of brain tumors guided by real-time MRI. Nanomedicine 11, 657–670. 10.1016/j.nano.2014.12.007 PubMed DOI
Beg S., Rahman M., Barkat M. A., Ahmad F. J. (2019). Nanomedicine for the treatment of disease: From concept to application. New York: CRC Press.
Bhatia S. (2016). Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications, Natural polymer drug delivery systems. Springer, 33–93.
Bhattacharya A., Kaushik D. K., Lozinski B. M., Yong V. W. J. J. o. N. R. (2020). Beyond barrier functions: Roles of pericytes in homeostasis and regulation of neuroinflammation. J. Neurosci. Res. 98, 2390–2405. 10.1002/jnr.24715 PubMed DOI
Bhattacharya S., Haldar P. K. J. C. j. o. n. m. (2013). Neuropharmacological properties of Trichosanthes dioica root. Chin. J. Nat. Med. 11, 158–163. 10.1016/S1875-5364(13)60043-6 PubMed DOI
Birla H., Rai S. N., Singh S. S., Zahra W., Rawat A., Tiwari N., et al. (2019). Tinospora cordifolia suppresses neuroinflammation in parkinsonian mouse model. Neuromolecular Med. 21, 42–53. 10.1007/s12017-018-08521-7 PubMed DOI
Bleier B. S., Kohman R. E., Feldman R. E., Ramanlal S., Han X. J. P. o. (2013). Permeabilization of the blood-brain barrier via mucosal engrafting: Implications for drug delivery to the brain. PLoS One 8, e61694. 10.1371/journal.pone.0061694 PubMed DOI PMC
Blesa J., Przedborski S. J. F. i. n. (2014). Parkinson’s disease: Animal models and dopaminergic cell vulnerability. Front. Neuroanat. 8, 155. 10.3389/fnana.2014.00155 PubMed DOI PMC
Boisseau P., Houdy P., Lahmani M. (2007). Nanoscience. Springer.
Brynskikh A. M., Zhao Y., Mosley R. L., Li S., Boska M. D., Klyachko N. L., et al. (2010). Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson’s disease. Nanomedicine 5, 379–396. 10.2217/nnm.10.7 PubMed DOI PMC
Butler K. S., Durfee P. N., Theron C., Ashley C. E., Carnes E. C., Brinker C. J. J. s. (2016). Protocells: Modular mesoporous silica nanoparticle‐supported lipid bilayers for drug delivery. Small 12, 2173–2185. 10.1002/smll.201502119 PubMed DOI PMC
C Dinda S., Pattnaik G. J. C. P. B. (2013). Nanobiotechnology-based drug delivery in brain targeting. Curr. Pharm. Biotechnol. 14, 1264–1274. 10.2174/1389201015666140608143719 PubMed DOI
Carvalho M., Carmo H., Costa V. M., Capela J. P., Pontes H., Remião F., et al. (2012). Toxicity of amphetamines: An update. Arch. Toxicol. 86, 1167–1231. 10.1007/s00204-012-0815-5 PubMed DOI
Cayero-Otero M., Gomes M. J., Martins C., Álvarez-Fuentes J., Fernández-Arévalo M., Sarmento B., et al. (2019). In vivo biodistribution of venlafaxine-PLGA nanoparticles for brain delivery: Plain vs. Funct. nanoparticles 16, 1413–1427. PubMed
Charney D. S., Mihic S. J., Harris R. A. J. T. P. B. o. T. t. e. B. L., Lazo J. S., Parker K. L. (2006). Hypnotics and sedatives. New York: McGraw-Hill, 401–427.
Chauhan M. B., Chauhan N. B. (2015). Brain uptake of neurotherapeutics after intranasal versus intraperitoneal delivery in mice. J. Neurol. Neurosurg. 2 (1), 009. PubMed PMC
Chen H., Spagnoli F., Burris M., Rolland W. B., Fajilan A., Dou H., et al. (2012). Nanoerythropoietin is 10-times more effective than regular erythropoietin in neuroprotection in a neonatal rat model of hypoxia and ischemia. Stroke 43, 884–887. 10.1161/STROKEAHA.111.637090 PubMed DOI
Chen Y., Chen H., Shi J. J. A. M. (2013). In vivo bio‐safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mat. 25, 3144–3176. 10.1002/adma.201205292 PubMed DOI
Chenthamara D., Subramaniam S., Ramakrishnan S. G., Krishnaswamy S., Essa M. M., Lin F.-H., et al. (2019). Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 23, 20–29. 10.1186/s40824-019-0166-x PubMed DOI PMC
Cheshire W. P., Jr, Ott M. C. J. H. T. J. o. H., Pain F. (2001). Headache in divers. Headache 41, 235–247. 10.1046/j.1526-4610.2001.111006235.x PubMed DOI
Cohen R. M., Rezai-Zadeh K., Weitz T. M., Rentsendorj A., Gate D., Spivak I., et al. (2013). A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric aβ, and frank neuronal loss. J. Neurosci. 33, 6245–6256. 10.1523/JNEUROSCI.3672-12.2013 PubMed DOI PMC
Crone C. (1986). The blood-brain barrier: A modified tight epithelium. Chichester: Ellis Horwood.
d'Arcy R., Tirelli N. J. P. f. a. t. (2014). Fishing for fire: Strategies for biological targeting and criteria for material design in anti‐inflammatory therapies. Biodegrad. Polym. 25, 478–498. 10.1002/pat.3264. DOI
Das D., Lin S. J. J. o. p. s. (2005). Double-coated poly (butylcynanoacrylate) nanoparticulate delivery systems for brain targeting of dalargin via oral administration. J. Pharm. Sci. 94, 1343–1353. 10.1002/jps.20357 PubMed DOI
Das S. S., Bharadwaj P., Bilal M., Barani M., Rahdar A., Taboada P., et al. (2020). Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers 12, 1397. 10.3390/polym12061397 PubMed DOI PMC
Dauer W., Przedborski S. J. N. (2003). Parkinson's disease: Mechanisms and models. Neuron 39, 889–909. 10.1016/s0896-6273(03)00568-3 PubMed DOI
Dave N., Cetiner U., Arroyo D., Fonbuena J., Tiwari M., Barrera P., et al. (2015). Validated HPTLC method for quantification of luteolin and apigenin in Premna mucronata Roxb. Adv. Pharmacol. Sci. 10, 2015. 10.1155/2015/682365 PubMed DOI PMC
De Bie H., Boersma M., Wattjes M. P., Adriaanse S., Vermeulen R. J., Oostrom K. J., et al. (2010). Preparing children with a mock scanner training protocol results in high quality structural and functional MRI scans. Eur. J. Pediatr. 169, 1079–1085. 10.1007/s00431-010-1181-z PubMed DOI PMC
De la Fuente J. M., Berry C. C. J. B. c. (2005). Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjug. Chem. 16, 1176–1180. 10.1021/bc050033+ PubMed DOI
de Pádua Oliveira D. C., de Barros A. L. B., Belardi R. M., de Goes A. M., de Oliveira Souza B. K., Soares D. C. F. J. J. o. D. D. S. (2016). Mesoporous silica nanoparticles as a potential vaccine adjuvant against Schistosoma mansoni. J. Drug Deliv. Sci. Technol. 35, 234–240. 10.1016/j.jddst.2016.07.002 DOI
Dehaini D., Fang R. H., Zhang L. J. B., medicine t. (2016). Biomimetic strategies for targeted nanoparticle delivery. Bioeng. Transl. Med. 1, 30–46. 10.1002/btm2.10004 PubMed DOI PMC
Demetzos C., Pippa N. J. D. d. (2014). Advanced drug delivery nanosystems (aDDnSs): A mini-review. Drug Deliv. 21, 250–257. 10.3109/10717544.2013.844745 PubMed DOI
Deng X., Wang X., Andersson R. J. J. o. A. P. (1995). Endothelial barrier resistance in multiple organs after septic and nonseptic challenges in the rat. J. Appl. Physiol. 78, 2052–2061. 10.1152/jappl.1995.78.6.2052 PubMed DOI
Dixit S., Novak T., Miller K., Zhu Y., Kenney M. E., Broome A.-M. J. N. (2015). Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale 7, 1782–1790. 10.1039/c4nr04853a PubMed DOI PMC
Domınguez A., Álvarez A., Hilario E., Suarez-Merino B., Goni-de-Cerio F. (2013). Central nervous system diseases and the role of the blood-brain barrier in their treatment. Neurosci. Discov. 1, 3. 10.7243/2052-6946-1-3 DOI
Domínguez A., Álvarez A., Hilario E., Suarez-Merino B., Goñi-de-Cerio F. J. N. D. (2013). Central nervous system diseases and the role of the blood-brain barrier in their treatment. Neurosci. Discov. 1, 3. 10.7243/2052-6946-1-3 DOI
Dominguez A., Alvarez A., Suarez-Merino B., Goni-de-Cerio F. J. R. d. N. (2014). Neurological disorders and the blood-brain barrier. Strategies and limitations for drug delivery to the brain. Rev. Neurol. 58, 213–224. PubMed
Dong X., Gao J., Su Y., Wang Z. J. I. J. o. M. S. (2020). Nanomedicine for ischemic stroke. Int. J. Mol. Sci. 21, 7600. 10.3390/ijms21207600 PubMed DOI PMC
Dong X. J. T. (2018). Current strategies for brain drug delivery. Theranostics 8, 1481–1493. 10.7150/thno.21254 PubMed DOI PMC
Doran A., Obach R. S., Smith B. J., Hosea N. A., Becker S., Callegari E., et al. (2005). The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: Evaluation using the mdr1a/1B knockout mouse model. Drug Metab. Dispos. 33, 165–174. 10.1124/dmd.104.001230 PubMed DOI
Doxil B. J. J. C. R. (2012). The first FDA-approved nanodrug: lessons learned. J. Control Release 160, 117–134. 10.1016/j.jconrel.2012.03.020 PubMed DOI
D’Souza G. G., Weissig V. J. O.-S. P. N. (2010). An introduction to subcellular and nanomedicine: Current trends and future developments, 1–13.
Duncan R., Gaspar R. J. M. p. (2011). Nanomedicine(s) under the microscope. Mol. Pharm. 8, 2101–2141. 10.1021/mp200394t PubMed DOI
Elenkov I. J., Wilder R. L., Chrousos G. P., Vizi E. S. J. P. r. (2000). The sympathetic nerve—an integrative interface between two supersystems: The brain and the immune system. Pharmacol. Rev. 52, 595–638. PubMed
Elfenbein H., Rosen R., Stephens S., Switzer R., Smith Y., Pare J., et al. (2007). Cerebral ß-amyloid angiopathy in aged squirrel monkeys. Histol. Histopathol. 22 (2), 155–167. 10.14670/HH-22.155 PubMed DOI
Engelhardt B., Sorokin L. (2009). The blood–brain and the blood–cerebrospinal fluid barriers: Function and dysfunction, seminars in immunopathology. Springer, 497–511. PubMed
Englund G. (2005). Interindividual variability of drug transport proteins: Focus on intestinal pgp (ABCB1) and BCRP (ABCG2). Acta Univ. Ups..
Erdlenbruch B., Schinkhof C., Kugler W., Heinemann D. E., Herms J., Eibl H., et al. (2003). Intracarotid administration of short‐chain alkylglycerols for increased delivery of methotrexate to the rat brain. Br. J. Pharmacol. 139, 685–694. 10.1038/sj.bjp.0705302 PubMed DOI PMC
Estelrich J., Busquets M. A. J. M. (2018). Iron oxide nanoparticles in photothermal therapy. Molecules 23, 1567. 10.3390/molecules23071567 PubMed DOI PMC
Fakruddin M., Hossain Z., Afroz H. J. J. o. n. (2012). Prospects and applications of nanobiotechnology: A medical perspective. J. Nanobiotechnology 10, 1–8. 10.1186/1477-3155-10-31 PubMed DOI PMC
Farokhzad O. C., Langer R. J. A. n. (2009). Impact of nanotechnology on drug delivery. ACS Nano 3, 16–20. 10.1021/nn900002m PubMed DOI
Fink J. R., Muzi M., Peck M., Krohn K. A. J. J. o. N. M. (2015). Multimodality brain tumor imaging: MR imaging, PET, and PET/MR imaging. J. Nucl. Med. 56, 1554–1561. 10.2967/jnumed.113.131516 PubMed DOI PMC
Fleckenstein A. E., Volz T. J., Riddle E. L., Gibb J. W., Hanson G. R. J. A. R. P. T. (2007). New insights into the mechanism of action of amphetamines. Annu. Rev. Pharmacol. Toxicol. 47, 681–698. 10.1146/annurev.pharmtox.47.120505.105140 PubMed DOI
Flierl A., Jackson C., Cottrell B., Murdock D., Seibel P., Wallace D. J. M. T. (2003). Targeted delivery of DNA to the mitochondrial compartment via import sequence-conjugated peptide nucleic acid. Mol. Ther. 7, 550–557. 10.1016/s1525-0016(03)00037-6 PubMed DOI
Fulekar M. (2010). Nanotechnology: Importance and applications. New Delhi: IK International Pvt Ltd.
Furtado D., Björnmalm M., Ayton S., Bush A. I., Kempe K., Caruso F. J. A. m. (2018). Overcoming the blood–brain barrier: The role of nanomaterials in treating neurological diseases. Adv. Mat. 30, 1801362. 10.1002/adma.201801362 PubMed DOI
Gabathuler R. J. N. o. d. (2010). Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol. Dis. 37, 48–57. 10.1016/j.nbd.2009.07.028 PubMed DOI
García J. J. S. S. U. d. E. S. (2009). Evaluación del Rendimiento de Extracción de Pectina en Aguas Mieles del Beneficiado de Café Procedentes del Desmusilaginado Mecánico.
Ghosal S., Srivastava R., Bhattacharya S., Debnath P. J. P. m. (1974). The active principles of alhagi pseudalhagi: β–phenethylamine and tetrahydroisoquinoline bases. Planta Med. 26, 318–326. 10.1055/s-0028-1099394 PubMed DOI
Giner-Casares J. J., Henriksen-Lacey M., Coronado-Puchau M., Liz-Marzán L. M. J. M. T. (2016). Inorganic nanoparticles for biomedicine: Where materials scientists meet medical research. Mat. TodayKidlingt. 19, 19–28. 10.1016/j.mattod.2015.07.004 DOI
Gløgård C., Hovland R., Fossheim S. L., Aasen A. J., Klaveness J. J. J. o. t. C. S. (2000). Perkin Transactions 2, Synthesis and physicochemical characterisation of new amphiphilic gadolinium DO3A complexes as contrast agents for MRI, 1047–1052.
Glück R., Mischler R., Finkel B., Que J., Cryz S., Jr, Scarpa B. J. T. L. (1994). Immunogenicity of new virosome influenza vaccine in elderly people. Lancet 344, 160–163. 10.1016/s0140-6736(94)92758-8 PubMed DOI
Greenblatt D. J., Shader R. I., Abernethy D. R. J. N. E. J. o. M. (1983). Drug therapy. Current status of benzodiazepines. N. Engl. J. Med. 309, 410–416. 10.1056/NEJM198308183090705 PubMed DOI
Griffith J. I., Rathi S., Zhang W., Zhang W., Drewes L. R., Sarkaria J. N., et al. (2020). Addressing BBB heterogeneity: A new paradigm for drug delivery to brain tumors. Pharmaceutics 12, 1205. 10.3390/pharmaceutics12121205 PubMed DOI PMC
Groner-Strauss W., Strauss M. J. P. S. M., Divers face special peril in use/abuse of drugs. 4 (1976) 30–36.
Guo H.-C., Feng X.-M., Sun S.-Q., Wei Y.-Q., Sun D.-H., Liu X.-T., et al. (2012). Immunization of mice by hollow mesoporous silica nanoparticles as carriers of porcine circovirus type 2 ORF2 protein. Virol. J. 9, 108–110. 10.1186/1743-422X-9-108 PubMed DOI PMC
Gurunathan S., Han J., Park J. H., Kim J.-H. J. N. r. l. (2014). A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res. Lett. 9, 1–11. 10.1186/1556-276X-9-248 PubMed DOI PMC
Halberstadt C., Emerich D. F., Gonsalves K. J. E. O. o. B. T. (2006). Combining cell therapy and nanotechnology. Expert Opin. Biol. Ther. 6, 971–981. 10.1517/14712598.6.10.971 PubMed DOI
Hanson M. C., Abraham W., Crespo M. P., Chen S. H., Liu H., Szeto G. L., et al. (2015). Liposomal vaccines incorporating molecular adjuvants and intrastructural T-cell help promote the immunogenicity of HIV membrane-proximal external region peptides. Vaccine 33, 861–868. 10.1016/j.vaccine.2014.12.045 PubMed DOI PMC
Haque S., Sahni S. M., Alam M. I., Sahni J. K., Ali J., Baboota S. J. D. D., et al. (2012). Nanostructure-based drug delivery systems for brain targeting. Drug Dev. Ind. Pharm. 38, 387–411. 10.3109/03639045.2011.608191 PubMed DOI
Haque S., Kaur S. M., Intekhab Alam M., Kaur Sahni J., Ali J., Baboota S. J. R. P. O. N. (2011). Nanomedicines for brain targeting: A patent review. Nanomedicines Brain Target. A Pat. Rev. 1, 149–161. 10.2174/1877912311101020149 DOI
Hartley D., Blumenthal T., Carrillo M., DiPaolo G., Esralew L., Gardiner K., et al. (2015). Down syndrome and Alzheimer's disease: Common pathways, common goals. Alzheimers Dement. 11, 700–709. 10.1016/j.jalz.2014.10.007 PubMed DOI PMC
Haseeb Q., Hamdani S. D. A., Akram A., Khan D. A., Rajput T. A., Babar M. M. J. N. (2020). Nanobiotechnology: Paving the way to personalized medicine, 17–32.
Hassett K. J., Meinerz N. M., Semmelmann F., Cousins M. C., Garcea R. L., Randolph T. W., et al. (2015). Development of a highly thermostable, adjuvanted human papillomavirus vaccine. Eur. J. Pharm. Biopharm. 94, 220–228. 10.1016/j.ejpb.2015.05.009 PubMed DOI PMC
Heidarzadeh M., Gürsoy-Özdemir Y., Kaya M., Eslami Abriz A., Zarebkohan A., Rahbarghazi R., et al. (2021). Exosomal delivery of therapeutic modulators through the blood–brain barrier; promise and pitfalls. Cell Biosci. 11, 1–28. 10.1186/s13578-021-00650-0 PubMed DOI PMC
Henderson M. X., Cornblath E. J., Darwich A., Zhang B., Brown H., Gathagan R. J., et al. (2019). Spread of α-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nat. Neurosci. 22, 1248–1257. 10.1038/s41593-019-0457-5 PubMed DOI PMC
Heng J. B., Aksimentiev A., Ho C., Marks P., Grinkova Y. V., Sligar S., et al. (2006). The electromechanics of DNA in a synthetic nanopore. Biophys. J. 90, 1098–1106. 10.1529/biophysj.105.070672 PubMed DOI PMC
Henrich-Noack P., Nikitovic D., Neagu M., Docea A. O., Engin A. B., Gelperina S., et al. (2019). Biology, and Medicine, the blood–brain barrier and beyond: Nano-based neuropharmacology and the role of extracellular matrix. Nanomedicine 17, 359–379. PubMed
Henschel O., Gipson K. E., Bordey A. J. C., Targets N. D.-D. (2008). GABAA receptors, anesthetics and anticonvulsants in brain development. CNS Neurol. Disord. Drug Targets 7, 211–224. 10.2174/187152708784083812 PubMed DOI PMC
Hillyer J. F., Albrecht R. M. J. J. o. p. s. (2001). Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci. 90, 1927–1936. 10.1002/jps.1143 PubMed DOI
Hirschberg H., Uzal F. A., Chighvinadze D., Zhang M. J., Peng Q., Madsen S. J. J. L. i. S. (2008). Medicine, and Surgery, Disruption of the blood–brain barrier following ALA‐mediated photodynamic therapy. Lasers Surg. Med. 40, 535–542. 10.1002/lsm.20670 PubMed DOI PMC
Hoffman R. M. J. N. R. C. (2015). Patient-derived orthotopic xenografts: Better mimic of metastasis than subcutaneous xenografts. Nat. Rev. Cancer 15, 451–452. 10.1038/nrc3972 PubMed DOI
Holmes D. J. T. L. N. (2013). The next big things are tiny. Lancet. Neurol. 12, 31–32. 10.1016/S1474-4422(12)70313-7 PubMed DOI
Houston Z. H., Bunt J., Chen K.-S., Puttick S., Howard C. B., Fletcher N. L., et al. (2020). Understanding the uptake of nanomedicines at different stages of brain cancer using a modular nanocarrier platform and precision bispecific antibodies. ACS Cent. Sci. 6, 727–738. 10.1021/acscentsci.9b01299 PubMed DOI PMC
Hsiung S. c., Adlersberg M., Arango V., Mann J. J., Tamir H., Liu K. p. J. J. o. n. (2003). Attenuated 5-ht1a receptor signaling in brains of suicide victims: Involvement of adenylyl cyclase, phosphatidylinositol 3-kinase, akt and mitogen-activated protein kinase. J. Neurochem. 87, 182–194. 10.1046/j.1471-4159.2003.01987.x PubMed DOI
Hu C.-M. J., Zhang L., Aryal S., Cheung C., Fang R. H., Zhang L. J. P. o. t. N. A. o. S. (2011). Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U. S. A. 108, 10980–10985. 10.1073/pnas.1106634108 PubMed DOI PMC
Humpel C. J. N. (2015). Organotypic brain slice cultures: A review. Neuroscience 305, 86–98. 10.1016/j.neuroscience.2015.07.086 PubMed DOI PMC
Inamura T., Black K. L. (1994). Bradykinin selectively opens blood-tumor barrier in experimental brain tumors. J. Cereb. Blood Flow. Metab. 14, 862–870. 10.1038/jcbfm.1994.108 PubMed DOI
Inamura T., Nomura T., Bartus R. T., Black K. L. (1994). Intracarotid infusion of RMP-7, a bradykinin analog: A method for selective drug delivery to brain tumors. J. Neurosurg. 81, 752–758. 10.3171/jns.1994.81.5.0752 PubMed DOI
Invernici G., Cristini S., Alessandri G., E Navone S., Canzi L., Tavian D., et al. (2011). Nanotechnology advances in brain tumors: The state of the art. Recent Pat. anticancer. Drug Discov. 6, 58–69. 10.2174/157489211793979990 PubMed DOI
Invernizzi N. (2010). Science policy and social inclusion: Advances and limits of brazilian nanotechnology policy, nanotechnology and the challenges of equity, equality and development. Springer, 291–307.
Jain K. J. N. D. (2007). Nanobiotechnology-based drug delivery to the central nervous system. Neurodegener. Dis. 4, 287–291. 10.1159/000101884 PubMed DOI
Jain K. K. (2008). Nanomedicine: Application of nanobiotechnology in medical practice. Med. Princ. Pract. 17, 89–101. 10.1159/000112961 PubMed DOI
Janssen P. A. J. I. R. o. N. (1965). The evolution of the butyrophenones, haloperidol and trifluperidol, from meperidine-like 4-phenylpiperidines. Int. Rev. Neurobiol. 8, 221–263. 10.1016/s0074-7742(08)60759-x PubMed DOI
Johnstone T. C., Suntharalingam K., Lippard S. J. J. C. r. (2016). The next generation of platinum drugs: Targeted Pt (II) agents, nanoparticle delivery, and Pt (IV) prodrugs. Chem. Rev. 116, 3436–3486. 10.1021/acs.chemrev.5b00597 PubMed DOI PMC
Joshi A. S., Singh V., Gahane A., Thakur A. K. J. A. C. N. (2018). Biodegradable nanoparticles containing mechanism based peptide inhibitors reduce polyglutamine aggregation in cell models and alleviate motor symptoms in a Drosophila model of Huntington’s disease. ACS Chem. Neurosci. 10, 1603–1614. 10.1021/acschemneuro.8b00545 PubMed DOI
Joshi S., Meyers P. M., Ornstein E. J. T. J. o. t. A. S. o. A. (2008). Intracarotid delivery of drugs: The potential and the pitfalls. Anesthesiology 109, 543–564. 10.1097/ALN.0b013e318182c81b PubMed DOI PMC
Jung J., Kim M. A., Cho J.-H., Lee S. J., Yang I., Cho J., et al. (2012). Europium-doped gadolinium sulfide nanoparticles as a dual-mode imaging agent for T1-weighted MR and photoluminescence imaging. Biomaterials 33, 5865–5874. 10.1016/j.biomaterials.2012.04.059 PubMed DOI
Kang B., Mackey M. A., El-Sayed M. A. J. J. o. t. A. C. S. (2010). Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J. Am. Chem. Soc. 132, 1517–1519. 10.1021/ja9102698 PubMed DOI
Karamanos N. K., Piperigkou Z., Theocharis A. D., Watanabe H., Franchi M., Baud S., et al. (2018). Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics. Chem. Rev. 118, 9152–9232. 10.1021/acs.chemrev.8b00354 PubMed DOI
Karch C. M., Goate A. M. J. B. p. (2015). Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol. Psychiatry 77, 43–51. 10.1016/j.biopsych.2014.05.006 PubMed DOI PMC
Karim R., Palazzo C., Evrard B., Piel G. J. J. o. c. r. (2016). Nanocarriers for the treatment of glioblastoma multiforme: Current state-of-the-art. J. Control. Release 227, 23–37. 10.1016/j.jconrel.2016.02.026 PubMed DOI
Kaur I. P., Bhandari R., Bhandari S., Kakkar V. J. J. o. C. r. (2008). Potential of solid lipid nanoparticles in brain targeting. J. Control. Release 127, 97–109. 10.1016/j.jconrel.2007.12.018 PubMed DOI
Khan W. S., Hamadneh N. N., Khan W. A. J. S., Nanostructures a. o. T. (2016). Polymer nanocomposites–synthesis techniques, classification and properties, 50.
Khanbabaie R., Jahanshahi M. J. C. n. (2012). Revolutionary impact of nanodrug delivery on neuroscience. Curr. Neuropharmacol. 10, 370–392. 10.2174/157015912804143513 PubMed DOI PMC
Khawar I. A., Kim J. H., Kuh H.-J. J. J. o. C. R. (2015). Improving drug delivery to solid tumors: Priming the tumor microenvironment. J. Control. Release 201, 78–89. 10.1016/j.jconrel.2014.12.018 PubMed DOI
Klaassen I., Van Noorden C. J., Schlingemann R. O. J. P. i. r., research e. (2013). Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog. Retin. Eye Res. 34, 19–48. 10.1016/j.preteyeres.2013.02.001 PubMed DOI
Kopelman R., Koo Y.-E. L., Philbert M., Moffat B. A., Reddy G. R., McConville P., et al. (2005). Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J. Magn. Magn. Mat. 293, 404–410. 10.1016/j.jmmm.2005.02.061 DOI
Kreuter J. J. J. o. m. (2013). Mechanism of polymeric nanoparticle-based drug transport across the blood-brain barrier (BBB). J. Microencapsul. 30, 49–54. 10.3109/02652048.2012.692491 PubMed DOI
Langmead C. J., Watson J., Reavill C. J. P. (2008). Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol. Ther. 117, 232–243. 10.1016/j.pharmthera.2007.09.009 PubMed DOI
LeClaire M. J. (2021). Biophysical characterization of cancer-derived cells and extracellular vesicles. Los Angeles: University of California.
Lee H., Park J., Yoon O., Kim H. J. N. N., Lee do Y., Kim do H., et al. (2011). Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat. Nanotechnol. 6, 121–125. 10.1038/nnano.2010.281 PubMed DOI PMC
Lee S., Xie J., Chen X. J. C. t. i. m. c. (2010). Activatable molecular probes for cancer imaging. Curr. Top. Med. Chem. 10, 1135–1144. 10.2174/156802610791384270 PubMed DOI PMC
Lee W. T., Lee J., Kim H., Nguyen N. T., Lee E. S., Oh K. T., et al. (2021). Photoreactive-proton-generating hyaluronidase/albumin nanoparticles-loaded PEG-hydrogel enhances antitumor efficacy and disruption of the hyaluronic acid extracellular matrix in AsPC-1 tumors. Mat. Today. Bio 12, 100164. 10.1016/j.mtbio.2021.100164 PubMed DOI PMC
Lemley M. A. J. S. L. R. (2005). Patenting nanotechnology. Stanf. Law Rev. 58, 601–630. PubMed
Levin V. A., Fenstermacher J. D., Patlak C. S. J. A. J. o. P.-L. C. (1970). Sucrose and inulin space measurements of cerebral cortex in four mammalian species. Am. J. Physiol. 219, 1528–1533. 10.1152/ajplegacy.1970.219.5.1528 PubMed DOI
Liu F., Hon G. C., Villa G. R., Turner K. M., Ikegami S., Yang H., et al. (2015). EGFR mutation promotes glioblastoma through epigenome and transcription factor network remodeling. Mol. Cell 60, 307–318. 10.1016/j.molcel.2015.09.002 PubMed DOI PMC
Liu J., Wen J., Zhang Z., Liu H., Sun Y. (2015). Voyage inside the cell: Microsystems and nanoengineering for intracellular measurement and manipulation. Microsyst. Nanoeng. 1, 861–868. 10.1038/micronano.2015.20 DOI
Liu Y., Luo J., Chen X., Liu W., Chen T. J. N.-M. L. (2019). Cell membrane coating technology: A promising strategy for biomedical applications. Nanomicro. Lett. 11, 100–146. 10.1007/s40820-019-0330-9 PubMed DOI PMC
Liu Y., Xu D., Liu Y., Zheng X., Zang J., Ye W., et al. (2022). Remotely boosting hyaluronidase activity to normalize the hypoxic immunosuppressive tumor microenvironment for photothermal immunotherapy. Biomaterials 284, 121516. 10.1016/j.biomaterials.2022.121516 PubMed DOI
Livingston M. G., Livingston H. M. J. D. s. (1996). Monoamine oxidase inhibitors. An update on drug interactions. Drug Saf. 14, 219–227. 10.2165/00002018-199614040-00002 PubMed DOI
Lohse S. E., Murphy C. J. J. J. o. t. A. C. S. (2012). Applications of colloidal inorganic nanoparticles: From medicine to energy. J. Am. Chem. Soc. 134, 15607–15620. 10.1021/ja307589n PubMed DOI
Lorke D., Kalasz H., Petroianu G., Tekes K. J. C. m. c. (2008). Entry of oximes into the brain: A review. Curr. Med. Chem. 15, 743–753. 10.2174/092986708783955563 PubMed DOI
Lorkowski M. E., Atukorale P. U., Ghaghada K. B., Karathanasis E. J. A. h. m. (2021). Stimuli‐responsive iron oxide nanotheranostics: A versatile and powerful approach for cancer therapy. Adv. Healthc. Mater 10, 2001044. 10.1002/adhm.202001044 PubMed DOI PMC
Löscher W., Potschka H. J. P. i. n. (2005). Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog. Neurobiol. 76, 22–76. 10.1016/j.pneurobio.2005.04.006 PubMed DOI
Louis D. N., Perry A., Reifenberger G., Von Deimling A., Figarella-Branger D., Cavenee W. K., et al. (2016). The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131, 803–820. 10.1007/s00401-016-1545-1 PubMed DOI
Lu H., Wu L., Wang J., Wang Z., Yi X., Wang J., et al. (2018). Voltammetric determination of the Alzheimer’s disease-related ApoE 4 gene from unamplified genomic DNA extracts by ferrocene-capped gold nanoparticles. Mikrochim. Acta 185, 1–7. 10.1007/s00604-018-3087-9 PubMed DOI
Luk B. T., Zhang L. J. J. o. C. R. (2015). Cell membrane-camouflaged nanoparticles for drug delivery. J. Control. Release 220, 600–607. 10.1016/j.jconrel.2015.07.019 PubMed DOI PMC
Mahon E., Salvati A., Bombelli F. B., Lynch I., Dawson K. A. J. J. o. C. R. (2012). Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery”. J. Control. Release 161, 164–174. 10.1016/j.jconrel.2012.04.009 PubMed DOI
Martel S. J. B. (2016). Swimming microorganisms acting as nanorobots versus artificial nanorobotic agents: A perspective view from an historical retrospective on the future of medical nanorobotics in the largest known three-dimensional biomicrofluidic networks. Biomicrofluidics 10, 021301. 10.1063/1.4945734 PubMed DOI PMC
Martin L., Smith T., Weiler-Ravell D., Mcdonough J., Barutt J., Saffron J. J. T. N. E. j. o. m. (1992). The medical problems of underwater diving. N. Engl. J. Med. 326, 1497–1498. PubMed
Martins S., Sarmento B., Ferreira D. C., Souto E. B. J. I. j. o. n. (2007). Lipid-based colloidal carriers for peptide and protein delivery–liposomes versus lipid nanoparticles. Int. J. Nanomedicine 2, 595–607. PubMed PMC
Masserini M. J. I. S. R. N. (2013). Nanoparticles for brain drug delivery, 2013. PubMed PMC
McManus M. J., Murphy M. P., Franklin J. L. J. J. o. N. (2011). The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer's disease. J. Neurosci. 31, 15703–15715. 10.1523/JNEUROSCI.0552-11.2011 PubMed DOI PMC
Miele D., Catenacci L., Sorrenti M., Rossi S., Sandri G., Malavasi L., et al. (2019). Chitosan oleate coated poly lactic-glycolic acid (PLGA) nanoparticles versus chitosan oleate self-assembled polymeric micelles, loaded with resveratrol. Mar. Drugs 17, 515. 10.3390/md17090515 PubMed DOI PMC
Miller D. S. J. T. i. p. s. (2010). Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends Pharmacol. Sci. 31, 246–254. 10.1016/j.tips.2010.03.003 PubMed DOI PMC
Miranda A., Blanco-Prieto M., Sousa J., Pais A., Vitorino C. J. I. j. o. p. (2017). Breaching barriers in glioblastoma. Part I: Molecular pathways and novel treatment approaches. Int. J. Pharm. 531, 372–388. 10.1016/j.ijpharm.2017.07.056 PubMed DOI
Misra A., Ganesh S., Shahiwala A., Shah S. P. J. J. P. P. S. (2003). Drug delivery to the central nervous system: A review. J. Pharm. Pharm. Sci. 6, 252–273. PubMed
Miyai M., Tomita H., Soeda A., Yano H., Iwama T., Hara A. J. J. o. n.-o. (2017). Current trends in mouse models of glioblastoma. J. Neurooncol. 135, 423–432. 10.1007/s11060-017-2626-2 PubMed DOI PMC
Modi G., Pillay V., Choonara Y. E. J. A. o. t. N. Y. A. o. S. (2010). Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann. N. Y. Acad. Sci. 1184, 154–172. 10.1111/j.1749-6632.2009.05108.x PubMed DOI
Modi G., Pillay V., Choonara Y. E., Ndesendo V. M., du Toit L. C., Naidoo D. J. P. i. N. (2009). Nanotechnological applications for the treatment of neurodegenerative disorders. Prog. Neurobiol. 88, 272–285. 10.1016/j.pneurobio.2009.05.002 PubMed DOI
Mohamed F., van der Walle C. F. J. J. o. p. s. (2008). Engineering biodegradable polyester particles with specific drug targeting and drug release properties. J. Pharm. Sci. 97, 71–87. 10.1002/jps.21082 PubMed DOI
Montet X., Funovics M., Montet-Abou K., Weissleder R., Josephson L. J. J. o. m. c. (2006). Multivalent effects of RGD peptides obtained by nanoparticle display. J. Med. Chem. 49, 6087–6093. 10.1021/jm060515m PubMed DOI
Morrow K. J., Jr, Bawa R., Wei C. J. M. C. o. N. A. (2007). Recent advances in basic and clinical nanomedicine. Med. Clin. North Am. 91, 805–843. 10.1016/j.mcna.2007.05.009 PubMed DOI
Muhammad G., Hussain M. A., Anwar F., Ashraf M., Gilani A. H. J. P. r. (2015). Alhagi: A plant genus rich in bioactives for pharmaceuticals. Phytother. Res. 29, 1–13. 10.1002/ptr.5222 PubMed DOI
Mulvihill J. J., Cunnane E. M., Ross A. M., Duskey J. T., Tosi G., Grabrucker A. M. J. N. (2020). Drug delivery across the blood–brain barrier: Recent advances in the use of nanocarriers. Nanomedicine 15, 205–214. 10.2217/nnm-2019-0367 PubMed DOI
Myers R. H. J. N. (2004). Huntington's disease genetics. NeuroRx 1, 255–262. 10.1602/neurorx.1.2.255 PubMed DOI PMC
Naik P., Cucullo L. J. J. o. p. s. (2012). In vitro blood–brain barrier models: Current and perspective technologies. J. Pharm. Sci. 101, 1337–1354. 10.1002/jps.23022 PubMed DOI PMC
Nair K. G., Ramaiyan V., Sukumaran S. K. J. I. (2018). Enhancement of drug permeability across blood brain barrier using nanoparticles in meningitis. Inflammopharmacology 26, 675–684. 10.1007/s10787-018-0468-y PubMed DOI
Nance E. A., Woodworth G. F., Sailor K. A., Shih T.-Y., Xu Q., Swaminathan G., et al. (2012). A dense poly (ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl. Med. 4, 149ra119. PubMed PMC
Nance E. J. A. d. d. r. (2019). Careers in nanomedicine and drug delivery. Adv. Drug Deliv. Rev. 144, 180–189. 10.1016/j.addr.2019.06.009 PubMed DOI PMC
Naqvi S., Panghal A., Flora S. J. F. i. n. (2020). Nanotechnology: A promising approach for delivery of neuroprotective drugs. Front. Neurosci. 14, 494. 10.3389/fnins.2020.00494 PubMed DOI PMC
Nasrollahzadeh M., Sajadi S. M., Sajjadi M., Issaabadi Z. (2019). An introduction to nanotechnology, Interface science and technology. Elsevier, 1–27.
Natarajan S., Harini K., Gajula G. P., Sarmento B., Neves-Petersen M. T., Thiagarajan V. J. B. M. (2019). Multifunctional magnetic iron oxide nanoparticles: Diverse synthetic approaches, surface modifications. Cytotox. towards Biomed. industrial Appl. 1, 1–22.
Naz S., Shamoon M., Wang R., Zhang L., Zhou J., Chen J. J. I. J. o. M. S. (2019). Advances in therapeutic implications of inorganic drug delivery nano-platforms for cancer. Int. J. Mol. Sci. 20, 965. 10.3390/ijms20040965 PubMed DOI PMC
Nazem A., Mansoori G. A. J. J. o. A. s. d. (2008). Nanotechnology solutions for alzheimer's disease: Advances in research tools, diagnostic methods and therapeutic agents. J. Alzheimers Dis. 13, 199–223. 10.3233/jad-2008-13210 PubMed DOI
Nelson N. R., Port J. D., Pandey M. K. J. J. o. N. (2020). Use of superparamagnetic iron oxide nanoparticles (SPIONs) via multiple imaging modalities and modifications to reduce cytotoxicity: An educational review. J. Nanotheranostics 1, 105–135. 10.3390/jnt1010008 DOI
Neuwelt E. A., Bauer B., Fahlke C., Fricker G., Iadecola C., Janigro D., et al. (2011). Engaging neuroscience to advance translational research in brain barrier biology. Nat. Rev. Neurosci. 12, 169–182. 10.1038/nrn2995 PubMed DOI PMC
Neuwelt E. A., Goldman D. L., Dahlborg S. A., Crossen J., Ramsey F., Roman-Goldstein S., et al. (1991). Primary CNS lymphoma treated with osmotic blood-brain barrier disruption: Prolonged survival and preservation of cognitive function. J. Clin. Oncol. 9, 1580–1590. 10.1200/JCO.1991.9.9.1580 PubMed DOI
Niikura K., Matsunaga T., Suzuki T., Kobayashi S., Yamaguchi H., Orba Y., et al. (2013). Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo . ACS Nano 7, 3926–3938. 10.1021/nn3057005 PubMed DOI
Niu X., Chen J., Gao J. J. A. j. o. p. s. (2019). Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J. Pharm. Sci. 14, 480–496. 10.1016/j.ajps.2018.09.005 PubMed DOI PMC
Nurhidayah D., Maruf A., Zhang X., Liao X., Wu W., Wang G. J. N. (2019). Advanced drug-delivery systems: Mechanoresponsive nanoplatforms applicable in atherosclerosis management. Nanomedicine 14, 3105–3122. 10.2217/nnm-2019-0172 PubMed DOI
Oberdörster G., Sharp Z., Atudorei V., Elder A., Gelein R., Kreyling W., et al. (2004). Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16, 437–445. 10.1080/08958370490439597 PubMed DOI
Oldrini B., Curiel-García Á., Marques C., Matia V., Uluçkan Ö., Graña-Castro O., et al. (2018). Somatic genome editing with the RCAS-TVA-CRISPR-Cas9 system for precision tumor modeling. Nat. Commun. 9, 1–16. 10.1038/s41467-018-03731-w PubMed DOI PMC
Orive G., Ali O., Anitua E., Pedraz J., Emerich D. J. B. e. B. A.-R. o. C. (2010). Biomaterial-based technologies for brain anti-cancer therapeutics and imaging. Biochim. Biophys. Acta 1806, 96–107. 10.1016/j.bbcan.2010.04.001 PubMed DOI
Ozkizilcik A., Davidson P., Turgut H., Sharma H. S., Sharma A., Tian Z. R. (2017). Nanocarriers as cns drug delivery systems for enhanced neuroprotection, drug and gene delivery to the central nervous system for neuroprotection. Springer, 33–55.
Palei N. N., Mohanta B. C., Sabapathi M. L., Das M. K. (2018). Organic materials as smart nanocarriers for drug delivery. Elsevier, 415–470.Lipid-based nanoparticles for cancer diagnosis and therapy
Pandey P. K., Sharma A. K., Gupta U. J. T. b. (2016). Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking. Tissue Barriers 4, e1129476. 10.1080/21688370.2015.1129476 PubMed DOI PMC
Pansieri J., Gerstenmayer M., Lux F., Mériaux S., Tillement O., Forge V., et al. (2018). Magnetic nanoparticles applications for amyloidosis study and detection: A review. Nanomaterials 8, 740. 10.3390/nano8090740 PubMed DOI PMC
Pardridge W. M. (1997). Drug delivery to the brain. J. Cereb. Blood Flow. Metab. 17, 713–731. 10.1097/00004647-199707000-00001 PubMed DOI
Pardridge W. M. J. J. o. n. (1998). CNS drug design based on principles of blood‐brain barrier transport. J. Neurochem. 70, 1781–1792. 10.1046/j.1471-4159.1998.70051781.x PubMed DOI
Pardridge W. M. J. A. d. d. r. (1999). Vector-mediated drug delivery to the brain. Adv. Drug Deliv. Rev. 36, 299–321. 10.1016/s0169-409x(98)00087-8 PubMed DOI
Pardridge W. M. J. A. d. d. r. (2007). shRNA and siRNA delivery to the brain. Adv. Drug Deliv. Rev. 59, 141–152. 10.1016/j.addr.2007.03.008 PubMed DOI PMC
Park J. H., Lee S., Kim J.-H., Park K., Kim K., Kwon I. C. J. P. i. p. s. (2008). Polymeric nanomedicine for cancer therapy. Prog. Polym. Sci. 33, 113–137. 10.1016/j.progpolymsci.2007.09.003 DOI
Parveen S., Misra R., Sahoo S. J. B. (2012). Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8, 147–166. 10.1016/j.nano.2011.05.016 PubMed DOI
Parveen S., Misra R., Sahoo S. K. J. N. N. (2012). Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8, 147–166. 10.1016/j.nano.2011.05.016 PubMed DOI
Patois E., Capelle M., Palais C., Gurny R., Arvinte T. J. J. o. d. d. s. (2012). Evaluation of nanoparticle tracking analysis (NTA) in the characterization of therapeutic antibodies and seasonal influenza vaccines: Pros and cons. J. Drug Deliv. Sci. Technol. 22, 427–433. 10.1016/s1773-2247(12)50069-9 DOI
Pereira S., Pinto A., Alves V., Silva C. A. J. I. t. o. m. i. (2016). Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240–1251. 10.1109/tmi.2016.2538465 PubMed DOI
Petkar K. C., Chavhan S. S., Agatonovik-Kustrin S., Sawant K. J. C. R. i. T. D. C. S. (2011). Nanostructured materials in drug and gene delivery: A review of the state of the art. Crit. Rev. Ther. Drug Carr. Syst. 28. 10.1615/critrevtherdrugcarriersyst.v28.i2.10 PubMed DOI
Pietroiusti A., Campagnolo L., Fadeel B. J. S. (2013). Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small 9, 1557–1572. 10.1002/smll.201201463 PubMed DOI
Poon C., Gallo J., Joo J., Chang T., Bañobre-López M., Chung E. J. J. J. o. n. (2018). Hybrid, metal oxide-peptide amphiphile micelles for molecular magnetic resonance imaging of atherosclerosis. J. Nanobiotechnology 16, 92–11. 10.1186/s12951-018-0420-8 PubMed DOI PMC
Poon C., Patel A. A. J. N. E. (2020). Organic and inorganic nanoparticle vaccines for prevention of infectious diseases. Nano Express 1, 012001.
Popli D., Anil V., Subramanyam A. B., Mn N., Vr R., Rao S. N., et al. (2018). Endophyte fungi, Cladosporium species-mediated synthesis of silver nanoparticles possessing in vitro antioxidant, anti-diabetic and anti-Alzheimer activity. Artif. Cells Nanomed. Biotechnol. 46, 676–683. 10.1080/21691401.2018.1434188 PubMed DOI
Provenzale J., Silva G. J. A. j. o. n. (2009). Uses of nanoparticles for central nervous system imaging and therapy. AJNR. Am. J. Neuroradiol. 30, 1293–1301. 10.3174/ajnr.A1590 PubMed DOI PMC
Pusic K., Aguilar Z., McLoughlin J., Kobuch S., Xu H., Tsang M., et al. (2013). Iron oxide nanoparticles as a clinically acceptable delivery platform for a recombinant blood‐stage human malaria vaccine. FASEB J. 27, 1153–1166. 10.1096/fj.12-218362 PubMed DOI PMC
Qiao R., Yang C., Gao M. J. J. o. M. C. (2009). Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications. J. Mat. Chem. 19, 6274–6293. 10.1039/b902394a DOI
Quan L., Gu J., Lin W., Wei Y., Lin Y., Liu L., et al. (2019). A BODIPY biosensor to detect and drive self-assembly of diphenylalanine. Chem. Commun. 55, 8564–8566. 10.1039/c9cc03810h PubMed DOI
Rai S. N., Tiwari N., Singh P., Mishra D., Singh A. K., Hooshmandi E., et al. (2021). Therapeutic potential of vital transcription factors in alzheimer’s and Parkinson’s disease with particular emphasis on transcription factor eb mediated autophagy. Front. Neurosci. 15, 777347. 10.3389/fnins.2021.777347 PubMed DOI PMC
Raja G., Jang Y.-K., Suh J.-S., Kim H.-S., Ahn S. H., Kim T.-J. J. C. (2020). Microcellular environmental regulation of silver nanoparticles in cancer therapy: A critical review. Cancers 12, 664. 10.3390/cancers12030664 PubMed DOI PMC
Rajadhyaksha M., Boyden T., Liras J., El-Kattan A., Brodfuehrer J. J. C. d. d. t. (2011). Current advances in delivery of biotherapeutics across the blood-brain barrier. Curr. Drug Discov. Technol. 8, 87–101. 10.2174/157016311795563866 PubMed DOI
Ramanathan R. (2012). Towards understanding the influence of physio-chemical environment on biological synthesis of inorganic materials. RMIT University.
Ramos-Cabrer P., Campos F. J. I. (2013). Liposomes and nanotechnology in drug development: Focus on neurological targets. Int. J. Nanomedicine 8, 951. 10.2147/IJN.S30721 PubMed DOI PMC
Rapoport S. I. J. C., neurobiology m. (2000). Osmotic opening of the blood-brain barrier: Principles, mechanism, and therapeutic applications. Cell. Mol. Neurobiol. 20, 217–230. 10.1023/a:1007049806660 PubMed DOI PMC
Ratner M. A., Ratner D. (2003). Nanotechnology: A gentle introduction to the next big idea. London: Prentice Hall Professional.
Re F., Gregori M., Masserini M. J. M. (2012). Nanotechnology for neurodegenerative disorders. Maturitas 73, 45–51. 10.1016/j.maturitas.2011.12.015 PubMed DOI
Rezaei M., Hosseini S. N., Khavari-Nejad R. A., Najafi F., Mahdavi M. J. A. C. (2019). Nanomedicine, and Biotechnology, HBs antigen and mannose loading on the surface of iron oxide nanoparticles in order to immuno-targeting: Fabrication, characterization. Cell. humoral Immunoass. 47, 1543–1558. PubMed
Richard C., Doan B.-T., Beloeil J.-C., Bessodes M., Tóth É., Scherman D. J. N. L. (2008). Noncovalent functionalization of carbon nanotubes with amphiphilic Gd3+ chelates: Toward powerful T1 and T2 MRI contrast agents. Nano Lett. 8, 232–236. 10.1021/nl072509z PubMed DOI
Riehemann K., Schneider S. W., Luger T. A., Godin B., Ferrari M., Fuchs H. J. A. C. I. E. (2009). Nanomedicine--challenge and perspectives. Angew. Chem. Int. Ed. Engl. 48, 872–897. 10.1002/anie.200802585 PubMed DOI PMC
Rossini P. M., Burke D., Chen R., Cohen L., Daskalakis Z., Di Iorio R., et al. (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin. Neurophysiol. 126, 1071–1107. 10.1016/j.clinph.2015.02.001 PubMed DOI PMC
Sakhrani N. M., Padh H. J. D. d. (2013). Organelle targeting: Third level of drug targeting. Drug Des. devel. Ther. 7, 585–599. 10.2147/DDDT.S45614 PubMed DOI PMC
Sanati M., Khodagholi F., Aminyavari S., Ghasemi F., Gholami M., Kebriaeezadeh A., et al. (2019). Impact of gold nanoparticles on amyloid β-induced alzheimer's disease in a rat animal model: Involvement of STIM proteins. ACS Chem. Neurosci. 10, 2299–2309. 10.1021/acschemneuro.8b00622 PubMed DOI
Sancey L., Lux F., Kotb S., Roux S., Dufort S., Bianchi A., et al. (2014). The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br. J. Radiol. 87, 20140134. 10.1259/bjr.20140134 PubMed DOI PMC
Sanchez-Covarrubias L., Slosky L. M., Thompson B. J., Davis T. P., Ronaldson P. T. J. C. p. d. (2014). Transporters at CNS barrier sites: Obstacles or opportunities for drug delivery? Curr. Pharm. Des. 20, 1422–1449. 10.2174/13816128113199990463 PubMed DOI PMC
Sangha V., Williams E. I., Ronaldson P. T., Bendayan R. J. D. T. M. C., Disposition R. i. D. (2022). Drug transport in the brain, 283–317.
Sanson C., Diou O., Thevenot J., Ibarboure E., Soum A., Brûlet A., et al. (2011). Doxorubicin loaded magnetic polymersomes: Theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5, 1122–1140. 10.1021/nn102762f PubMed DOI
Sarin H., Kanevsky A. S., Wu H., Brimacombe K. R., Fung S. H., Sousa A. A., et al. (2008). Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J. Transl. Med. 6, 80–15. 10.1186/1479-5876-6-80 PubMed DOI PMC
Sarko D., McKinney C. (2017). Exosomes: Origins and therapeutic potential for neurodegenerative disease. Front. Neurosci. 11, 82. 10.3389/fnins.2017.00082 PubMed DOI PMC
Saunders N. R., Habgood M. D., Møllgård K., Dziegielewska K. M. J. F. (2016). The biological significance of brain barrier mechanisms: Help or hindrance in drug delivery to the central nervous system? F1000Res, 5. 10.12688/f1000research.7378.1 PubMed DOI PMC
Schleh C., Semmler-Behnke M., Lipka J., Wenk A., Hirn S., Schäffler M., et al. (2012). Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6, 36–46. 10.3109/17435390.2011.552811 PubMed DOI PMC
Schmidt J., Metselaar J. M., Wauben M. H., Toyka K. V., Storm G., Gold R. J. B. (2003). Drug targeting by long‐circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. Brain 126, 1895–1904. 10.1093/brain/awg176 PubMed DOI
Schober A. J. C., research t. (2004). Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell Tissue Res. 318, 215–224. 10.1007/s00441-004-0938-y PubMed DOI
Setsuie R., Wang Y.-L., Mochizuki H., Osaka H., Hayakawa H., Ichihara N., et al. (2007). Dopaminergic neuronal loss in transgenic mice expressing the Parkinson's disease-associated UCH-L1 I93M mutant. Neurochem. Int. 50, 119–129. 10.1016/j.neuint.2006.07.015 PubMed DOI
Shah L., Yadav S., Amiji M. J. D. d., research t. (2013). Nanotechnology for CNS delivery of bio-therapeutic agents. Drug Deliv. Transl. Res. 3, 336–351. 10.1007/s13346-013-0133-3 PubMed DOI PMC
Sharma A., Kaur G. J. B. c., medicine a. (2018). Tinospora cordifolia as a potential neuroregenerative candidate against glutamate induced excitotoxicity: An in vitro perspective. BMC Complement. Altern. Med. 18, 1–17. 10.1186/s12906-018-2330-6 PubMed DOI PMC
Sharma H. S., Castellani R. J., Smith M. A., Sharma A. J. I. R. N. (2012). The blood-brain barrier in alzheimer's disease: Novel therapeutic targets and nanodrug delivery. Int. Rev. Neurobiol. 102, 47–90. 10.1016/B978-0-12-386986-9.00003-X PubMed DOI
Sharma P., Bhargava M. J. R. D. (2013). Applications and characteristics of nanomaterials in industrial environment. Nanotechnol. Environ. 3, 63–72. 10.5772/intechopen.91438 DOI
Sharma P., Mehta M., Dhanjal D. S., Kaur S., Gupta G., Singh H., et al. (2019). Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact. 309, 108720. 10.1016/j.cbi.2019.06.033 PubMed DOI
Sharpe M. A., Livingston A. D., Gist T. L., Ghosh P., Han J., Baskin D. S. J. E. (2015). Successful treatment of intracranial glioblastoma xenografts with a monoamine oxidase B-activated pro-drug. EBioMedicine 2, 1122–1132. 10.1016/j.ebiom.2015.08.013 PubMed DOI PMC
Shukla S. D., Jain S., Sharma K., Bhatnagar M. (2000). Stress induced neuron degeneration and protective effects of semecarpus anacardium linn. And withania somnifera dunn. In hippocampus of albino rats: An ultrastructural study. PubMed
Silva G. A. J. B. (2008). Nanotechnology approaches to crossing the blood-brain barrier and drug delivery to the CNS. BMC Neurosci. 9, S4–S4. 10.1186/1471-2202-9-S3-S4 PubMed DOI PMC
Simonet S. p. (2018). Radiosensitizing effect of AGuIX® in head and neck squamous cell carcinoma (HNSCC): From cellular uptake to subcellular damage. Lyon: Université de Lyon.
Singh A. K., Gothwal A., Rani S., Rana M., Sharma A. K., Yadav A. K., et al. (2019). Dendrimer donepezil conjugates for improved brain delivery and better in vivo pharmacokinetics. ACS Omega 4, 4519–4529. 10.1021/acsomega.8b03445 DOI
Singh A. K., Mishra S. K., Mishra G., Maurya A., Awasthi R., Yadav M. K., et al. (2020). Inorganic clay nanocomposite system for improved cholinesterase inhibition and brain pharmacokinetics of donepezil. Drug Dev. Ind. Pharm. 46, 8–19. 10.1080/03639045.2019.1698594 PubMed DOI
Singh A. K., Rai S. N., Maurya A., Mishra G., Awasthi R., Shakya A., et al. (2021). Therapeutic potential of phytoconstituents in management of Alzheimer’s disease. Evid. Based Complement. Altern. Med. 2021. 10.1155/2021/5578574 PubMed DOI PMC
Singh A. K., Singh S. K., Nandi M. K., Mishra G., Maurya A., Rai A., et al. (2019). Berberine: A plant-derived alkaloid with therapeutic potential to combat alzheimer's disease. Cent. Nerv. Syst. Agents Med. Chem. 19, 154–170. 10.2174/1871524919666190820160053 PubMed DOI
Singh A. K., Singh S. S., Rathore A. S., Singh S. P., Mishra G., Awasthi R., et al. (2021). Lipid-coated MCM-41 mesoporous silica nanoparticles loaded with berberine improved inhibition of acetylcholine esterase and amyloid formation. ACS Biomater. Sci. Eng. 7, 3737–3753. 10.1021/acsbiomaterials.1c00514 PubMed DOI
Singh A. V., Hosseinidoust Z., Park B.-W., Yasa O., Sitti M. J. A. n. (2017). Microemulsion-based soft bacteria-driven microswimmers for active cargo delivery. ACS Nano 11, 9759–9769. 10.1021/acsnano.7b02082 PubMed DOI
Singh G. K., Chauhan S. K., Rai G., Chatterjee S. S., Kumar V. J. P. M. (2013). Potential antianxiety activity of fumaria indica: A preclinical study. Pharmacogn. Mag. 9, 14–22. 10.4103/0973-1296.108129 PubMed DOI PMC
Singh G. K., Rai G., Chatterjee S. S., Kumar V. J. A. (2013). Effects of ethanolic extract of Fumaria indica L. on rat cognitive dysfunctions. Ayu 34, 421–429. 10.4103/0974-8520.127727 PubMed DOI PMC
Singh P., Kim Y.-J., Zhang D., Yang D.-C. J. T. i. b. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 588–599. 10.1016/j.tibtech.2016.02.006 PubMed DOI
Singh V., Yadav B., Pandey V. J. P. (1999). Flavanone glycosides from Alhagi pseudalhagi. Phytochemistry 51, 587–590. 10.1016/s0031-9422(99)00010-2 PubMed DOI
Sj R. D., Kumar B P. J. C. C.-A. D. D. (2020). In silico screening for anti-inflammatory bioactive molecules from ayurvedic decoction, balaguluchyadi kashayam. Curr. Comput. Aided. Drug Des. 16, 435–450. 10.2174/1573409915666191015113753 PubMed DOI
Sonavane G., Tomoda K., Makino K. J. C., Biointerfaces S. B. (2008). Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surf. B Biointerfaces 66, 274–280. 10.1016/j.colsurfb.2008.07.004 PubMed DOI
Song Y., Jing H., Vong L. B., Wang J., Li N. J. C. C. L. (2021). Recent advances in targeted stimuli-responsive nano-based drug delivery systems combating atherosclerosis. Chin. Chem. Lett. 33. 10.1016/j.cclet.2021.10.055 DOI
Soni K. S., Desale S. S., Bronich T. K. J. J. o. C. R. (2016). Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J. Control. Release 240, 109–126. 10.1016/j.jconrel.2015.11.009 PubMed DOI PMC
Soni S., Ruhela R. K., Medhi B. J. A. p. b. (2016). Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective. Adv Pharm Bull 6, 319. 10.15171/apb.2016.044 PubMed DOI PMC
Soni V., Kohli D., Jain S. J. J. o. d. t. (2008). Transferrin-conjugated liposomal system for improved delivery of 5-fluorouracil to brain. J. Drug Target. 16, 73–78. 10.1080/10611860701725381 PubMed DOI
Srikanth M., Kessler J. A. J. N. r. n. (2012). Nanotechnology-novel therapeutics for CNS disorders. Nat. Rev. Neurol. 8, 307–318. 10.1038/nrneurol.2012.76 PubMed DOI PMC
Stenehjem D. D., Hartz A. M., Bauer B., Anderson G. W. J. F. M. C. (2009). Novel and emerging strategies in drug delivery for overcoming the blood–brain barrier. Future Med. Chem. 1, 1623–1641. 10.4155/fmc.09.137 PubMed DOI
Stewart S. A. J. J. o. C. P. (2005). The effects of benzodiazepines on cognition. J. Clin. Psychiatry 66, 9–13. PubMed
Stockwell J., Abdi N., Lu X., Maheshwari O., Taghibiglou C. J. C. b., design d. (2014). Novel central nervous system drug delivery systems. Chem. Biol. Drug Des. 83, 507–520. 10.1111/cbdd.12268 PubMed DOI
Stratakis E., Ranella A., Farsari M., Fotakis C. J. P. i. Q. E. (2009). Laser-based micro/nanoengineering for biological applications. Prog. Quantum Electron. 33, 127–163. 10.1016/j.pquantelec.2009.06.001 DOI
Stupp R., Mason W. P., Van Den Bent M. J., Weller M., Fisher B., Taphoorn M. J., et al. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996. 10.1056/NEJMoa043330 PubMed DOI
Sweeney M. D., Zhao Z., Montagne A., Nelson A. R., Zlokovic B. V. J. P. r. (2019). Blood-brain barrier: From physiology to disease and back. Physiol. Rev. 99, 21–78. 10.1152/physrev.00050.2017 PubMed DOI PMC
Syková E., Nicholson C. J. P. r. (2008). Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340. 10.1152/physrev.00027.2007 PubMed DOI PMC
Szabo E., Schneider H., Seystahl K., Rushing E. J., Herting F., Weidner K. M., et al. (2016). Autocrine VEGFR1 and VEGFR2 signaling promotes survival in human glioblastoma models in vitro and in vivo . Neuro. Oncol. 18, 1242–1252. 10.1093/neuonc/now043 PubMed DOI PMC
Tamai I., Tsuji A. J. A. d. d. r. (1996). Drug delivery through the blood-brain barrier. Adv. Drug Deliv. Rev. 19, 401–424. 10.1016/0169-409x(96)00011-7 DOI
Tateishi K., Wakimoto H., Iafrate A. J., Tanaka S., Loebel F., Lelic N., et al. (2015). Extreme vulnerability of IDH1 mutant cancers to NAD+ depletion. Cancer Cell 28, 773–784. 10.1016/j.ccell.2015.11.006 PubMed DOI PMC
Teixeira M. I., Lopes C. M., Amaral M. H., Costa P. C. (2020). Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur. J. Pharm. Biopharm. 149, 192–217. 10.1016/j.ejpb.2020.01.005 PubMed DOI
Thomas C., Rawat A., Hope-Weeks L., Ahsan F. J. M. p. (2011). Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to. Hepat. B vaccine 8, 405–415. PubMed
Thorne R. G., Frey W. H. J. C. p. (2001). Delivery of neurotrophic factors to the central nervous system: Pharmacokinetic considerations. Clin. Pharmacokinet. 40, 907–946. 10.2165/00003088-200140120-00003 PubMed DOI
Thorne R. G., Nicholson C. J. P. o. t. N. A. o. S. (2006). In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc. Natl. Acad. Sci. U. S. A. 103, 5567–5572. 10.1073/pnas.0509425103 PubMed DOI PMC
Tong S., Zhu H., Bao G. J. M. T. (2019). Magnetic iron oxide nanoparticles for disease detection and therapy. Mat. Today 31, 86–99. 10.1016/j.mattod.2019.06.003 PubMed DOI PMC
Torchilin V. P. J. P. R. (2007). Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 24, 1–16. 10.1007/s11095-006-9132-0 PubMed DOI
Torres-Ortega P. V., Saludas L., Hanafy A. S., Garbayo E., Blanco-Prieto M. J. J. J. o. C. R. (2019). Micro-and nanotechnology approaches to improve Parkinson's disease therapy. J. Control. Release 295, 201–213. 10.1016/j.jconrel.2018.12.036 PubMed DOI
Umut E. J. M. S. E. T. (2013). Surface modification of nanoparticles used in biomedical applications. Nanobiotechnology 20, 185–208.
Upadhyay R. K. J. B. r. i. (2014). Drug delivery systems, CNS protection, and the blood brain barrier, 2014. PubMed PMC
Vermeeren A. J. C. d. (2004). Residual effects of hypnotics: Epidemiology and clinical implications. CNS Drugs 18, 297–328. 10.2165/00023210-200418050-00003 PubMed DOI
Verreault M., Schmitt C., Goldwirt L., Pelton K., Haidar S., Levasseur C., et al. (2016). Preclinical efficacy of the MDM2 inhibitor RG7112 in MDM2-amplified and TP53 wild-type glioblastomas. Clin. Cancer Res. 22, 1185–1196. 10.1158/1078-0432.CCR-15-1015 PubMed DOI PMC
Vickers N. J. J. C. b. (2017). Animal communication: When i’m calling you, will you answer too? Curr. Biol. 27, R713–R715. 10.1016/j.cub.2017.05.064 PubMed DOI
Voigt N., Henrich-Noack P., Kockentiedt S., Hintz W., Tomas J., Sabel B. A. (2014). Surfactants, not size or zeta-potential influence blood–brain barrier passage of polymeric nanoparticles. Eur. J. Pharm. Biopharm. 87, 19–29. 10.1016/j.ejpb.2014.02.013 PubMed DOI
Vorbrodt A. W., Dobrogowska D. H. J. B. R. R. (2003). Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: Electron microscopist's view. Brain Res. Brain Res. Rev. 42, 221–242. 10.1016/s0165-0173(03)00177-2 PubMed DOI
Vuong N. (2018). Nanotechnology-enhanced blood and urine analysis for the identification of biomarkers related to severe traumatic brain injury and acute respiratory distress Syndrome.
Walsh J. (1979). “Behavioural effects of drugs in the hyperbaric environment, the twenty-first undersea medical society workshop,” in Interaction of drugs in the hyperbaric environment (Bethesda: Undersea Medi Soc; ).
Wang L., Xiong X., Zhang L., Shen J. J. C. N. (2021). Neurovascular unit: A critical role in ischemic stroke. CNS Neurosci. Ther. 27, 7–16. 10.1111/cns.13561 PubMed DOI PMC
Waris A., Ali A., Khan A. U., Asim M., Zamel D., Fatima K., et al. (2022). Applications of various types of nanomaterials for the treatment of neurological disorders. Nanomaterials 12, 2140. 10.3390/nano12132140 PubMed DOI PMC
Wei G., Su Z., Reynolds N. P., Arosio P., Hamley I. W., Gazit E., et al. (2017). Self-assembling peptide and protein amyloids: From structure to tailored function in nanotechnology. Chem. Soc. Rev. 46, 4661–4708. 10.1039/c6cs00542j PubMed DOI PMC
Whiting P. J. J. D. d. t. (2003). GABA-A receptor subtypes in the brain: A paradigm for CNS drug discovery? Drug Discov. Today 8, 445–450. 10.1016/s1359-6446(03)02703-x PubMed DOI
Williams T., Wilkinson A., Davis F., Frampton C. J. U. b. r. (1988). Effects of transcutaneous scopolamine and depth on diver performance. Undersea Biomed. Res. 15, 89–98. PubMed
Wilson B., Samanta M. K., Santhi K., Kumar K. P. S., Paramakrishnan N., Suresh B. J. B. r. (2008). Poly (n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease. Brain Res. 1200, 159–168. 10.1016/j.brainres.2008.01.039 PubMed DOI
Witten J., Ribbeck K. J. N. (2017). The particle in the spider's web: Transport through biological hydrogels. Nanoscale 9, 8080–8095. 10.1039/c6nr09736g PubMed DOI PMC
Wolak D. J., Thorne R. G. J. M. p. (2013). Diffusion of macromolecules in the brain: Implications for drug delivery. Mol. Pharm. 10, 1492–1504. 10.1021/mp300495e PubMed DOI PMC
Wong H. L., Wu X. Y., Bendayan R. J. A. d. d. r. (2012). Nanotechnological advances for the delivery of CNS therapeutics. Adv. Drug Deliv. Rev. 64, 686–700. 10.1016/j.addr.2011.10.007 PubMed DOI
Woodworth G. F., Dunn G. P., Nance E. A., Hanes J., Brem H. J. F. i. o. (2014). Emerging insights into barriers to effective brain tumor therapeutics. Front. Oncol. 4, 126. 10.3389/fonc.2014.00126 PubMed DOI PMC
Xia N., Wang X., Zhou B., Wu Y., Mao W., Liu L. J. A. a. m., et al. (2016). Electrochemical detection of amyloid-β oligomers based on the signal amplification of a network of silver nanoparticles. ACS Appl. Mat. Interfaces 8, 19303–19311. 10.1021/acsami.6b05423 PubMed DOI
Xie J., Shen Z., Anraku Y., Kataoka K., Chen X. J. B. (2019). Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials 224, 119491. 10.1016/j.biomaterials.2019.119491 PubMed DOI PMC
Yamazaki Y., Kanekiyo T. J. I. j. o. m. s. (2017). Blood-brain barrier dysfunction and the pathogenesis of Alzheimer’s disease. Int. J. Mol. Sci. 18, 1965. 10.3390/ijms18091965 PubMed DOI PMC
Yang F., Li Y., Chen Z., Zhang Y., Wu J., Gu N. J. B. (2009). Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials 30, 3882–3890. 10.1016/j.biomaterials.2009.03.051 PubMed DOI
Yang Y., Rosenberg G. A. J. S. (2011). Blood–brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 42, 3323–3328. 10.1161/STROKEAHA.110.608257 PubMed DOI PMC
Yao V. J., D'Angelo S., Butler K. S., Theron C., Smith T. L., Marchiò S., et al. (2016). Ligand-targeted theranostic nanomedicines against cancer. J. Control. Release 240, 267–286. 10.1016/j.jconrel.2016.01.002 PubMed DOI PMC
Yazdani S., Jaldin‐Fincati J. R., Pereira R. V., Klip A. J. T. (2019). Endothelial cell barriers: Transport of molecules between blood and tissues. Traffic 20, 390–403. 10.1111/tra.12645 PubMed DOI
Yi X., Manickam D. S., Brynskikh A., Kabanov A. V. J. J. o. C. R. (2014). Agile delivery of protein therapeutics to CNS. J. Control. Release 190, 637–663. 10.1016/j.jconrel.2014.06.017 PubMed DOI PMC
Youdim M. B., Edmondson D., Tipton K. F. J. N. R. N. (2006). The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci. 7, 295–309. 10.1038/nrn1883 PubMed DOI
Yu M., Wu J., Shi J., Farokhzad O. C. J. J. o. c. r. (2016). Nanotechnology for protein delivery: Overview and perspectives. J. Control. Release 240, 24–37. 10.1016/j.jconrel.2015.10.012 PubMed DOI PMC
Zeevi N., Pachter J., McCullough L. D., Wolfson L., Kuchel G. A. J. J. O. T. A. G. S. (2010). The blood–brain barrier: Geriatric relevance of a critical brain–body interface. J. Am. Geriatr. Soc. 58, 1749–1757. 10.1111/j.1532-5415.2010.03011.x PubMed DOI PMC
Zeng J., See A. P., Phallen J., Jackson C. M., Belcaid Z., Ruzevick J., et al. (2013). Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int. J. Radiat. Oncol. Biol. Phys. 86, 343–349. 10.1016/j.ijrobp.2012.12.025 PubMed DOI PMC
Zhang F., Xu C.-L., Liu C.-M. J. D. D. (2015). Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma. Drug Des. devel. Ther. 9, 2089–2100. 10.2147/DDDT.S79592 PubMed DOI PMC
Zhang J., Mou L., Jiang X. J. C. S. (2020). Surface chemistry of gold nanoparticles for health-related applications. Chem. Sci. 11, 923–936. 10.1039/c9sc06497d PubMed DOI PMC
Zhang M., Zang X., Wang M., Li Z., Qiao M., Hu H., et al. (2019). Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: Recent advances and challenges. J. Mat. Chem. B 7, 2421–2433. 10.1039/c9tb00170k PubMed DOI
Zhang P., Hu L., Yin Q., Feng L., Li Y. J. M. p. (2012). Transferrin-modified c [RGDfK]-paclitaxel loaded hybrid micelle for sequential blood-brain barrier penetration and glioma targeting therapy. Mol. Pharm. 9, 1590–1598. 10.1021/mp200600t PubMed DOI
Zhang Q., Zhang J., Song J., Liu Y., Ren X., Zhao Y. J. A. n. (2021). Protein-based nanomedicine for therapeutic benefits of cancer. ACS Nano 15, 8001–8038. 10.1021/acsnano.1c00476 PubMed DOI
Zhao C., Xing Z., Zhang C., Fan Y., Liu H. J. J. o. M. C. B. (2021). Nanopharmaceutical-based regenerative medicine: A promising therapeutic strategy for spinal cord injury. J. Mat. Chem. B 9, 2367–2383. 10.1039/d0tb02740e PubMed DOI
Zlokovic B. V. J. N. (2008). The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201. 10.1016/j.neuron.2008.01.003 PubMed DOI
Zong T., Mei L., Gao H., Cai W., Zhu P., Shi K., et al. (2014). Synergistic dual-ligand doxorubicin liposomes improve targeting and therapeutic efficacy of brain glioma in animals. Mol. Pharm. 11, 2346–2357. 10.1021/mp500057n PubMed DOI
Zou Z., Jiang X., Zhang W., Zhou Y., Ke Y., Zhang S., et al. (2010). Efficacy of Tyrosine Hydroxylase gene modified neural stem cells derived from bone marrow on Parkinson's disease–a rat model study. Brain Res. 1346, 279–286. 10.1016/j.brainres.2010.05.071 PubMed DOI
Interactions of Isoquinoline Alkaloids with Transition Metals Iron and Copper