Exploring the role of nanomedicines for the therapeutic approach of central nervous system dysfunction: At a glance

. 2022 ; 10 () : 989471. [epub] 20220902

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36120565

In recent decades, research scientists, molecular biologists, and pharmacologists have placed a strong emphasis on cutting-edge nanostructured materials technologies to increase medicine delivery to the central nervous system (CNS). The application of nanoscience for the treatment of neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), Huntington's disease (HD), brain cancer, and hemorrhage has the potential to transform care. Multiple studies have indicated that nanomaterials can be used to successfully treat CNS disorders in the case of neurodegeneration. Nanomedicine development for the cure of degenerative and inflammatory diseases of the nervous system is critical. Nanoparticles may act as a drug transporter that can precisely target sick brain sub-regions, boosting therapy success. It is important to develop strategies that can penetrate the blood-brain barrier (BBB) and improve the effectiveness of medications. One of the probable tactics is the use of different nanoscale materials. These nano-based pharmaceuticals offer low toxicity, tailored delivery, high stability, and drug loading capacity. They may also increase therapeutic effectiveness. A few examples of the many different kinds and forms of nanomaterials that have been widely employed to treat neurological diseases include quantum dots, dendrimers, metallic nanoparticles, polymeric nanoparticles, carbon nanotubes, liposomes, and micelles. These unique qualities, including sensitivity, selectivity, and ability to traverse the BBB when employed in nano-sized particles, make these nanoparticles useful for imaging studies and treatment of NDs. Multifunctional nanoparticles carrying pharmacological medications serve two purposes: they improve medication distribution while also enabling cell dynamics imaging and pharmacokinetic study. However, because of the potential for wide-ranging clinical implications, safety concerns persist, limiting any potential for translation. The evidence for using nanotechnology to create drug delivery systems that could pass across the BBB and deliver therapeutic chemicals to CNS was examined in this study.

Zobrazit více v PubMed

Abhang P., Momin M., Inamdar M., Kar S. J. D. D. L. (2014). Transmucosal drug delivery- an overview. Drug Deliv. Lett. 4, 26–37. 10.2174/22103031113039990011 DOI

Ag Seleci D., Maurer V., Barlas F. B., Porsiel J. C., Temel B., Ceylan E., et al. (2021). Transferrin-decorated niosomes with integrated InP/ZnS quantum dots and magnetic iron oxide nanoparticles: Dual targeting and imaging of glioma. Int. J. Mol. Sci. 22, 4556. 10.3390/ijms22094556 PubMed DOI PMC

Ai X.-L., Liang R.-C., Wang Y.-C., Fang F. (2016). Stem cells combined with nano materials–novel therapeutics for central nervous system diseases. J. Nanosci. Nanotechnol. 16, 8895–8908. 10.1166/jnn.2016.12743 DOI

Aikins M. E., Bazzill J., Moon J. J. J. N. (2017). Vaccine nanoparticles for protection against HIV infection. Nanomedicine 12, 673–682. 10.2217/nnm-2016-0381 PubMed DOI PMC

Aird R. B. J. E. n. (1984). A study of intrathecal, cerebrospinal fluid-to-brain exchange. Exp. Neurol. 86, 342–358. 10.1016/0014-4886(84)90192-4 PubMed DOI

Alam M. I., Beg S., Samad A., Baboota S., Kohli K., Ali J., et al. (2010). Strategy for effective brain drug delivery. Eur. J. Pharm. Sci. 40, 385–403. 10.1016/j.ejps.2010.05.003 PubMed DOI

Alguacil L., Pérez-García C. J. C. D. T.-C., Disorders N. (2003). Histamine H3 receptor: A potential drug target for the treatment of central nervous system disorders. Curr. Drug Targets. CNS Neurol. Disord. 2, 303–313. 10.2174/1568007033482760 PubMed DOI

Aliabadi H. M., Lavasanifar A. J. E. o. o. d. d. (2006). Polymeric micelles for drug delivery. Expert Opin. Drug Deliv. 3, 139–162. 10.1517/17425247.3.1.139 PubMed DOI

Alifieris C., Trafalis D. T. J. P. (2015). Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol. Ther. 152, 63–82. 10.1016/j.pharmthera.2015.05.005 PubMed DOI

Aljiffry M., Walsh M. J., Molinari M. J. W. j. o. g. W. (2009). Advances in diagnosis, treatment and palliation of cholangiocarcinoma. World J. Gastroenterol. 15, 4240. 10.3748/wjg.15.4240 PubMed DOI PMC

Allen T. M., Cullis P. R. J. A. d. d. r. (2013). Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48. 10.1016/j.addr.2012.09.037 PubMed DOI

Alshamrani M. J. P. (2022). Broad-spectrum theranostics and biomedical application of functionalized nanomaterials. Polym. (Basel). 14, 1221. 10.3390/polym14061221 PubMed DOI PMC

Andersen A. J., Hashemi S. H., Galimberti G., Re F., Masserini M., Moghimi S. M. J. J. o. B. (2010). The interaction of complement system with abeta-binding liposomes: Towards engineering of safer vesicles for the management of alzheimer's disease. J. Biotechnol. 150, 97–98. 10.1016/j.jbiotec.2010.08.252 DOI

Andersson U., Grankvist K., Bergenheim A. T., Behnam-Motlagh P., Hedman H., Henriksson R. J. M. O. (2002). Rapid induction of long-lasting drug efflux activity in brain vascular endothelial cells but not malignant glioma following irradiation. Med. Oncol. 19, 1–9. 10.1385/MO:19:1:1 PubMed DOI

Aparicio-Blanco J., Torres-Suárez A.-I. J. A. B. (2018). Towards tailored management of malignant brain tumors with nanotheranostics. Acta Biomater. 73, 52–63. 10.1016/j.actbio.2018.04.029 PubMed DOI

Aryani A., Denecke B. J. M. n. (2016). Exosomes as a nanodelivery system: A key to the future of neuromedicine? Mol. Neurobiol. 53, 818–834. 10.1007/s12035-014-9054-5 PubMed DOI PMC

Attri J. P., Bala N., Chatrath V. J. I. j. o. a. (2012). Psychiatric patient and anaesthesia. Indian J. Anaesth. 56, 8–13. 10.4103/0019-5049.93337 PubMed DOI PMC

Au K., Meng Y., Suppiah S., Nater A., Jalali R., Zadeh G. J. N. A. t. t. M. o. P., et al. (2017). Current management of brain metastases: Overview and teaching cases. New Approaches to the Management of Primary and Secondary CNS Tumors. 10.5772/66310 DOI

Bae Y. H., Park K. J. J. o. c. r. (2011). Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release 153, 198–205. 10.1016/j.jconrel.2011.06.001 PubMed DOI PMC

Ball P. J. N. (2004). Synthetic biology for nanotechnology. Nanotechnology 16, R1–R8. 10.1088/0957-4484/16/1/r01 DOI

Banik A., Brown R. E., Bamburg J., Lahiri D. K., Khurana D., Friedland R. P., et al. (2015). Translation of pre-clinical studies into successful clinical trials for alzheimer’s disease: What are the roadblocks and how can they be overcome? J. Alzheimers Dis. 47, 815–843. 10.3233/JAD-150136 PubMed DOI

Bardella C., Al-Dalahmah O., Krell D., Brazauskas P., Al-Qahtani K., Tomkova M., et al. (2016). Expression of Idh1R132H in the murine subventricular zone stem cell niche recapitulates features of early gliomagenesis. Cancer Cell 30, 578–594. 10.1016/j.ccell.2016.08.017 PubMed DOI PMC

Barreto J. A., O’Malley W., Kubeil M., Graham B., Stephan H., Spiccia L. J. A. m. (2011). Nanomaterials: Applications in cancer imaging and therapy. Adv. Mat. 23, H18–H40. 10.1002/adma.201100140 PubMed DOI

Batrakova E. V., Kabanov A. V. J. J. o. c. r. (2008). Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release 130, 98–106. 10.1016/j.jconrel.2008.04.013 PubMed DOI PMC

Baumann B. C., Kao G. D., Mahmud A., Harada T., Swift J., Chapman C., et al. (2013). Enhancing the efficacy of drug-loaded nanocarriers against brain tumors by targeted radiation therapy. Oncotarget 4, 64–79. 10.18632/oncotarget.777 PubMed DOI PMC

Bawarski W., Chidlowsky E., Bharali D., Mousa S. J. B. M. (2008). Emerging nanopharmaceuticals. Nanomedicine 4, 273–282. 10.1016/j.nano.2008.06.002 PubMed DOI

Bechet D., Auger F., Couleaud P., Marty E., Ravasi L., Durieux N., et al. (2015). Multifunctional ultrasmall nanoplatforms for vascular-targeted interstitial photodynamic therapy of brain tumors guided by real-time MRI. Nanomedicine 11, 657–670. 10.1016/j.nano.2014.12.007 PubMed DOI

Beg S., Rahman M., Barkat M. A., Ahmad F. J. (2019). Nanomedicine for the treatment of disease: From concept to application. New York: CRC Press.

Bhatia S. (2016). Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications, Natural polymer drug delivery systems. Springer, 33–93.

Bhattacharya A., Kaushik D. K., Lozinski B. M., Yong V. W. J. J. o. N. R. (2020). Beyond barrier functions: Roles of pericytes in homeostasis and regulation of neuroinflammation. J. Neurosci. Res. 98, 2390–2405. 10.1002/jnr.24715 PubMed DOI

Bhattacharya S., Haldar P. K. J. C. j. o. n. m. (2013). Neuropharmacological properties of Trichosanthes dioica root. Chin. J. Nat. Med. 11, 158–163. 10.1016/S1875-5364(13)60043-6 PubMed DOI

Birla H., Rai S. N., Singh S. S., Zahra W., Rawat A., Tiwari N., et al. (2019). Tinospora cordifolia suppresses neuroinflammation in parkinsonian mouse model. Neuromolecular Med. 21, 42–53. 10.1007/s12017-018-08521-7 PubMed DOI

Bleier B. S., Kohman R. E., Feldman R. E., Ramanlal S., Han X. J. P. o. (2013). Permeabilization of the blood-brain barrier via mucosal engrafting: Implications for drug delivery to the brain. PLoS One 8, e61694. 10.1371/journal.pone.0061694 PubMed DOI PMC

Blesa J., Przedborski S. J. F. i. n. (2014). Parkinson’s disease: Animal models and dopaminergic cell vulnerability. Front. Neuroanat. 8, 155. 10.3389/fnana.2014.00155 PubMed DOI PMC

Boisseau P., Houdy P., Lahmani M. (2007). Nanoscience. Springer.

Brynskikh A. M., Zhao Y., Mosley R. L., Li S., Boska M. D., Klyachko N. L., et al. (2010). Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson’s disease. Nanomedicine 5, 379–396. 10.2217/nnm.10.7 PubMed DOI PMC

Butler K. S., Durfee P. N., Theron C., Ashley C. E., Carnes E. C., Brinker C. J. J. s. (2016). Protocells: Modular mesoporous silica nanoparticle‐supported lipid bilayers for drug delivery. Small 12, 2173–2185. 10.1002/smll.201502119 PubMed DOI PMC

C Dinda S., Pattnaik G. J. C. P. B. (2013). Nanobiotechnology-based drug delivery in brain targeting. Curr. Pharm. Biotechnol. 14, 1264–1274. 10.2174/1389201015666140608143719 PubMed DOI

Carvalho M., Carmo H., Costa V. M., Capela J. P., Pontes H., Remião F., et al. (2012). Toxicity of amphetamines: An update. Arch. Toxicol. 86, 1167–1231. 10.1007/s00204-012-0815-5 PubMed DOI

Cayero-Otero M., Gomes M. J., Martins C., Álvarez-Fuentes J., Fernández-Arévalo M., Sarmento B., et al. (2019). In vivo biodistribution of venlafaxine-PLGA nanoparticles for brain delivery: Plain vs. Funct. nanoparticles 16, 1413–1427. PubMed

Charney D. S., Mihic S. J., Harris R. A. J. T. P. B. o. T. t. e. B. L., Lazo J. S., Parker K. L. (2006). Hypnotics and sedatives. New York: McGraw-Hill, 401–427.

Chauhan M. B., Chauhan N. B. (2015). Brain uptake of neurotherapeutics after intranasal versus intraperitoneal delivery in mice. J. Neurol. Neurosurg. 2 (1), 009. PubMed PMC

Chen H., Spagnoli F., Burris M., Rolland W. B., Fajilan A., Dou H., et al. (2012). Nanoerythropoietin is 10-times more effective than regular erythropoietin in neuroprotection in a neonatal rat model of hypoxia and ischemia. Stroke 43, 884–887. 10.1161/STROKEAHA.111.637090 PubMed DOI

Chen Y., Chen H., Shi J. J. A. M. (2013). In vivo bio‐safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mat. 25, 3144–3176. 10.1002/adma.201205292 PubMed DOI

Chenthamara D., Subramaniam S., Ramakrishnan S. G., Krishnaswamy S., Essa M. M., Lin F.-H., et al. (2019). Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 23, 20–29. 10.1186/s40824-019-0166-x PubMed DOI PMC

Cheshire W. P., Jr, Ott M. C. J. H. T. J. o. H., Pain F. (2001). Headache in divers. Headache 41, 235–247. 10.1046/j.1526-4610.2001.111006235.x PubMed DOI

Cohen R. M., Rezai-Zadeh K., Weitz T. M., Rentsendorj A., Gate D., Spivak I., et al. (2013). A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric aβ, and frank neuronal loss. J. Neurosci. 33, 6245–6256. 10.1523/JNEUROSCI.3672-12.2013 PubMed DOI PMC

Crone C. (1986). The blood-brain barrier: A modified tight epithelium. Chichester: Ellis Horwood.

d'Arcy R., Tirelli N. J. P. f. a. t. (2014). Fishing for fire: Strategies for biological targeting and criteria for material design in anti‐inflammatory therapies. Biodegrad. Polym. 25, 478–498. 10.1002/pat.3264. DOI

Das D., Lin S. J. J. o. p. s. (2005). Double-coated poly (butylcynanoacrylate) nanoparticulate delivery systems for brain targeting of dalargin via oral administration. J. Pharm. Sci. 94, 1343–1353. 10.1002/jps.20357 PubMed DOI

Das S. S., Bharadwaj P., Bilal M., Barani M., Rahdar A., Taboada P., et al. (2020). Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers 12, 1397. 10.3390/polym12061397 PubMed DOI PMC

Dauer W., Przedborski S. J. N. (2003). Parkinson's disease: Mechanisms and models. Neuron 39, 889–909. 10.1016/s0896-6273(03)00568-3 PubMed DOI

Dave N., Cetiner U., Arroyo D., Fonbuena J., Tiwari M., Barrera P., et al. (2015). Validated HPTLC method for quantification of luteolin and apigenin in Premna mucronata Roxb. Adv. Pharmacol. Sci. 10, 2015. 10.1155/2015/682365 PubMed DOI PMC

De Bie H., Boersma M., Wattjes M. P., Adriaanse S., Vermeulen R. J., Oostrom K. J., et al. (2010). Preparing children with a mock scanner training protocol results in high quality structural and functional MRI scans. Eur. J. Pediatr. 169, 1079–1085. 10.1007/s00431-010-1181-z PubMed DOI PMC

De la Fuente J. M., Berry C. C. J. B. c. (2005). Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjug. Chem. 16, 1176–1180. 10.1021/bc050033+ PubMed DOI

de Pádua Oliveira D. C., de Barros A. L. B., Belardi R. M., de Goes A. M., de Oliveira Souza B. K., Soares D. C. F. J. J. o. D. D. S. (2016). Mesoporous silica nanoparticles as a potential vaccine adjuvant against Schistosoma mansoni. J. Drug Deliv. Sci. Technol. 35, 234–240. 10.1016/j.jddst.2016.07.002 DOI

Dehaini D., Fang R. H., Zhang L. J. B., medicine t. (2016). Biomimetic strategies for targeted nanoparticle delivery. Bioeng. Transl. Med. 1, 30–46. 10.1002/btm2.10004 PubMed DOI PMC

Demetzos C., Pippa N. J. D. d. (2014). Advanced drug delivery nanosystems (aDDnSs): A mini-review. Drug Deliv. 21, 250–257. 10.3109/10717544.2013.844745 PubMed DOI

Deng X., Wang X., Andersson R. J. J. o. A. P. (1995). Endothelial barrier resistance in multiple organs after septic and nonseptic challenges in the rat. J. Appl. Physiol. 78, 2052–2061. 10.1152/jappl.1995.78.6.2052 PubMed DOI

Dixit S., Novak T., Miller K., Zhu Y., Kenney M. E., Broome A.-M. J. N. (2015). Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale 7, 1782–1790. 10.1039/c4nr04853a PubMed DOI PMC

Domınguez A., Álvarez A., Hilario E., Suarez-Merino B., Goni-de-Cerio F. (2013). Central nervous system diseases and the role of the blood-brain barrier in their treatment. Neurosci. Discov. 1, 3. 10.7243/2052-6946-1-3 DOI

Domínguez A., Álvarez A., Hilario E., Suarez-Merino B., Goñi-de-Cerio F. J. N. D. (2013). Central nervous system diseases and the role of the blood-brain barrier in their treatment. Neurosci. Discov. 1, 3. 10.7243/2052-6946-1-3 DOI

Dominguez A., Alvarez A., Suarez-Merino B., Goni-de-Cerio F. J. R. d. N. (2014). Neurological disorders and the blood-brain barrier. Strategies and limitations for drug delivery to the brain. Rev. Neurol. 58, 213–224. PubMed

Dong X., Gao J., Su Y., Wang Z. J. I. J. o. M. S. (2020). Nanomedicine for ischemic stroke. Int. J. Mol. Sci. 21, 7600. 10.3390/ijms21207600 PubMed DOI PMC

Dong X. J. T. (2018). Current strategies for brain drug delivery. Theranostics 8, 1481–1493. 10.7150/thno.21254 PubMed DOI PMC

Doran A., Obach R. S., Smith B. J., Hosea N. A., Becker S., Callegari E., et al. (2005). The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: Evaluation using the mdr1a/1B knockout mouse model. Drug Metab. Dispos. 33, 165–174. 10.1124/dmd.104.001230 PubMed DOI

Doxil B. J. J. C. R. (2012). The first FDA-approved nanodrug: lessons learned. J. Control Release 160, 117–134. 10.1016/j.jconrel.2012.03.020 PubMed DOI

D’Souza G. G., Weissig V. J. O.-S. P. N. (2010). An introduction to subcellular and nanomedicine: Current trends and future developments, 1–13.

Duncan R., Gaspar R. J. M. p. (2011). Nanomedicine(s) under the microscope. Mol. Pharm. 8, 2101–2141. 10.1021/mp200394t PubMed DOI

Elenkov I. J., Wilder R. L., Chrousos G. P., Vizi E. S. J. P. r. (2000). The sympathetic nerve—an integrative interface between two supersystems: The brain and the immune system. Pharmacol. Rev. 52, 595–638. PubMed

Elfenbein H., Rosen R., Stephens S., Switzer R., Smith Y., Pare J., et al. (2007). Cerebral ß-amyloid angiopathy in aged squirrel monkeys. Histol. Histopathol. 22 (2), 155–167. 10.14670/HH-22.155 PubMed DOI

Engelhardt B., Sorokin L. (2009). The blood–brain and the blood–cerebrospinal fluid barriers: Function and dysfunction, seminars in immunopathology. Springer, 497–511. PubMed

Englund G. (2005). Interindividual variability of drug transport proteins: Focus on intestinal pgp (ABCB1) and BCRP (ABCG2). Acta Univ. Ups..

Erdlenbruch B., Schinkhof C., Kugler W., Heinemann D. E., Herms J., Eibl H., et al. (2003). Intracarotid administration of short‐chain alkylglycerols for increased delivery of methotrexate to the rat brain. Br. J. Pharmacol. 139, 685–694. 10.1038/sj.bjp.0705302 PubMed DOI PMC

Estelrich J., Busquets M. A. J. M. (2018). Iron oxide nanoparticles in photothermal therapy. Molecules 23, 1567. 10.3390/molecules23071567 PubMed DOI PMC

Fakruddin M., Hossain Z., Afroz H. J. J. o. n. (2012). Prospects and applications of nanobiotechnology: A medical perspective. J. Nanobiotechnology 10, 1–8. 10.1186/1477-3155-10-31 PubMed DOI PMC

Farokhzad O. C., Langer R. J. A. n. (2009). Impact of nanotechnology on drug delivery. ACS Nano 3, 16–20. 10.1021/nn900002m PubMed DOI

Fink J. R., Muzi M., Peck M., Krohn K. A. J. J. o. N. M. (2015). Multimodality brain tumor imaging: MR imaging, PET, and PET/MR imaging. J. Nucl. Med. 56, 1554–1561. 10.2967/jnumed.113.131516 PubMed DOI PMC

Fleckenstein A. E., Volz T. J., Riddle E. L., Gibb J. W., Hanson G. R. J. A. R. P. T. (2007). New insights into the mechanism of action of amphetamines. Annu. Rev. Pharmacol. Toxicol. 47, 681–698. 10.1146/annurev.pharmtox.47.120505.105140 PubMed DOI

Flierl A., Jackson C., Cottrell B., Murdock D., Seibel P., Wallace D. J. M. T. (2003). Targeted delivery of DNA to the mitochondrial compartment via import sequence-conjugated peptide nucleic acid. Mol. Ther. 7, 550–557. 10.1016/s1525-0016(03)00037-6 PubMed DOI

Fulekar M. (2010). Nanotechnology: Importance and applications. New Delhi: IK International Pvt Ltd.

Furtado D., Björnmalm M., Ayton S., Bush A. I., Kempe K., Caruso F. J. A. m. (2018). Overcoming the blood–brain barrier: The role of nanomaterials in treating neurological diseases. Adv. Mat. 30, 1801362. 10.1002/adma.201801362 PubMed DOI

Gabathuler R. J. N. o. d. (2010). Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol. Dis. 37, 48–57. 10.1016/j.nbd.2009.07.028 PubMed DOI

García J. J. S. S. U. d. E. S. (2009). Evaluación del Rendimiento de Extracción de Pectina en Aguas Mieles del Beneficiado de Café Procedentes del Desmusilaginado Mecánico.

Ghosal S., Srivastava R., Bhattacharya S., Debnath P. J. P. m. (1974). The active principles of alhagi pseudalhagi: β–phenethylamine and tetrahydroisoquinoline bases. Planta Med. 26, 318–326. 10.1055/s-0028-1099394 PubMed DOI

Giner-Casares J. J., Henriksen-Lacey M., Coronado-Puchau M., Liz-Marzán L. M. J. M. T. (2016). Inorganic nanoparticles for biomedicine: Where materials scientists meet medical research. Mat. TodayKidlingt. 19, 19–28. 10.1016/j.mattod.2015.07.004 DOI

Gløgård C., Hovland R., Fossheim S. L., Aasen A. J., Klaveness J. J. J. o. t. C. S. (2000). Perkin Transactions 2, Synthesis and physicochemical characterisation of new amphiphilic gadolinium DO3A complexes as contrast agents for MRI, 1047–1052.

Glück R., Mischler R., Finkel B., Que J., Cryz S., Jr, Scarpa B. J. T. L. (1994). Immunogenicity of new virosome influenza vaccine in elderly people. Lancet 344, 160–163. 10.1016/s0140-6736(94)92758-8 PubMed DOI

Greenblatt D. J., Shader R. I., Abernethy D. R. J. N. E. J. o. M. (1983). Drug therapy. Current status of benzodiazepines. N. Engl. J. Med. 309, 410–416. 10.1056/NEJM198308183090705 PubMed DOI

Griffith J. I., Rathi S., Zhang W., Zhang W., Drewes L. R., Sarkaria J. N., et al. (2020). Addressing BBB heterogeneity: A new paradigm for drug delivery to brain tumors. Pharmaceutics 12, 1205. 10.3390/pharmaceutics12121205 PubMed DOI PMC

Groner-Strauss W., Strauss M. J. P. S. M., Divers face special peril in use/abuse of drugs. 4 (1976) 30–36.

Guo H.-C., Feng X.-M., Sun S.-Q., Wei Y.-Q., Sun D.-H., Liu X.-T., et al. (2012). Immunization of mice by hollow mesoporous silica nanoparticles as carriers of porcine circovirus type 2 ORF2 protein. Virol. J. 9, 108–110. 10.1186/1743-422X-9-108 PubMed DOI PMC

Gurunathan S., Han J., Park J. H., Kim J.-H. J. N. r. l. (2014). A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res. Lett. 9, 1–11. 10.1186/1556-276X-9-248 PubMed DOI PMC

Halberstadt C., Emerich D. F., Gonsalves K. J. E. O. o. B. T. (2006). Combining cell therapy and nanotechnology. Expert Opin. Biol. Ther. 6, 971–981. 10.1517/14712598.6.10.971 PubMed DOI

Hanson M. C., Abraham W., Crespo M. P., Chen S. H., Liu H., Szeto G. L., et al. (2015). Liposomal vaccines incorporating molecular adjuvants and intrastructural T-cell help promote the immunogenicity of HIV membrane-proximal external region peptides. Vaccine 33, 861–868. 10.1016/j.vaccine.2014.12.045 PubMed DOI PMC

Haque S., Sahni S. M., Alam M. I., Sahni J. K., Ali J., Baboota S. J. D. D., et al. (2012). Nanostructure-based drug delivery systems for brain targeting. Drug Dev. Ind. Pharm. 38, 387–411. 10.3109/03639045.2011.608191 PubMed DOI

Haque S., Kaur S. M., Intekhab Alam M., Kaur Sahni J., Ali J., Baboota S. J. R. P. O. N. (2011). Nanomedicines for brain targeting: A patent review. Nanomedicines Brain Target. A Pat. Rev. 1, 149–161. 10.2174/1877912311101020149 DOI

Hartley D., Blumenthal T., Carrillo M., DiPaolo G., Esralew L., Gardiner K., et al. (2015). Down syndrome and Alzheimer's disease: Common pathways, common goals. Alzheimers Dement. 11, 700–709. 10.1016/j.jalz.2014.10.007 PubMed DOI PMC

Haseeb Q., Hamdani S. D. A., Akram A., Khan D. A., Rajput T. A., Babar M. M. J. N. (2020). Nanobiotechnology: Paving the way to personalized medicine, 17–32.

Hassett K. J., Meinerz N. M., Semmelmann F., Cousins M. C., Garcea R. L., Randolph T. W., et al. (2015). Development of a highly thermostable, adjuvanted human papillomavirus vaccine. Eur. J. Pharm. Biopharm. 94, 220–228. 10.1016/j.ejpb.2015.05.009 PubMed DOI PMC

Heidarzadeh M., Gürsoy-Özdemir Y., Kaya M., Eslami Abriz A., Zarebkohan A., Rahbarghazi R., et al. (2021). Exosomal delivery of therapeutic modulators through the blood–brain barrier; promise and pitfalls. Cell Biosci. 11, 1–28. 10.1186/s13578-021-00650-0 PubMed DOI PMC

Henderson M. X., Cornblath E. J., Darwich A., Zhang B., Brown H., Gathagan R. J., et al. (2019). Spread of α-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nat. Neurosci. 22, 1248–1257. 10.1038/s41593-019-0457-5 PubMed DOI PMC

Heng J. B., Aksimentiev A., Ho C., Marks P., Grinkova Y. V., Sligar S., et al. (2006). The electromechanics of DNA in a synthetic nanopore. Biophys. J. 90, 1098–1106. 10.1529/biophysj.105.070672 PubMed DOI PMC

Henrich-Noack P., Nikitovic D., Neagu M., Docea A. O., Engin A. B., Gelperina S., et al. (2019). Biology, and Medicine, the blood–brain barrier and beyond: Nano-based neuropharmacology and the role of extracellular matrix. Nanomedicine 17, 359–379. PubMed

Henschel O., Gipson K. E., Bordey A. J. C., Targets N. D.-D. (2008). GABAA receptors, anesthetics and anticonvulsants in brain development. CNS Neurol. Disord. Drug Targets 7, 211–224. 10.2174/187152708784083812 PubMed DOI PMC

Hillyer J. F., Albrecht R. M. J. J. o. p. s. (2001). Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci. 90, 1927–1936. 10.1002/jps.1143 PubMed DOI

Hirschberg H., Uzal F. A., Chighvinadze D., Zhang M. J., Peng Q., Madsen S. J. J. L. i. S. (2008). Medicine, and Surgery, Disruption of the blood–brain barrier following ALA‐mediated photodynamic therapy. Lasers Surg. Med. 40, 535–542. 10.1002/lsm.20670 PubMed DOI PMC

Hoffman R. M. J. N. R. C. (2015). Patient-derived orthotopic xenografts: Better mimic of metastasis than subcutaneous xenografts. Nat. Rev. Cancer 15, 451–452. 10.1038/nrc3972 PubMed DOI

Holmes D. J. T. L. N. (2013). The next big things are tiny. Lancet. Neurol. 12, 31–32. 10.1016/S1474-4422(12)70313-7 PubMed DOI

Houston Z. H., Bunt J., Chen K.-S., Puttick S., Howard C. B., Fletcher N. L., et al. (2020). Understanding the uptake of nanomedicines at different stages of brain cancer using a modular nanocarrier platform and precision bispecific antibodies. ACS Cent. Sci. 6, 727–738. 10.1021/acscentsci.9b01299 PubMed DOI PMC

Hsiung S. c., Adlersberg M., Arango V., Mann J. J., Tamir H., Liu K. p. J. J. o. n. (2003). Attenuated 5-ht1a receptor signaling in brains of suicide victims: Involvement of adenylyl cyclase, phosphatidylinositol 3-kinase, akt and mitogen-activated protein kinase. J. Neurochem. 87, 182–194. 10.1046/j.1471-4159.2003.01987.x PubMed DOI

Hu C.-M. J., Zhang L., Aryal S., Cheung C., Fang R. H., Zhang L. J. P. o. t. N. A. o. S. (2011). Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U. S. A. 108, 10980–10985. 10.1073/pnas.1106634108 PubMed DOI PMC

Humpel C. J. N. (2015). Organotypic brain slice cultures: A review. Neuroscience 305, 86–98. 10.1016/j.neuroscience.2015.07.086 PubMed DOI PMC

Inamura T., Black K. L. (1994). Bradykinin selectively opens blood-tumor barrier in experimental brain tumors. J. Cereb. Blood Flow. Metab. 14, 862–870. 10.1038/jcbfm.1994.108 PubMed DOI

Inamura T., Nomura T., Bartus R. T., Black K. L. (1994). Intracarotid infusion of RMP-7, a bradykinin analog: A method for selective drug delivery to brain tumors. J. Neurosurg. 81, 752–758. 10.3171/jns.1994.81.5.0752 PubMed DOI

Invernici G., Cristini S., Alessandri G., E Navone S., Canzi L., Tavian D., et al. (2011). Nanotechnology advances in brain tumors: The state of the art. Recent Pat. anticancer. Drug Discov. 6, 58–69. 10.2174/157489211793979990 PubMed DOI

Invernizzi N. (2010). Science policy and social inclusion: Advances and limits of brazilian nanotechnology policy, nanotechnology and the challenges of equity, equality and development. Springer, 291–307.

Jain K. J. N. D. (2007). Nanobiotechnology-based drug delivery to the central nervous system. Neurodegener. Dis. 4, 287–291. 10.1159/000101884 PubMed DOI

Jain K. K. (2008). Nanomedicine: Application of nanobiotechnology in medical practice. Med. Princ. Pract. 17, 89–101. 10.1159/000112961 PubMed DOI

Janssen P. A. J. I. R. o. N. (1965). The evolution of the butyrophenones, haloperidol and trifluperidol, from meperidine-like 4-phenylpiperidines. Int. Rev. Neurobiol. 8, 221–263. 10.1016/s0074-7742(08)60759-x PubMed DOI

Johnstone T. C., Suntharalingam K., Lippard S. J. J. C. r. (2016). The next generation of platinum drugs: Targeted Pt (II) agents, nanoparticle delivery, and Pt (IV) prodrugs. Chem. Rev. 116, 3436–3486. 10.1021/acs.chemrev.5b00597 PubMed DOI PMC

Joshi A. S., Singh V., Gahane A., Thakur A. K. J. A. C. N. (2018). Biodegradable nanoparticles containing mechanism based peptide inhibitors reduce polyglutamine aggregation in cell models and alleviate motor symptoms in a Drosophila model of Huntington’s disease. ACS Chem. Neurosci. 10, 1603–1614. 10.1021/acschemneuro.8b00545 PubMed DOI

Joshi S., Meyers P. M., Ornstein E. J. T. J. o. t. A. S. o. A. (2008). Intracarotid delivery of drugs: The potential and the pitfalls. Anesthesiology 109, 543–564. 10.1097/ALN.0b013e318182c81b PubMed DOI PMC

Jung J., Kim M. A., Cho J.-H., Lee S. J., Yang I., Cho J., et al. (2012). Europium-doped gadolinium sulfide nanoparticles as a dual-mode imaging agent for T1-weighted MR and photoluminescence imaging. Biomaterials 33, 5865–5874. 10.1016/j.biomaterials.2012.04.059 PubMed DOI

Kang B., Mackey M. A., El-Sayed M. A. J. J. o. t. A. C. S. (2010). Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J. Am. Chem. Soc. 132, 1517–1519. 10.1021/ja9102698 PubMed DOI

Karamanos N. K., Piperigkou Z., Theocharis A. D., Watanabe H., Franchi M., Baud S., et al. (2018). Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics. Chem. Rev. 118, 9152–9232. 10.1021/acs.chemrev.8b00354 PubMed DOI

Karch C. M., Goate A. M. J. B. p. (2015). Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol. Psychiatry 77, 43–51. 10.1016/j.biopsych.2014.05.006 PubMed DOI PMC

Karim R., Palazzo C., Evrard B., Piel G. J. J. o. c. r. (2016). Nanocarriers for the treatment of glioblastoma multiforme: Current state-of-the-art. J. Control. Release 227, 23–37. 10.1016/j.jconrel.2016.02.026 PubMed DOI

Kaur I. P., Bhandari R., Bhandari S., Kakkar V. J. J. o. C. r. (2008). Potential of solid lipid nanoparticles in brain targeting. J. Control. Release 127, 97–109. 10.1016/j.jconrel.2007.12.018 PubMed DOI

Khan W. S., Hamadneh N. N., Khan W. A. J. S., Nanostructures a. o. T. (2016). Polymer nanocomposites–synthesis techniques, classification and properties, 50.

Khanbabaie R., Jahanshahi M. J. C. n. (2012). Revolutionary impact of nanodrug delivery on neuroscience. Curr. Neuropharmacol. 10, 370–392. 10.2174/157015912804143513 PubMed DOI PMC

Khawar I. A., Kim J. H., Kuh H.-J. J. J. o. C. R. (2015). Improving drug delivery to solid tumors: Priming the tumor microenvironment. J. Control. Release 201, 78–89. 10.1016/j.jconrel.2014.12.018 PubMed DOI

Klaassen I., Van Noorden C. J., Schlingemann R. O. J. P. i. r., research e. (2013). Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog. Retin. Eye Res. 34, 19–48. 10.1016/j.preteyeres.2013.02.001 PubMed DOI

Kopelman R., Koo Y.-E. L., Philbert M., Moffat B. A., Reddy G. R., McConville P., et al. (2005). Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J. Magn. Magn. Mat. 293, 404–410. 10.1016/j.jmmm.2005.02.061 DOI

Kreuter J. J. J. o. m. (2013). Mechanism of polymeric nanoparticle-based drug transport across the blood-brain barrier (BBB). J. Microencapsul. 30, 49–54. 10.3109/02652048.2012.692491 PubMed DOI

Langmead C. J., Watson J., Reavill C. J. P. (2008). Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol. Ther. 117, 232–243. 10.1016/j.pharmthera.2007.09.009 PubMed DOI

LeClaire M. J. (2021). Biophysical characterization of cancer-derived cells and extracellular vesicles. Los Angeles: University of California.

Lee H., Park J., Yoon O., Kim H. J. N. N., Lee do Y., Kim do H., et al. (2011). Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat. Nanotechnol. 6, 121–125. 10.1038/nnano.2010.281 PubMed DOI PMC

Lee S., Xie J., Chen X. J. C. t. i. m. c. (2010). Activatable molecular probes for cancer imaging. Curr. Top. Med. Chem. 10, 1135–1144. 10.2174/156802610791384270 PubMed DOI PMC

Lee W. T., Lee J., Kim H., Nguyen N. T., Lee E. S., Oh K. T., et al. (2021). Photoreactive-proton-generating hyaluronidase/albumin nanoparticles-loaded PEG-hydrogel enhances antitumor efficacy and disruption of the hyaluronic acid extracellular matrix in AsPC-1 tumors. Mat. Today. Bio 12, 100164. 10.1016/j.mtbio.2021.100164 PubMed DOI PMC

Lemley M. A. J. S. L. R. (2005). Patenting nanotechnology. Stanf. Law Rev. 58, 601–630. PubMed

Levin V. A., Fenstermacher J. D., Patlak C. S. J. A. J. o. P.-L. C. (1970). Sucrose and inulin space measurements of cerebral cortex in four mammalian species. Am. J. Physiol. 219, 1528–1533. 10.1152/ajplegacy.1970.219.5.1528 PubMed DOI

Liu F., Hon G. C., Villa G. R., Turner K. M., Ikegami S., Yang H., et al. (2015). EGFR mutation promotes glioblastoma through epigenome and transcription factor network remodeling. Mol. Cell 60, 307–318. 10.1016/j.molcel.2015.09.002 PubMed DOI PMC

Liu J., Wen J., Zhang Z., Liu H., Sun Y. (2015). Voyage inside the cell: Microsystems and nanoengineering for intracellular measurement and manipulation. Microsyst. Nanoeng. 1, 861–868. 10.1038/micronano.2015.20 DOI

Liu Y., Luo J., Chen X., Liu W., Chen T. J. N.-M. L. (2019). Cell membrane coating technology: A promising strategy for biomedical applications. Nanomicro. Lett. 11, 100–146. 10.1007/s40820-019-0330-9 PubMed DOI PMC

Liu Y., Xu D., Liu Y., Zheng X., Zang J., Ye W., et al. (2022). Remotely boosting hyaluronidase activity to normalize the hypoxic immunosuppressive tumor microenvironment for photothermal immunotherapy. Biomaterials 284, 121516. 10.1016/j.biomaterials.2022.121516 PubMed DOI

Livingston M. G., Livingston H. M. J. D. s. (1996). Monoamine oxidase inhibitors. An update on drug interactions. Drug Saf. 14, 219–227. 10.2165/00002018-199614040-00002 PubMed DOI

Lohse S. E., Murphy C. J. J. J. o. t. A. C. S. (2012). Applications of colloidal inorganic nanoparticles: From medicine to energy. J. Am. Chem. Soc. 134, 15607–15620. 10.1021/ja307589n PubMed DOI

Lorke D., Kalasz H., Petroianu G., Tekes K. J. C. m. c. (2008). Entry of oximes into the brain: A review. Curr. Med. Chem. 15, 743–753. 10.2174/092986708783955563 PubMed DOI

Lorkowski M. E., Atukorale P. U., Ghaghada K. B., Karathanasis E. J. A. h. m. (2021). Stimuli‐responsive iron oxide nanotheranostics: A versatile and powerful approach for cancer therapy. Adv. Healthc. Mater 10, 2001044. 10.1002/adhm.202001044 PubMed DOI PMC

Löscher W., Potschka H. J. P. i. n. (2005). Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog. Neurobiol. 76, 22–76. 10.1016/j.pneurobio.2005.04.006 PubMed DOI

Louis D. N., Perry A., Reifenberger G., Von Deimling A., Figarella-Branger D., Cavenee W. K., et al. (2016). The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131, 803–820. 10.1007/s00401-016-1545-1 PubMed DOI

Lu H., Wu L., Wang J., Wang Z., Yi X., Wang J., et al. (2018). Voltammetric determination of the Alzheimer’s disease-related ApoE 4 gene from unamplified genomic DNA extracts by ferrocene-capped gold nanoparticles. Mikrochim. Acta 185, 1–7. 10.1007/s00604-018-3087-9 PubMed DOI

Luk B. T., Zhang L. J. J. o. C. R. (2015). Cell membrane-camouflaged nanoparticles for drug delivery. J. Control. Release 220, 600–607. 10.1016/j.jconrel.2015.07.019 PubMed DOI PMC

Mahon E., Salvati A., Bombelli F. B., Lynch I., Dawson K. A. J. J. o. C. R. (2012). Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery”. J. Control. Release 161, 164–174. 10.1016/j.jconrel.2012.04.009 PubMed DOI

Martel S. J. B. (2016). Swimming microorganisms acting as nanorobots versus artificial nanorobotic agents: A perspective view from an historical retrospective on the future of medical nanorobotics in the largest known three-dimensional biomicrofluidic networks. Biomicrofluidics 10, 021301. 10.1063/1.4945734 PubMed DOI PMC

Martin L., Smith T., Weiler-Ravell D., Mcdonough J., Barutt J., Saffron J. J. T. N. E. j. o. m. (1992). The medical problems of underwater diving. N. Engl. J. Med. 326, 1497–1498. PubMed

Martins S., Sarmento B., Ferreira D. C., Souto E. B. J. I. j. o. n. (2007). Lipid-based colloidal carriers for peptide and protein delivery–liposomes versus lipid nanoparticles. Int. J. Nanomedicine 2, 595–607. PubMed PMC

Masserini M. J. I. S. R. N. (2013). Nanoparticles for brain drug delivery, 2013. PubMed PMC

McManus M. J., Murphy M. P., Franklin J. L. J. J. o. N. (2011). The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer's disease. J. Neurosci. 31, 15703–15715. 10.1523/JNEUROSCI.0552-11.2011 PubMed DOI PMC

Miele D., Catenacci L., Sorrenti M., Rossi S., Sandri G., Malavasi L., et al. (2019). Chitosan oleate coated poly lactic-glycolic acid (PLGA) nanoparticles versus chitosan oleate self-assembled polymeric micelles, loaded with resveratrol. Mar. Drugs 17, 515. 10.3390/md17090515 PubMed DOI PMC

Miller D. S. J. T. i. p. s. (2010). Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends Pharmacol. Sci. 31, 246–254. 10.1016/j.tips.2010.03.003 PubMed DOI PMC

Miranda A., Blanco-Prieto M., Sousa J., Pais A., Vitorino C. J. I. j. o. p. (2017). Breaching barriers in glioblastoma. Part I: Molecular pathways and novel treatment approaches. Int. J. Pharm. 531, 372–388. 10.1016/j.ijpharm.2017.07.056 PubMed DOI

Misra A., Ganesh S., Shahiwala A., Shah S. P. J. J. P. P. S. (2003). Drug delivery to the central nervous system: A review. J. Pharm. Pharm. Sci. 6, 252–273. PubMed

Miyai M., Tomita H., Soeda A., Yano H., Iwama T., Hara A. J. J. o. n.-o. (2017). Current trends in mouse models of glioblastoma. J. Neurooncol. 135, 423–432. 10.1007/s11060-017-2626-2 PubMed DOI PMC

Modi G., Pillay V., Choonara Y. E. J. A. o. t. N. Y. A. o. S. (2010). Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann. N. Y. Acad. Sci. 1184, 154–172. 10.1111/j.1749-6632.2009.05108.x PubMed DOI

Modi G., Pillay V., Choonara Y. E., Ndesendo V. M., du Toit L. C., Naidoo D. J. P. i. N. (2009). Nanotechnological applications for the treatment of neurodegenerative disorders. Prog. Neurobiol. 88, 272–285. 10.1016/j.pneurobio.2009.05.002 PubMed DOI

Mohamed F., van der Walle C. F. J. J. o. p. s. (2008). Engineering biodegradable polyester particles with specific drug targeting and drug release properties. J. Pharm. Sci. 97, 71–87. 10.1002/jps.21082 PubMed DOI

Montet X., Funovics M., Montet-Abou K., Weissleder R., Josephson L. J. J. o. m. c. (2006). Multivalent effects of RGD peptides obtained by nanoparticle display. J. Med. Chem. 49, 6087–6093. 10.1021/jm060515m PubMed DOI

Morrow K. J., Jr, Bawa R., Wei C. J. M. C. o. N. A. (2007). Recent advances in basic and clinical nanomedicine. Med. Clin. North Am. 91, 805–843. 10.1016/j.mcna.2007.05.009 PubMed DOI

Muhammad G., Hussain M. A., Anwar F., Ashraf M., Gilani A. H. J. P. r. (2015). Alhagi: A plant genus rich in bioactives for pharmaceuticals. Phytother. Res. 29, 1–13. 10.1002/ptr.5222 PubMed DOI

Mulvihill J. J., Cunnane E. M., Ross A. M., Duskey J. T., Tosi G., Grabrucker A. M. J. N. (2020). Drug delivery across the blood–brain barrier: Recent advances in the use of nanocarriers. Nanomedicine 15, 205–214. 10.2217/nnm-2019-0367 PubMed DOI

Myers R. H. J. N. (2004). Huntington's disease genetics. NeuroRx 1, 255–262. 10.1602/neurorx.1.2.255 PubMed DOI PMC

Naik P., Cucullo L. J. J. o. p. s. (2012). In vitro blood–brain barrier models: Current and perspective technologies. J. Pharm. Sci. 101, 1337–1354. 10.1002/jps.23022 PubMed DOI PMC

Nair K. G., Ramaiyan V., Sukumaran S. K. J. I. (2018). Enhancement of drug permeability across blood brain barrier using nanoparticles in meningitis. Inflammopharmacology 26, 675–684. 10.1007/s10787-018-0468-y PubMed DOI

Nance E. A., Woodworth G. F., Sailor K. A., Shih T.-Y., Xu Q., Swaminathan G., et al. (2012). A dense poly (ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl. Med. 4, 149ra119. PubMed PMC

Nance E. J. A. d. d. r. (2019). Careers in nanomedicine and drug delivery. Adv. Drug Deliv. Rev. 144, 180–189. 10.1016/j.addr.2019.06.009 PubMed DOI PMC

Naqvi S., Panghal A., Flora S. J. F. i. n. (2020). Nanotechnology: A promising approach for delivery of neuroprotective drugs. Front. Neurosci. 14, 494. 10.3389/fnins.2020.00494 PubMed DOI PMC

Nasrollahzadeh M., Sajadi S. M., Sajjadi M., Issaabadi Z. (2019). An introduction to nanotechnology, Interface science and technology. Elsevier, 1–27.

Natarajan S., Harini K., Gajula G. P., Sarmento B., Neves-Petersen M. T., Thiagarajan V. J. B. M. (2019). Multifunctional magnetic iron oxide nanoparticles: Diverse synthetic approaches, surface modifications. Cytotox. towards Biomed. industrial Appl. 1, 1–22.

Naz S., Shamoon M., Wang R., Zhang L., Zhou J., Chen J. J. I. J. o. M. S. (2019). Advances in therapeutic implications of inorganic drug delivery nano-platforms for cancer. Int. J. Mol. Sci. 20, 965. 10.3390/ijms20040965 PubMed DOI PMC

Nazem A., Mansoori G. A. J. J. o. A. s. d. (2008). Nanotechnology solutions for alzheimer's disease: Advances in research tools, diagnostic methods and therapeutic agents. J. Alzheimers Dis. 13, 199–223. 10.3233/jad-2008-13210 PubMed DOI

Nelson N. R., Port J. D., Pandey M. K. J. J. o. N. (2020). Use of superparamagnetic iron oxide nanoparticles (SPIONs) via multiple imaging modalities and modifications to reduce cytotoxicity: An educational review. J. Nanotheranostics 1, 105–135. 10.3390/jnt1010008 DOI

Neuwelt E. A., Bauer B., Fahlke C., Fricker G., Iadecola C., Janigro D., et al. (2011). Engaging neuroscience to advance translational research in brain barrier biology. Nat. Rev. Neurosci. 12, 169–182. 10.1038/nrn2995 PubMed DOI PMC

Neuwelt E. A., Goldman D. L., Dahlborg S. A., Crossen J., Ramsey F., Roman-Goldstein S., et al. (1991). Primary CNS lymphoma treated with osmotic blood-brain barrier disruption: Prolonged survival and preservation of cognitive function. J. Clin. Oncol. 9, 1580–1590. 10.1200/JCO.1991.9.9.1580 PubMed DOI

Niikura K., Matsunaga T., Suzuki T., Kobayashi S., Yamaguchi H., Orba Y., et al. (2013). Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo . ACS Nano 7, 3926–3938. 10.1021/nn3057005 PubMed DOI

Niu X., Chen J., Gao J. J. A. j. o. p. s. (2019). Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J. Pharm. Sci. 14, 480–496. 10.1016/j.ajps.2018.09.005 PubMed DOI PMC

Nurhidayah D., Maruf A., Zhang X., Liao X., Wu W., Wang G. J. N. (2019). Advanced drug-delivery systems: Mechanoresponsive nanoplatforms applicable in atherosclerosis management. Nanomedicine 14, 3105–3122. 10.2217/nnm-2019-0172 PubMed DOI

Oberdörster G., Sharp Z., Atudorei V., Elder A., Gelein R., Kreyling W., et al. (2004). Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16, 437–445. 10.1080/08958370490439597 PubMed DOI

Oldrini B., Curiel-García Á., Marques C., Matia V., Uluçkan Ö., Graña-Castro O., et al. (2018). Somatic genome editing with the RCAS-TVA-CRISPR-Cas9 system for precision tumor modeling. Nat. Commun. 9, 1–16. 10.1038/s41467-018-03731-w PubMed DOI PMC

Orive G., Ali O., Anitua E., Pedraz J., Emerich D. J. B. e. B. A.-R. o. C. (2010). Biomaterial-based technologies for brain anti-cancer therapeutics and imaging. Biochim. Biophys. Acta 1806, 96–107. 10.1016/j.bbcan.2010.04.001 PubMed DOI

Ozkizilcik A., Davidson P., Turgut H., Sharma H. S., Sharma A., Tian Z. R. (2017). Nanocarriers as cns drug delivery systems for enhanced neuroprotection, drug and gene delivery to the central nervous system for neuroprotection. Springer, 33–55.

Palei N. N., Mohanta B. C., Sabapathi M. L., Das M. K. (2018). Organic materials as smart nanocarriers for drug delivery. Elsevier, 415–470.Lipid-based nanoparticles for cancer diagnosis and therapy

Pandey P. K., Sharma A. K., Gupta U. J. T. b. (2016). Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking. Tissue Barriers 4, e1129476. 10.1080/21688370.2015.1129476 PubMed DOI PMC

Pansieri J., Gerstenmayer M., Lux F., Mériaux S., Tillement O., Forge V., et al. (2018). Magnetic nanoparticles applications for amyloidosis study and detection: A review. Nanomaterials 8, 740. 10.3390/nano8090740 PubMed DOI PMC

Pardridge W. M. (1997). Drug delivery to the brain. J. Cereb. Blood Flow. Metab. 17, 713–731. 10.1097/00004647-199707000-00001 PubMed DOI

Pardridge W. M. J. J. o. n. (1998). CNS drug design based on principles of blood‐brain barrier transport. J. Neurochem. 70, 1781–1792. 10.1046/j.1471-4159.1998.70051781.x PubMed DOI

Pardridge W. M. J. A. d. d. r. (1999). Vector-mediated drug delivery to the brain. Adv. Drug Deliv. Rev. 36, 299–321. 10.1016/s0169-409x(98)00087-8 PubMed DOI

Pardridge W. M. J. A. d. d. r. (2007). shRNA and siRNA delivery to the brain. Adv. Drug Deliv. Rev. 59, 141–152. 10.1016/j.addr.2007.03.008 PubMed DOI PMC

Park J. H., Lee S., Kim J.-H., Park K., Kim K., Kwon I. C. J. P. i. p. s. (2008). Polymeric nanomedicine for cancer therapy. Prog. Polym. Sci. 33, 113–137. 10.1016/j.progpolymsci.2007.09.003 DOI

Parveen S., Misra R., Sahoo S. J. B. (2012). Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8, 147–166. 10.1016/j.nano.2011.05.016 PubMed DOI

Parveen S., Misra R., Sahoo S. K. J. N. N. (2012). Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8, 147–166. 10.1016/j.nano.2011.05.016 PubMed DOI

Patois E., Capelle M., Palais C., Gurny R., Arvinte T. J. J. o. d. d. s. (2012). Evaluation of nanoparticle tracking analysis (NTA) in the characterization of therapeutic antibodies and seasonal influenza vaccines: Pros and cons. J. Drug Deliv. Sci. Technol. 22, 427–433. 10.1016/s1773-2247(12)50069-9 DOI

Pereira S., Pinto A., Alves V., Silva C. A. J. I. t. o. m. i. (2016). Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240–1251. 10.1109/tmi.2016.2538465 PubMed DOI

Petkar K. C., Chavhan S. S., Agatonovik-Kustrin S., Sawant K. J. C. R. i. T. D. C. S. (2011). Nanostructured materials in drug and gene delivery: A review of the state of the art. Crit. Rev. Ther. Drug Carr. Syst. 28. 10.1615/critrevtherdrugcarriersyst.v28.i2.10 PubMed DOI

Pietroiusti A., Campagnolo L., Fadeel B. J. S. (2013). Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small 9, 1557–1572. 10.1002/smll.201201463 PubMed DOI

Poon C., Gallo J., Joo J., Chang T., Bañobre-López M., Chung E. J. J. J. o. n. (2018). Hybrid, metal oxide-peptide amphiphile micelles for molecular magnetic resonance imaging of atherosclerosis. J. Nanobiotechnology 16, 92–11. 10.1186/s12951-018-0420-8 PubMed DOI PMC

Poon C., Patel A. A. J. N. E. (2020). Organic and inorganic nanoparticle vaccines for prevention of infectious diseases. Nano Express 1, 012001.

Popli D., Anil V., Subramanyam A. B., Mn N., Vr R., Rao S. N., et al. (2018). Endophyte fungi, Cladosporium species-mediated synthesis of silver nanoparticles possessing in vitro antioxidant, anti-diabetic and anti-Alzheimer activity. Artif. Cells Nanomed. Biotechnol. 46, 676–683. 10.1080/21691401.2018.1434188 PubMed DOI

Provenzale J., Silva G. J. A. j. o. n. (2009). Uses of nanoparticles for central nervous system imaging and therapy. AJNR. Am. J. Neuroradiol. 30, 1293–1301. 10.3174/ajnr.A1590 PubMed DOI PMC

Pusic K., Aguilar Z., McLoughlin J., Kobuch S., Xu H., Tsang M., et al. (2013). Iron oxide nanoparticles as a clinically acceptable delivery platform for a recombinant blood‐stage human malaria vaccine. FASEB J. 27, 1153–1166. 10.1096/fj.12-218362 PubMed DOI PMC

Qiao R., Yang C., Gao M. J. J. o. M. C. (2009). Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications. J. Mat. Chem. 19, 6274–6293. 10.1039/b902394a DOI

Quan L., Gu J., Lin W., Wei Y., Lin Y., Liu L., et al. (2019). A BODIPY biosensor to detect and drive self-assembly of diphenylalanine. Chem. Commun. 55, 8564–8566. 10.1039/c9cc03810h PubMed DOI

Rai S. N., Tiwari N., Singh P., Mishra D., Singh A. K., Hooshmandi E., et al. (2021). Therapeutic potential of vital transcription factors in alzheimer’s and Parkinson’s disease with particular emphasis on transcription factor eb mediated autophagy. Front. Neurosci. 15, 777347. 10.3389/fnins.2021.777347 PubMed DOI PMC

Raja G., Jang Y.-K., Suh J.-S., Kim H.-S., Ahn S. H., Kim T.-J. J. C. (2020). Microcellular environmental regulation of silver nanoparticles in cancer therapy: A critical review. Cancers 12, 664. 10.3390/cancers12030664 PubMed DOI PMC

Rajadhyaksha M., Boyden T., Liras J., El-Kattan A., Brodfuehrer J. J. C. d. d. t. (2011). Current advances in delivery of biotherapeutics across the blood-brain barrier. Curr. Drug Discov. Technol. 8, 87–101. 10.2174/157016311795563866 PubMed DOI

Ramanathan R. (2012). Towards understanding the influence of physio-chemical environment on biological synthesis of inorganic materials. RMIT University.

Ramos-Cabrer P., Campos F. J. I. (2013). Liposomes and nanotechnology in drug development: Focus on neurological targets. Int. J. Nanomedicine 8, 951. 10.2147/IJN.S30721 PubMed DOI PMC

Rapoport S. I. J. C., neurobiology m. (2000). Osmotic opening of the blood-brain barrier: Principles, mechanism, and therapeutic applications. Cell. Mol. Neurobiol. 20, 217–230. 10.1023/a:1007049806660 PubMed DOI PMC

Ratner M. A., Ratner D. (2003). Nanotechnology: A gentle introduction to the next big idea. London: Prentice Hall Professional.

Re F., Gregori M., Masserini M. J. M. (2012). Nanotechnology for neurodegenerative disorders. Maturitas 73, 45–51. 10.1016/j.maturitas.2011.12.015 PubMed DOI

Rezaei M., Hosseini S. N., Khavari-Nejad R. A., Najafi F., Mahdavi M. J. A. C. (2019). Nanomedicine, and Biotechnology, HBs antigen and mannose loading on the surface of iron oxide nanoparticles in order to immuno-targeting: Fabrication, characterization. Cell. humoral Immunoass. 47, 1543–1558. PubMed

Richard C., Doan B.-T., Beloeil J.-C., Bessodes M., Tóth É., Scherman D. J. N. L. (2008). Noncovalent functionalization of carbon nanotubes with amphiphilic Gd3+ chelates: Toward powerful T1 and T2 MRI contrast agents. Nano Lett. 8, 232–236. 10.1021/nl072509z PubMed DOI

Riehemann K., Schneider S. W., Luger T. A., Godin B., Ferrari M., Fuchs H. J. A. C. I. E. (2009). Nanomedicine--challenge and perspectives. Angew. Chem. Int. Ed. Engl. 48, 872–897. 10.1002/anie.200802585 PubMed DOI PMC

Rossini P. M., Burke D., Chen R., Cohen L., Daskalakis Z., Di Iorio R., et al. (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin. Neurophysiol. 126, 1071–1107. 10.1016/j.clinph.2015.02.001 PubMed DOI PMC

Sakhrani N. M., Padh H. J. D. d. (2013). Organelle targeting: Third level of drug targeting. Drug Des. devel. Ther. 7, 585–599. 10.2147/DDDT.S45614 PubMed DOI PMC

Sanati M., Khodagholi F., Aminyavari S., Ghasemi F., Gholami M., Kebriaeezadeh A., et al. (2019). Impact of gold nanoparticles on amyloid β-induced alzheimer's disease in a rat animal model: Involvement of STIM proteins. ACS Chem. Neurosci. 10, 2299–2309. 10.1021/acschemneuro.8b00622 PubMed DOI

Sancey L., Lux F., Kotb S., Roux S., Dufort S., Bianchi A., et al. (2014). The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br. J. Radiol. 87, 20140134. 10.1259/bjr.20140134 PubMed DOI PMC

Sanchez-Covarrubias L., Slosky L. M., Thompson B. J., Davis T. P., Ronaldson P. T. J. C. p. d. (2014). Transporters at CNS barrier sites: Obstacles or opportunities for drug delivery? Curr. Pharm. Des. 20, 1422–1449. 10.2174/13816128113199990463 PubMed DOI PMC

Sangha V., Williams E. I., Ronaldson P. T., Bendayan R. J. D. T. M. C., Disposition R. i. D. (2022). Drug transport in the brain, 283–317.

Sanson C., Diou O., Thevenot J., Ibarboure E., Soum A., Brûlet A., et al. (2011). Doxorubicin loaded magnetic polymersomes: Theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5, 1122–1140. 10.1021/nn102762f PubMed DOI

Sarin H., Kanevsky A. S., Wu H., Brimacombe K. R., Fung S. H., Sousa A. A., et al. (2008). Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J. Transl. Med. 6, 80–15. 10.1186/1479-5876-6-80 PubMed DOI PMC

Sarko D., McKinney C. (2017). Exosomes: Origins and therapeutic potential for neurodegenerative disease. Front. Neurosci. 11, 82. 10.3389/fnins.2017.00082 PubMed DOI PMC

Saunders N. R., Habgood M. D., Møllgård K., Dziegielewska K. M. J. F. (2016). The biological significance of brain barrier mechanisms: Help or hindrance in drug delivery to the central nervous system? F1000Res, 5. 10.12688/f1000research.7378.1 PubMed DOI PMC

Schleh C., Semmler-Behnke M., Lipka J., Wenk A., Hirn S., Schäffler M., et al. (2012). Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6, 36–46. 10.3109/17435390.2011.552811 PubMed DOI PMC

Schmidt J., Metselaar J. M., Wauben M. H., Toyka K. V., Storm G., Gold R. J. B. (2003). Drug targeting by long‐circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. Brain 126, 1895–1904. 10.1093/brain/awg176 PubMed DOI

Schober A. J. C., research t. (2004). Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell Tissue Res. 318, 215–224. 10.1007/s00441-004-0938-y PubMed DOI

Setsuie R., Wang Y.-L., Mochizuki H., Osaka H., Hayakawa H., Ichihara N., et al. (2007). Dopaminergic neuronal loss in transgenic mice expressing the Parkinson's disease-associated UCH-L1 I93M mutant. Neurochem. Int. 50, 119–129. 10.1016/j.neuint.2006.07.015 PubMed DOI

Shah L., Yadav S., Amiji M. J. D. d., research t. (2013). Nanotechnology for CNS delivery of bio-therapeutic agents. Drug Deliv. Transl. Res. 3, 336–351. 10.1007/s13346-013-0133-3 PubMed DOI PMC

Sharma A., Kaur G. J. B. c., medicine a. (2018). Tinospora cordifolia as a potential neuroregenerative candidate against glutamate induced excitotoxicity: An in vitro perspective. BMC Complement. Altern. Med. 18, 1–17. 10.1186/s12906-018-2330-6 PubMed DOI PMC

Sharma H. S., Castellani R. J., Smith M. A., Sharma A. J. I. R. N. (2012). The blood-brain barrier in alzheimer's disease: Novel therapeutic targets and nanodrug delivery. Int. Rev. Neurobiol. 102, 47–90. 10.1016/B978-0-12-386986-9.00003-X PubMed DOI

Sharma P., Bhargava M. J. R. D. (2013). Applications and characteristics of nanomaterials in industrial environment. Nanotechnol. Environ. 3, 63–72. 10.5772/intechopen.91438 DOI

Sharma P., Mehta M., Dhanjal D. S., Kaur S., Gupta G., Singh H., et al. (2019). Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact. 309, 108720. 10.1016/j.cbi.2019.06.033 PubMed DOI

Sharpe M. A., Livingston A. D., Gist T. L., Ghosh P., Han J., Baskin D. S. J. E. (2015). Successful treatment of intracranial glioblastoma xenografts with a monoamine oxidase B-activated pro-drug. EBioMedicine 2, 1122–1132. 10.1016/j.ebiom.2015.08.013 PubMed DOI PMC

Shukla S. D., Jain S., Sharma K., Bhatnagar M. (2000). Stress induced neuron degeneration and protective effects of semecarpus anacardium linn. And withania somnifera dunn. In hippocampus of albino rats: An ultrastructural study. PubMed

Silva G. A. J. B. (2008). Nanotechnology approaches to crossing the blood-brain barrier and drug delivery to the CNS. BMC Neurosci. 9, S4–S4. 10.1186/1471-2202-9-S3-S4 PubMed DOI PMC

Simonet S. p. (2018). Radiosensitizing effect of AGuIX® in head and neck squamous cell carcinoma (HNSCC): From cellular uptake to subcellular damage. Lyon: Université de Lyon.

Singh A. K., Gothwal A., Rani S., Rana M., Sharma A. K., Yadav A. K., et al. (2019). Dendrimer donepezil conjugates for improved brain delivery and better in vivo pharmacokinetics. ACS Omega 4, 4519–4529. 10.1021/acsomega.8b03445 DOI

Singh A. K., Mishra S. K., Mishra G., Maurya A., Awasthi R., Yadav M. K., et al. (2020). Inorganic clay nanocomposite system for improved cholinesterase inhibition and brain pharmacokinetics of donepezil. Drug Dev. Ind. Pharm. 46, 8–19. 10.1080/03639045.2019.1698594 PubMed DOI

Singh A. K., Rai S. N., Maurya A., Mishra G., Awasthi R., Shakya A., et al. (2021). Therapeutic potential of phytoconstituents in management of Alzheimer’s disease. Evid. Based Complement. Altern. Med. 2021. 10.1155/2021/5578574 PubMed DOI PMC

Singh A. K., Singh S. K., Nandi M. K., Mishra G., Maurya A., Rai A., et al. (2019). Berberine: A plant-derived alkaloid with therapeutic potential to combat alzheimer's disease. Cent. Nerv. Syst. Agents Med. Chem. 19, 154–170. 10.2174/1871524919666190820160053 PubMed DOI

Singh A. K., Singh S. S., Rathore A. S., Singh S. P., Mishra G., Awasthi R., et al. (2021). Lipid-coated MCM-41 mesoporous silica nanoparticles loaded with berberine improved inhibition of acetylcholine esterase and amyloid formation. ACS Biomater. Sci. Eng. 7, 3737–3753. 10.1021/acsbiomaterials.1c00514 PubMed DOI

Singh A. V., Hosseinidoust Z., Park B.-W., Yasa O., Sitti M. J. A. n. (2017). Microemulsion-based soft bacteria-driven microswimmers for active cargo delivery. ACS Nano 11, 9759–9769. 10.1021/acsnano.7b02082 PubMed DOI

Singh G. K., Chauhan S. K., Rai G., Chatterjee S. S., Kumar V. J. P. M. (2013). Potential antianxiety activity of fumaria indica: A preclinical study. Pharmacogn. Mag. 9, 14–22. 10.4103/0973-1296.108129 PubMed DOI PMC

Singh G. K., Rai G., Chatterjee S. S., Kumar V. J. A. (2013). Effects of ethanolic extract of Fumaria indica L. on rat cognitive dysfunctions. Ayu 34, 421–429. 10.4103/0974-8520.127727 PubMed DOI PMC

Singh P., Kim Y.-J., Zhang D., Yang D.-C. J. T. i. b. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 588–599. 10.1016/j.tibtech.2016.02.006 PubMed DOI

Singh V., Yadav B., Pandey V. J. P. (1999). Flavanone glycosides from Alhagi pseudalhagi. Phytochemistry 51, 587–590. 10.1016/s0031-9422(99)00010-2 PubMed DOI

Sj R. D., Kumar B P. J. C. C.-A. D. D. (2020). In silico screening for anti-inflammatory bioactive molecules from ayurvedic decoction, balaguluchyadi kashayam. Curr. Comput. Aided. Drug Des. 16, 435–450. 10.2174/1573409915666191015113753 PubMed DOI

Sonavane G., Tomoda K., Makino K. J. C., Biointerfaces S. B. (2008). Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surf. B Biointerfaces 66, 274–280. 10.1016/j.colsurfb.2008.07.004 PubMed DOI

Song Y., Jing H., Vong L. B., Wang J., Li N. J. C. C. L. (2021). Recent advances in targeted stimuli-responsive nano-based drug delivery systems combating atherosclerosis. Chin. Chem. Lett. 33. 10.1016/j.cclet.2021.10.055 DOI

Soni K. S., Desale S. S., Bronich T. K. J. J. o. C. R. (2016). Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J. Control. Release 240, 109–126. 10.1016/j.jconrel.2015.11.009 PubMed DOI PMC

Soni S., Ruhela R. K., Medhi B. J. A. p. b. (2016). Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective. Adv Pharm Bull 6, 319. 10.15171/apb.2016.044 PubMed DOI PMC

Soni V., Kohli D., Jain S. J. J. o. d. t. (2008). Transferrin-conjugated liposomal system for improved delivery of 5-fluorouracil to brain. J. Drug Target. 16, 73–78. 10.1080/10611860701725381 PubMed DOI

Srikanth M., Kessler J. A. J. N. r. n. (2012). Nanotechnology-novel therapeutics for CNS disorders. Nat. Rev. Neurol. 8, 307–318. 10.1038/nrneurol.2012.76 PubMed DOI PMC

Stenehjem D. D., Hartz A. M., Bauer B., Anderson G. W. J. F. M. C. (2009). Novel and emerging strategies in drug delivery for overcoming the blood–brain barrier. Future Med. Chem. 1, 1623–1641. 10.4155/fmc.09.137 PubMed DOI

Stewart S. A. J. J. o. C. P. (2005). The effects of benzodiazepines on cognition. J. Clin. Psychiatry 66, 9–13. PubMed

Stockwell J., Abdi N., Lu X., Maheshwari O., Taghibiglou C. J. C. b., design d. (2014). Novel central nervous system drug delivery systems. Chem. Biol. Drug Des. 83, 507–520. 10.1111/cbdd.12268 PubMed DOI

Stratakis E., Ranella A., Farsari M., Fotakis C. J. P. i. Q. E. (2009). Laser-based micro/nanoengineering for biological applications. Prog. Quantum Electron. 33, 127–163. 10.1016/j.pquantelec.2009.06.001 DOI

Stupp R., Mason W. P., Van Den Bent M. J., Weller M., Fisher B., Taphoorn M. J., et al. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996. 10.1056/NEJMoa043330 PubMed DOI

Sweeney M. D., Zhao Z., Montagne A., Nelson A. R., Zlokovic B. V. J. P. r. (2019). Blood-brain barrier: From physiology to disease and back. Physiol. Rev. 99, 21–78. 10.1152/physrev.00050.2017 PubMed DOI PMC

Syková E., Nicholson C. J. P. r. (2008). Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340. 10.1152/physrev.00027.2007 PubMed DOI PMC

Szabo E., Schneider H., Seystahl K., Rushing E. J., Herting F., Weidner K. M., et al. (2016). Autocrine VEGFR1 and VEGFR2 signaling promotes survival in human glioblastoma models in vitro and in vivo . Neuro. Oncol. 18, 1242–1252. 10.1093/neuonc/now043 PubMed DOI PMC

Tamai I., Tsuji A. J. A. d. d. r. (1996). Drug delivery through the blood-brain barrier. Adv. Drug Deliv. Rev. 19, 401–424. 10.1016/0169-409x(96)00011-7 DOI

Tateishi K., Wakimoto H., Iafrate A. J., Tanaka S., Loebel F., Lelic N., et al. (2015). Extreme vulnerability of IDH1 mutant cancers to NAD+ depletion. Cancer Cell 28, 773–784. 10.1016/j.ccell.2015.11.006 PubMed DOI PMC

Teixeira M. I., Lopes C. M., Amaral M. H., Costa P. C. (2020). Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur. J. Pharm. Biopharm. 149, 192–217. 10.1016/j.ejpb.2020.01.005 PubMed DOI

Thomas C., Rawat A., Hope-Weeks L., Ahsan F. J. M. p. (2011). Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to. Hepat. B vaccine 8, 405–415. PubMed

Thorne R. G., Frey W. H. J. C. p. (2001). Delivery of neurotrophic factors to the central nervous system: Pharmacokinetic considerations. Clin. Pharmacokinet. 40, 907–946. 10.2165/00003088-200140120-00003 PubMed DOI

Thorne R. G., Nicholson C. J. P. o. t. N. A. o. S. (2006). In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc. Natl. Acad. Sci. U. S. A. 103, 5567–5572. 10.1073/pnas.0509425103 PubMed DOI PMC

Tong S., Zhu H., Bao G. J. M. T. (2019). Magnetic iron oxide nanoparticles for disease detection and therapy. Mat. Today 31, 86–99. 10.1016/j.mattod.2019.06.003 PubMed DOI PMC

Torchilin V. P. J. P. R. (2007). Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 24, 1–16. 10.1007/s11095-006-9132-0 PubMed DOI

Torres-Ortega P. V., Saludas L., Hanafy A. S., Garbayo E., Blanco-Prieto M. J. J. J. o. C. R. (2019). Micro-and nanotechnology approaches to improve Parkinson's disease therapy. J. Control. Release 295, 201–213. 10.1016/j.jconrel.2018.12.036 PubMed DOI

Umut E. J. M. S. E. T. (2013). Surface modification of nanoparticles used in biomedical applications. Nanobiotechnology 20, 185–208.

Upadhyay R. K. J. B. r. i. (2014). Drug delivery systems, CNS protection, and the blood brain barrier, 2014. PubMed PMC

Vermeeren A. J. C. d. (2004). Residual effects of hypnotics: Epidemiology and clinical implications. CNS Drugs 18, 297–328. 10.2165/00023210-200418050-00003 PubMed DOI

Verreault M., Schmitt C., Goldwirt L., Pelton K., Haidar S., Levasseur C., et al. (2016). Preclinical efficacy of the MDM2 inhibitor RG7112 in MDM2-amplified and TP53 wild-type glioblastomas. Clin. Cancer Res. 22, 1185–1196. 10.1158/1078-0432.CCR-15-1015 PubMed DOI PMC

Vickers N. J. J. C. b. (2017). Animal communication: When i’m calling you, will you answer too? Curr. Biol. 27, R713–R715. 10.1016/j.cub.2017.05.064 PubMed DOI

Voigt N., Henrich-Noack P., Kockentiedt S., Hintz W., Tomas J., Sabel B. A. (2014). Surfactants, not size or zeta-potential influence blood–brain barrier passage of polymeric nanoparticles. Eur. J. Pharm. Biopharm. 87, 19–29. 10.1016/j.ejpb.2014.02.013 PubMed DOI

Vorbrodt A. W., Dobrogowska D. H. J. B. R. R. (2003). Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: Electron microscopist's view. Brain Res. Brain Res. Rev. 42, 221–242. 10.1016/s0165-0173(03)00177-2 PubMed DOI

Vuong N. (2018). Nanotechnology-enhanced blood and urine analysis for the identification of biomarkers related to severe traumatic brain injury and acute respiratory distress Syndrome.

Walsh J. (1979). “Behavioural effects of drugs in the hyperbaric environment, the twenty-first undersea medical society workshop,” in Interaction of drugs in the hyperbaric environment (Bethesda: Undersea Medi Soc; ).

Wang L., Xiong X., Zhang L., Shen J. J. C. N. (2021). Neurovascular unit: A critical role in ischemic stroke. CNS Neurosci. Ther. 27, 7–16. 10.1111/cns.13561 PubMed DOI PMC

Waris A., Ali A., Khan A. U., Asim M., Zamel D., Fatima K., et al. (2022). Applications of various types of nanomaterials for the treatment of neurological disorders. Nanomaterials 12, 2140. 10.3390/nano12132140 PubMed DOI PMC

Wei G., Su Z., Reynolds N. P., Arosio P., Hamley I. W., Gazit E., et al. (2017). Self-assembling peptide and protein amyloids: From structure to tailored function in nanotechnology. Chem. Soc. Rev. 46, 4661–4708. 10.1039/c6cs00542j PubMed DOI PMC

Whiting P. J. J. D. d. t. (2003). GABA-A receptor subtypes in the brain: A paradigm for CNS drug discovery? Drug Discov. Today 8, 445–450. 10.1016/s1359-6446(03)02703-x PubMed DOI

Williams T., Wilkinson A., Davis F., Frampton C. J. U. b. r. (1988). Effects of transcutaneous scopolamine and depth on diver performance. Undersea Biomed. Res. 15, 89–98. PubMed

Wilson B., Samanta M. K., Santhi K., Kumar K. P. S., Paramakrishnan N., Suresh B. J. B. r. (2008). Poly (n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease. Brain Res. 1200, 159–168. 10.1016/j.brainres.2008.01.039 PubMed DOI

Witten J., Ribbeck K. J. N. (2017). The particle in the spider's web: Transport through biological hydrogels. Nanoscale 9, 8080–8095. 10.1039/c6nr09736g PubMed DOI PMC

Wolak D. J., Thorne R. G. J. M. p. (2013). Diffusion of macromolecules in the brain: Implications for drug delivery. Mol. Pharm. 10, 1492–1504. 10.1021/mp300495e PubMed DOI PMC

Wong H. L., Wu X. Y., Bendayan R. J. A. d. d. r. (2012). Nanotechnological advances for the delivery of CNS therapeutics. Adv. Drug Deliv. Rev. 64, 686–700. 10.1016/j.addr.2011.10.007 PubMed DOI

Woodworth G. F., Dunn G. P., Nance E. A., Hanes J., Brem H. J. F. i. o. (2014). Emerging insights into barriers to effective brain tumor therapeutics. Front. Oncol. 4, 126. 10.3389/fonc.2014.00126 PubMed DOI PMC

Xia N., Wang X., Zhou B., Wu Y., Mao W., Liu L. J. A. a. m., et al. (2016). Electrochemical detection of amyloid-β oligomers based on the signal amplification of a network of silver nanoparticles. ACS Appl. Mat. Interfaces 8, 19303–19311. 10.1021/acsami.6b05423 PubMed DOI

Xie J., Shen Z., Anraku Y., Kataoka K., Chen X. J. B. (2019). Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials 224, 119491. 10.1016/j.biomaterials.2019.119491 PubMed DOI PMC

Yamazaki Y., Kanekiyo T. J. I. j. o. m. s. (2017). Blood-brain barrier dysfunction and the pathogenesis of Alzheimer’s disease. Int. J. Mol. Sci. 18, 1965. 10.3390/ijms18091965 PubMed DOI PMC

Yang F., Li Y., Chen Z., Zhang Y., Wu J., Gu N. J. B. (2009). Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials 30, 3882–3890. 10.1016/j.biomaterials.2009.03.051 PubMed DOI

Yang Y., Rosenberg G. A. J. S. (2011). Blood–brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 42, 3323–3328. 10.1161/STROKEAHA.110.608257 PubMed DOI PMC

Yao V. J., D'Angelo S., Butler K. S., Theron C., Smith T. L., Marchiò S., et al. (2016). Ligand-targeted theranostic nanomedicines against cancer. J. Control. Release 240, 267–286. 10.1016/j.jconrel.2016.01.002 PubMed DOI PMC

Yazdani S., Jaldin‐Fincati J. R., Pereira R. V., Klip A. J. T. (2019). Endothelial cell barriers: Transport of molecules between blood and tissues. Traffic 20, 390–403. 10.1111/tra.12645 PubMed DOI

Yi X., Manickam D. S., Brynskikh A., Kabanov A. V. J. J. o. C. R. (2014). Agile delivery of protein therapeutics to CNS. J. Control. Release 190, 637–663. 10.1016/j.jconrel.2014.06.017 PubMed DOI PMC

Youdim M. B., Edmondson D., Tipton K. F. J. N. R. N. (2006). The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci. 7, 295–309. 10.1038/nrn1883 PubMed DOI

Yu M., Wu J., Shi J., Farokhzad O. C. J. J. o. c. r. (2016). Nanotechnology for protein delivery: Overview and perspectives. J. Control. Release 240, 24–37. 10.1016/j.jconrel.2015.10.012 PubMed DOI PMC

Zeevi N., Pachter J., McCullough L. D., Wolfson L., Kuchel G. A. J. J. O. T. A. G. S. (2010). The blood–brain barrier: Geriatric relevance of a critical brain–body interface. J. Am. Geriatr. Soc. 58, 1749–1757. 10.1111/j.1532-5415.2010.03011.x PubMed DOI PMC

Zeng J., See A. P., Phallen J., Jackson C. M., Belcaid Z., Ruzevick J., et al. (2013). Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int. J. Radiat. Oncol. Biol. Phys. 86, 343–349. 10.1016/j.ijrobp.2012.12.025 PubMed DOI PMC

Zhang F., Xu C.-L., Liu C.-M. J. D. D. (2015). Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma. Drug Des. devel. Ther. 9, 2089–2100. 10.2147/DDDT.S79592 PubMed DOI PMC

Zhang J., Mou L., Jiang X. J. C. S. (2020). Surface chemistry of gold nanoparticles for health-related applications. Chem. Sci. 11, 923–936. 10.1039/c9sc06497d PubMed DOI PMC

Zhang M., Zang X., Wang M., Li Z., Qiao M., Hu H., et al. (2019). Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: Recent advances and challenges. J. Mat. Chem. B 7, 2421–2433. 10.1039/c9tb00170k PubMed DOI

Zhang P., Hu L., Yin Q., Feng L., Li Y. J. M. p. (2012). Transferrin-modified c [RGDfK]-paclitaxel loaded hybrid micelle for sequential blood-brain barrier penetration and glioma targeting therapy. Mol. Pharm. 9, 1590–1598. 10.1021/mp200600t PubMed DOI

Zhang Q., Zhang J., Song J., Liu Y., Ren X., Zhao Y. J. A. n. (2021). Protein-based nanomedicine for therapeutic benefits of cancer. ACS Nano 15, 8001–8038. 10.1021/acsnano.1c00476 PubMed DOI

Zhao C., Xing Z., Zhang C., Fan Y., Liu H. J. J. o. M. C. B. (2021). Nanopharmaceutical-based regenerative medicine: A promising therapeutic strategy for spinal cord injury. J. Mat. Chem. B 9, 2367–2383. 10.1039/d0tb02740e PubMed DOI

Zlokovic B. V. J. N. (2008). The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201. 10.1016/j.neuron.2008.01.003 PubMed DOI

Zong T., Mei L., Gao H., Cai W., Zhu P., Shi K., et al. (2014). Synergistic dual-ligand doxorubicin liposomes improve targeting and therapeutic efficacy of brain glioma in animals. Mol. Pharm. 11, 2346–2357. 10.1021/mp500057n PubMed DOI

Zou Z., Jiang X., Zhang W., Zhou Y., Ke Y., Zhang S., et al. (2010). Efficacy of Tyrosine Hydroxylase gene modified neural stem cells derived from bone marrow on Parkinson's disease–a rat model study. Brain Res. 1346, 279–286. 10.1016/j.brainres.2010.05.071 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Interactions of Isoquinoline Alkaloids with Transition Metals Iron and Copper

. 2022 Sep 29 ; 27 (19) : . [epub] 20220929

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...