Amaryllidaceae Alkaloids as Potential Glycogen Synthase Kinase-3β Inhibitors

. 2018 Mar 21 ; 23 (4) : . [epub] 20180321

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29561817

Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine protein kinase that was originally identified as an enzyme involved in the control of glycogen metabolism. It plays a key role in diverse physiological processes including metabolism, the cell cycle, and gene expression by regulating a wide variety of well-known substances like glycogen synthase, tau-protein, and β-catenin. Recent studies have identified GSK-3β as a potential therapeutic target in Alzheimer´s disease, bipolar disorder, stroke, more than 15 types of cancer, and diabetes. GSK-3β is one of the most attractive targets for medicinal chemists in the discovery, design, and synthesis of new selective potent inhibitors. In the current study, twenty-eight Amaryllidaceae alkaloids of various structural types were studied for their potency to inhibit GSK-3β. Promising results have been demonstrated by alkaloids of the homolycorine-{9-O-demethylhomolycorine (IC50 = 30.00 ± 0.71 µM), masonine (IC50 = 27.81 ± 0.01 μM)}, and lycorine-types {caranine (IC50 = 30.75 ± 0.04 μM)}.

Zobrazit více v PubMed

Saraswati A.P., Ali Hussaini S.M., Krishna N.H., Babu B.N., Kamal A. Glykogen synthase kinase-3 and its inhibitors: Potential target for various therapeutics conditions. Eur. J. Med. Chem. 2018;144:843–858. doi: 10.1016/j.ejmech.2017.11.103. PubMed DOI

Cohen P., Frame S. The renaissance of GSK3. Nat. Rev. Mol. Cell Biol. 2001;2:769–776. doi: 10.1038/35096075. PubMed DOI

Phukan S., Babu V.S., Kannoji A., Hariharan R., Balaji V.N. GSK3β: Role in therapeutic landscape and development of modulators. Br. J. Pharmacol. 2010;160:1–19. doi: 10.1111/j.1476-5381.2010.00661.x. PubMed DOI PMC

Maqbool M., Mobashir M., Hoda N. Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer’s disease. Eur. J. Med. Chem. 2016;107:63–81. doi: 10.1016/j.ejmech.2015.10.018. PubMed DOI

Luo J. Glycogen synthase kinase 3β (GSK3β) in tumorigenesis and cancer chemotherapy. Cancer Lett. 2009;273:194–200. doi: 10.1016/j.canlet.2008.05.045. PubMed DOI PMC

Henriksen E.J., Dokken B.B. Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr. Drug Targets. 2006;7:1435–1441. doi: 10.2174/1389450110607011435. PubMed DOI

Lal H., Ahmad F., Woodgett J., Force T. The GSK-3 family as therapeutic target for myocardial diseases. Circ. Res. 2015;116:138–149. doi: 10.1161/CIRCRESAHA.116.303613. PubMed DOI PMC

Jope R.S., Roh M.S. Glykogen synthase kinase-3 (GSK3) in psychiatric diseases and therapeutic interventions. Curr. Drug Targets. 2006;7:1421–1434. doi: 10.2174/1389450110607011421. PubMed DOI PMC

Plattner F., Angelo M., Giese K.P. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J. Biol. Chem. 2006;281:25457–25465. doi: 10.1074/jbc.M603469200. PubMed DOI

Palop J.J., Mucke L. Amyloid-β induced neuronal dysfunction in Alzheimer’s disease: From synapses toward neural networks. Nat. Neurosci. 2010;13:812–818. doi: 10.1038/nn.2583. PubMed DOI PMC

Petanceska S.S., Seeger M., Checler F. Mutant presenilin 1 increases the levels of Alzheimer amyloid β-peptide Aβ42 in late compartments of the constitutive secretory pathway. J. Neurochem. 2000;74:1878–1884. doi: 10.1046/j.1471-4159.2000.0741878.x. PubMed DOI

Rockenstein E., Torrance M., Adame A., Mante M., Baron P., Rose J.B., Crews L., Masliah E. Neuroprotective effects of regulators of the glycogen synthase kinase-3β signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation. J. Neurosci. 2007;27:1981–1991. doi: 10.1523/JNEUROSCI.4321-06.2007. PubMed DOI PMC

Martinez A. Preclinical efficacy on GSK-3 inhibitors: Towards a future generation of powerful drugs. Med. Res. Rev. 2008;28:773–796. doi: 10.1002/med.20119. PubMed DOI

Phiel C.J., Wilson C.A., Lee V.M., Klein P.S. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature. 2003;423:435–439. doi: 10.1038/nature01640. PubMed DOI

Dominguez J.M., Fuertes A., Orozco L., del Monte-Millan M., Deldago E., Medina M. Evidence for irreversible inhibition of glycogen synthase kinase-3β by tideglusib. J. Biol. Chem. 2012;287:893–904. doi: 10.1074/jbc.M111.306472. PubMed DOI PMC

Del Ser T., Steinwachs K.C., Gertz H.J., Andress M.V., Gomez-Carrillo B., Medina M., Vericat J.A., Redondo P., Fleet D., Leon T. Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: A pilot study. J. Alzheimer Dis. 2013;33:205–215. PubMed

Shimura T. Acquired radioresistance of cancer and the AKT/GSK3β/cyclin D1 overexpression cycle. J. Radiat. Res. 2011;52:539–544. doi: 10.1269/jrr.11098. PubMed DOI

Jope R.S., Yuskaitis C.J., Beurel E. Glycogen synthase kinase-3 (GSK3): Inflammation, diseases, and therapeutics. Neurochem. Res. 2007;32:577–595. doi: 10.1007/s11064-006-9128-5. PubMed DOI PMC

McCubrey J.A., Steelman L.S., Bertrand F.E., Davis N.M., Sokolosky M., Abrams S.L., Montalto G., D’Assoro A.B., Libra M., Nicoletti F., et al. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget. 2014;5:2881–2911. doi: 10.18632/oncotarget.2037. PubMed DOI PMC

Hamann M., Alonso D., Martín-Aparicio E., Fuertes A., Pérez-Puerto M.J., Castro A., Morales S., Navarro M.L., Del Monte-Millán M., Medina M., et al. Glycogen synthase kinase-3 (GSK-3) inhibitory activity and structure-activity relationship (SAR) studies of the manzamine alkaloids. Potential for Alzheimer’s disease. J. Nat. Prod. 2007;70:1397–1405. doi: 10.1021/np060092r. PubMed DOI

Witherington J., Bordas V., Garland S.L., Hickey D.M.B., Ife R.J., Liddle J., Saunders M., Smith D.G., Ward R.W. 5-Aryl-pyrazolo[3,4-b]pyridines: Potent inhibitors of glycogen synthase kinase-3 (GSK-3) Bioorg. Med. Chem. 2003;13:1577–1580. doi: 10.1016/S0960-894X(03)00134-3. PubMed DOI

Naerum L., Norskov-Lauritsen L., Olesen P.H. Scaffold hopping and optimization towards libraries of glycogen synthase kinase-3 inhibitors. Bioorg. Med. Chem. Lett. 2002;12:1525–1528. doi: 10.1016/S0960-894X(02)00169-5. PubMed DOI

Martinez A., Alonso M., Castro A., Perez C., Moreno F.J. First non-ATP competitive glycogen synthase kinase 3 β (GSK-3β) inhibitors:  Thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J. Med. Chem. 2002;45:1292–1299. doi: 10.1021/jm011020u. PubMed DOI

Coghlan M.P., Culbert A.A., Cross D.A.E., Corcoran S.L., Yates J.D., Pearce N.J., Rausch O.L., Murphy G.J., Carter P.S., Cox L.R., et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem. Biol. 2000;7:793–803. doi: 10.1016/S1074-5521(00)00025-9. PubMed DOI

Leost M., Schultz C., Link A., Wu Y.Z., Biernat J., Man-Delkow E.M., Bibb J.A., Snyder G.L., Greengard P., Zaharevitz D.W., et al. Paullones are potent inhibitors of glycogen synthase kinase-3β and cyclin-dependent kinase 5/p25. Eur. J. Biochem. 2000;267:5983–5994. doi: 10.1046/j.1432-1327.2000.01673.x. PubMed DOI

Pandey M.K., DeGrado T.R. Glycogen synthase kinase-3 (GSK-3)-targeted therapy and imaging. Theranostics. 2016;6:571–593. doi: 10.7150/thno.14334. PubMed DOI PMC

Doskočil I., Hošťálková A., Šafratová M., Benešová N., Havlík J., Havelek R., Kuneš J., Královec K., Chlebek J., Cahlíková L. Cytotoxic activities of Amaryllidaceae alkaloids against gastrointestinal cancer cells. Phytochem. Lett. 2015;13:394–398. doi: 10.1016/j.phytol.2015.08.004. DOI

Ago Y., Koda K., Takuma K., Matsuda T. Pharmacological aspects of the acetylcholinesterase inhibitor galantamine. J. Pharm. Sci. 2011;116:6–17. doi: 10.1254/jphs.11R01CR. PubMed DOI

Cahlíková L., Pérez D.I., Štěpánková Š., Chlebek J., Šafratová M., Hošťálková A., Opletal L. In vitro inhibitory effects of 8-O-demethylmaritidine and undulatine on acetylcholinesterase and their predicted penetration across the blood-brain barrier. J. Nat. Prod. 2015;78:1189–1192. doi: 10.1021/acs.jnatprod.5b00191. PubMed DOI

Cedrón J.C., Ravelo A.G., León L.G., Padrón J.M., Estévez-Braun A. Antiproliferative and structure activity relationships of Amaryllidaceae alkaloids. Molecules. 2015;20:13854–13863. doi: 10.3390/molecules200813854. PubMed DOI PMC

Van Goietsenoven G., Hutton J., Becker J.P., Lallemand B., Robert F., Lefranc F., Pirker C., Vandenbussche G., Van Antwerpen P., Evidente A., et al. Targeting of eEF1A with Amaryllidaceae isocarbostyrils as a strategy to combat melanomas. FASEB J. 2010;24:4575–4584. doi: 10.1096/fj.10-162263. PubMed DOI PMC

Ma D., Pignanelli C., Tarade D., Gilbert T., Noel M., Mansour F., Adams S., Dowhayko K., Vshyvenko S., Hudlicky T., et al. Cancer cell mitochondria targeting by pancratistatin analogs is dependent on functional complex II and III. Sci. Rep. 2017;7:42957. doi: 10.1038/srep42957. PubMed DOI PMC

Saitoh M., Kunitomo J., Kimura E., Hayase Y., Kobayashi H., Uchiyama N., Kawamoto T., Tanaka T., Mol C., Dougan D.R. Design, synthesis and structure-activity relationships of 1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3β. Bioorg. Med. Chem. 2009;17:2017–2029. doi: 10.1016/j.bmc.2009.01.019. PubMed DOI

Meijer L., Thunnissen A.-M.W.H., White A.W., Garnier M., Nikolic M., Tsai L.-H., Walter J., Cleverley K.E., Salinas P.C., Wu Y.-Z., et al. Inhibition of cyclin-dependent kinases, GSK-3β and CK1 by hymenialdisine, a marine sponge constituent. Chem. Biol. 2000;7:51–63. doi: 10.1016/S1074-5521(00)00063-6. PubMed DOI

Kitagawa I., Kobayashi M., Kitanaka K., Kido M., Kyogoku Y. Marine natural products XII. On the chemical constituents of the Okinawan marine sponge Hymeniacidon aldis. Chem. Pharm. Bull. 1983;31:2321–2328. doi: 10.1248/cpb.31.2321. DOI

Cimino G., de Rosa S., de Stefano S., Mazzarella L., Puliti R., Sodano G. Isolation and X-ray crystal structure of a novel bromo-compound from two marine sponges. Tetrahedron Lett. 1982;23:767–768. doi: 10.1016/S0040-4039(00)86943-9. DOI

Gompel M., Leost M., Bal De Kier J.E., Puricelli L., Hernandez F.L., Palermo J., Meijer L. Meridianins, a new family of protein kinase inhibitors isolated from the Ascidian Aplidium meridianum. Bioorg. Med. Chem. Lett. 2004;14:1703–1707. doi: 10.1016/j.bmcl.2004.01.050. PubMed DOI

Shiono Y., Miyazaki N., Murayyma T., Harizon T.K., Katja D.G., Supratman U., Nakata J., Kakihara Y., Saeki M., Yoshida J., et al. GSK-3β inhibitory activities of novel dichlororesorcinol derivatives from Cosmopora vilior isolated from mangrove plant. Phytochem. Lett. 2016;18:122–127. doi: 10.1016/j.phytol.2016.09.007. DOI

Kulhánková A., Cahlíková L., Novák Z., Macáková K., Kuneš J., Opletal L. Alkaloids from Zephyranthes robusta Baker and their acetylcholinesterase and butyrylcholinesterase-inhibitory activity. Chem. Biodivers. 2013;10:1120–1127. doi: 10.1002/cbdv.201200144. PubMed DOI

Šafratová M., Novák Z., Kulhánková A., Kuneš J., Hrabinová M., Jun D., Macáková K., Opletal L., Cahlíková L. Revised NMR data for 9-O-demethylgalanthine: An alkaloid from Zephyranthes robusta (Amaryllidaceae) and its biological activity. Nat. Prod. Commun. 2014;9:787–788. PubMed

Cahlíková L., Hrabinová M., Kulhánková A., Benešová N., Chlebek J., Jun D., Novák Z., Kuča K., Macáková K., Opletal L. Alkaloids from Chlidanthus fragrans and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase activities. Nat. Prod. Commun. 2013;8:1541–1544. PubMed

Vaněčková N., Hošťálková A., Šafratová M., Kuneš J., Hulcová D., Hrabinová M., Doskočil I., Štěpánková Š., Opletal L., Nováková L., et al. Isolation of Amaryllidaceae alkaloids from Nerine bowdenii W. Watson and their biological activities. RSC Adv. 2016;6:80114–80120. doi: 10.1039/C6RA20205E. DOI

Šafratová M., Hošťálková A., Hulcová D., Breiterová K., Hrabcová V., Machado M., Fontinha D., Prudêncio M., Kuneš J., Chlebek J., et al. Alkaloids from Narcissus poeticus cv. Pink Parasol of various structural types and their biological activity. Arch. Pharm. Res. 2017;41:208–218. doi: 10.1007/s12272-017-1000-4. PubMed DOI

Havlasová J., Šafratová M., Siatka T., Štěpánková Š., Ločárek M., Opletal L., Hrabinová M., Jun D., Benešová N., Novák Z., et al. Chemical composition of bioactive alkaloid extracts from some Narcissus species and varieties and their biological activity. Nat. Prod. Commun. 2014;9:1151–1155. PubMed

Baki A., Bielik A., Molnár L., Szendrei G., Keserü G.M. A high throughput luminescent assay for glycogen synthase kinase-3β inhibitors. ASSAY Drug. Dev. Technol. 2007;5:75–83. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace