Amaryllidaceae Alkaloids as Potential Glycogen Synthase Kinase-3β Inhibitors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29561817
PubMed Central
PMC6017564
DOI
10.3390/molecules23040719
PII: molecules23040719
Knihovny.cz E-zdroje
- Klíčová slova
- 9-O-demethylhomolycorine, Alzheimer’s disease, Amaryllidaceae alkaloids, caranine, glycogen synthase kinase-3β, masonine,
- MeSH
- alkaloidy amarylkovitých chemie farmakologie MeSH
- inhibiční koncentrace 50 MeSH
- inhibitory proteinkinas chemie farmakologie MeSH
- kinasa glykogensynthasy 3beta antagonisté a inhibitory metabolismus MeSH
- lidé MeSH
- preklinické hodnocení léčiv MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkaloidy amarylkovitých MeSH
- inhibitory proteinkinas MeSH
- kinasa glykogensynthasy 3beta MeSH
Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine protein kinase that was originally identified as an enzyme involved in the control of glycogen metabolism. It plays a key role in diverse physiological processes including metabolism, the cell cycle, and gene expression by regulating a wide variety of well-known substances like glycogen synthase, tau-protein, and β-catenin. Recent studies have identified GSK-3β as a potential therapeutic target in Alzheimer´s disease, bipolar disorder, stroke, more than 15 types of cancer, and diabetes. GSK-3β is one of the most attractive targets for medicinal chemists in the discovery, design, and synthesis of new selective potent inhibitors. In the current study, twenty-eight Amaryllidaceae alkaloids of various structural types were studied for their potency to inhibit GSK-3β. Promising results have been demonstrated by alkaloids of the homolycorine-{9-O-demethylhomolycorine (IC50 = 30.00 ± 0.71 µM), masonine (IC50 = 27.81 ± 0.01 μM)}, and lycorine-types {caranine (IC50 = 30.75 ± 0.04 μM)}.
Zobrazit více v PubMed
Saraswati A.P., Ali Hussaini S.M., Krishna N.H., Babu B.N., Kamal A. Glykogen synthase kinase-3 and its inhibitors: Potential target for various therapeutics conditions. Eur. J. Med. Chem. 2018;144:843–858. doi: 10.1016/j.ejmech.2017.11.103. PubMed DOI
Cohen P., Frame S. The renaissance of GSK3. Nat. Rev. Mol. Cell Biol. 2001;2:769–776. doi: 10.1038/35096075. PubMed DOI
Phukan S., Babu V.S., Kannoji A., Hariharan R., Balaji V.N. GSK3β: Role in therapeutic landscape and development of modulators. Br. J. Pharmacol. 2010;160:1–19. doi: 10.1111/j.1476-5381.2010.00661.x. PubMed DOI PMC
Maqbool M., Mobashir M., Hoda N. Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer’s disease. Eur. J. Med. Chem. 2016;107:63–81. doi: 10.1016/j.ejmech.2015.10.018. PubMed DOI
Luo J. Glycogen synthase kinase 3β (GSK3β) in tumorigenesis and cancer chemotherapy. Cancer Lett. 2009;273:194–200. doi: 10.1016/j.canlet.2008.05.045. PubMed DOI PMC
Henriksen E.J., Dokken B.B. Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr. Drug Targets. 2006;7:1435–1441. doi: 10.2174/1389450110607011435. PubMed DOI
Lal H., Ahmad F., Woodgett J., Force T. The GSK-3 family as therapeutic target for myocardial diseases. Circ. Res. 2015;116:138–149. doi: 10.1161/CIRCRESAHA.116.303613. PubMed DOI PMC
Jope R.S., Roh M.S. Glykogen synthase kinase-3 (GSK3) in psychiatric diseases and therapeutic interventions. Curr. Drug Targets. 2006;7:1421–1434. doi: 10.2174/1389450110607011421. PubMed DOI PMC
Plattner F., Angelo M., Giese K.P. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J. Biol. Chem. 2006;281:25457–25465. doi: 10.1074/jbc.M603469200. PubMed DOI
Palop J.J., Mucke L. Amyloid-β induced neuronal dysfunction in Alzheimer’s disease: From synapses toward neural networks. Nat. Neurosci. 2010;13:812–818. doi: 10.1038/nn.2583. PubMed DOI PMC
Petanceska S.S., Seeger M., Checler F. Mutant presenilin 1 increases the levels of Alzheimer amyloid β-peptide Aβ42 in late compartments of the constitutive secretory pathway. J. Neurochem. 2000;74:1878–1884. doi: 10.1046/j.1471-4159.2000.0741878.x. PubMed DOI
Rockenstein E., Torrance M., Adame A., Mante M., Baron P., Rose J.B., Crews L., Masliah E. Neuroprotective effects of regulators of the glycogen synthase kinase-3β signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation. J. Neurosci. 2007;27:1981–1991. doi: 10.1523/JNEUROSCI.4321-06.2007. PubMed DOI PMC
Martinez A. Preclinical efficacy on GSK-3 inhibitors: Towards a future generation of powerful drugs. Med. Res. Rev. 2008;28:773–796. doi: 10.1002/med.20119. PubMed DOI
Phiel C.J., Wilson C.A., Lee V.M., Klein P.S. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature. 2003;423:435–439. doi: 10.1038/nature01640. PubMed DOI
Dominguez J.M., Fuertes A., Orozco L., del Monte-Millan M., Deldago E., Medina M. Evidence for irreversible inhibition of glycogen synthase kinase-3β by tideglusib. J. Biol. Chem. 2012;287:893–904. doi: 10.1074/jbc.M111.306472. PubMed DOI PMC
Del Ser T., Steinwachs K.C., Gertz H.J., Andress M.V., Gomez-Carrillo B., Medina M., Vericat J.A., Redondo P., Fleet D., Leon T. Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: A pilot study. J. Alzheimer Dis. 2013;33:205–215. PubMed
Shimura T. Acquired radioresistance of cancer and the AKT/GSK3β/cyclin D1 overexpression cycle. J. Radiat. Res. 2011;52:539–544. doi: 10.1269/jrr.11098. PubMed DOI
Jope R.S., Yuskaitis C.J., Beurel E. Glycogen synthase kinase-3 (GSK3): Inflammation, diseases, and therapeutics. Neurochem. Res. 2007;32:577–595. doi: 10.1007/s11064-006-9128-5. PubMed DOI PMC
McCubrey J.A., Steelman L.S., Bertrand F.E., Davis N.M., Sokolosky M., Abrams S.L., Montalto G., D’Assoro A.B., Libra M., Nicoletti F., et al. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget. 2014;5:2881–2911. doi: 10.18632/oncotarget.2037. PubMed DOI PMC
Hamann M., Alonso D., Martín-Aparicio E., Fuertes A., Pérez-Puerto M.J., Castro A., Morales S., Navarro M.L., Del Monte-Millán M., Medina M., et al. Glycogen synthase kinase-3 (GSK-3) inhibitory activity and structure-activity relationship (SAR) studies of the manzamine alkaloids. Potential for Alzheimer’s disease. J. Nat. Prod. 2007;70:1397–1405. doi: 10.1021/np060092r. PubMed DOI
Witherington J., Bordas V., Garland S.L., Hickey D.M.B., Ife R.J., Liddle J., Saunders M., Smith D.G., Ward R.W. 5-Aryl-pyrazolo[3,4-b]pyridines: Potent inhibitors of glycogen synthase kinase-3 (GSK-3) Bioorg. Med. Chem. 2003;13:1577–1580. doi: 10.1016/S0960-894X(03)00134-3. PubMed DOI
Naerum L., Norskov-Lauritsen L., Olesen P.H. Scaffold hopping and optimization towards libraries of glycogen synthase kinase-3 inhibitors. Bioorg. Med. Chem. Lett. 2002;12:1525–1528. doi: 10.1016/S0960-894X(02)00169-5. PubMed DOI
Martinez A., Alonso M., Castro A., Perez C., Moreno F.J. First non-ATP competitive glycogen synthase kinase 3 β (GSK-3β) inhibitors: Thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J. Med. Chem. 2002;45:1292–1299. doi: 10.1021/jm011020u. PubMed DOI
Coghlan M.P., Culbert A.A., Cross D.A.E., Corcoran S.L., Yates J.D., Pearce N.J., Rausch O.L., Murphy G.J., Carter P.S., Cox L.R., et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem. Biol. 2000;7:793–803. doi: 10.1016/S1074-5521(00)00025-9. PubMed DOI
Leost M., Schultz C., Link A., Wu Y.Z., Biernat J., Man-Delkow E.M., Bibb J.A., Snyder G.L., Greengard P., Zaharevitz D.W., et al. Paullones are potent inhibitors of glycogen synthase kinase-3β and cyclin-dependent kinase 5/p25. Eur. J. Biochem. 2000;267:5983–5994. doi: 10.1046/j.1432-1327.2000.01673.x. PubMed DOI
Pandey M.K., DeGrado T.R. Glycogen synthase kinase-3 (GSK-3)-targeted therapy and imaging. Theranostics. 2016;6:571–593. doi: 10.7150/thno.14334. PubMed DOI PMC
Doskočil I., Hošťálková A., Šafratová M., Benešová N., Havlík J., Havelek R., Kuneš J., Královec K., Chlebek J., Cahlíková L. Cytotoxic activities of Amaryllidaceae alkaloids against gastrointestinal cancer cells. Phytochem. Lett. 2015;13:394–398. doi: 10.1016/j.phytol.2015.08.004. DOI
Ago Y., Koda K., Takuma K., Matsuda T. Pharmacological aspects of the acetylcholinesterase inhibitor galantamine. J. Pharm. Sci. 2011;116:6–17. doi: 10.1254/jphs.11R01CR. PubMed DOI
Cahlíková L., Pérez D.I., Štěpánková Š., Chlebek J., Šafratová M., Hošťálková A., Opletal L. In vitro inhibitory effects of 8-O-demethylmaritidine and undulatine on acetylcholinesterase and their predicted penetration across the blood-brain barrier. J. Nat. Prod. 2015;78:1189–1192. doi: 10.1021/acs.jnatprod.5b00191. PubMed DOI
Cedrón J.C., Ravelo A.G., León L.G., Padrón J.M., Estévez-Braun A. Antiproliferative and structure activity relationships of Amaryllidaceae alkaloids. Molecules. 2015;20:13854–13863. doi: 10.3390/molecules200813854. PubMed DOI PMC
Van Goietsenoven G., Hutton J., Becker J.P., Lallemand B., Robert F., Lefranc F., Pirker C., Vandenbussche G., Van Antwerpen P., Evidente A., et al. Targeting of eEF1A with Amaryllidaceae isocarbostyrils as a strategy to combat melanomas. FASEB J. 2010;24:4575–4584. doi: 10.1096/fj.10-162263. PubMed DOI PMC
Ma D., Pignanelli C., Tarade D., Gilbert T., Noel M., Mansour F., Adams S., Dowhayko K., Vshyvenko S., Hudlicky T., et al. Cancer cell mitochondria targeting by pancratistatin analogs is dependent on functional complex II and III. Sci. Rep. 2017;7:42957. doi: 10.1038/srep42957. PubMed DOI PMC
Saitoh M., Kunitomo J., Kimura E., Hayase Y., Kobayashi H., Uchiyama N., Kawamoto T., Tanaka T., Mol C., Dougan D.R. Design, synthesis and structure-activity relationships of 1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3β. Bioorg. Med. Chem. 2009;17:2017–2029. doi: 10.1016/j.bmc.2009.01.019. PubMed DOI
Meijer L., Thunnissen A.-M.W.H., White A.W., Garnier M., Nikolic M., Tsai L.-H., Walter J., Cleverley K.E., Salinas P.C., Wu Y.-Z., et al. Inhibition of cyclin-dependent kinases, GSK-3β and CK1 by hymenialdisine, a marine sponge constituent. Chem. Biol. 2000;7:51–63. doi: 10.1016/S1074-5521(00)00063-6. PubMed DOI
Kitagawa I., Kobayashi M., Kitanaka K., Kido M., Kyogoku Y. Marine natural products XII. On the chemical constituents of the Okinawan marine sponge Hymeniacidon aldis. Chem. Pharm. Bull. 1983;31:2321–2328. doi: 10.1248/cpb.31.2321. DOI
Cimino G., de Rosa S., de Stefano S., Mazzarella L., Puliti R., Sodano G. Isolation and X-ray crystal structure of a novel bromo-compound from two marine sponges. Tetrahedron Lett. 1982;23:767–768. doi: 10.1016/S0040-4039(00)86943-9. DOI
Gompel M., Leost M., Bal De Kier J.E., Puricelli L., Hernandez F.L., Palermo J., Meijer L. Meridianins, a new family of protein kinase inhibitors isolated from the Ascidian Aplidium meridianum. Bioorg. Med. Chem. Lett. 2004;14:1703–1707. doi: 10.1016/j.bmcl.2004.01.050. PubMed DOI
Shiono Y., Miyazaki N., Murayyma T., Harizon T.K., Katja D.G., Supratman U., Nakata J., Kakihara Y., Saeki M., Yoshida J., et al. GSK-3β inhibitory activities of novel dichlororesorcinol derivatives from Cosmopora vilior isolated from mangrove plant. Phytochem. Lett. 2016;18:122–127. doi: 10.1016/j.phytol.2016.09.007. DOI
Kulhánková A., Cahlíková L., Novák Z., Macáková K., Kuneš J., Opletal L. Alkaloids from Zephyranthes robusta Baker and their acetylcholinesterase and butyrylcholinesterase-inhibitory activity. Chem. Biodivers. 2013;10:1120–1127. doi: 10.1002/cbdv.201200144. PubMed DOI
Šafratová M., Novák Z., Kulhánková A., Kuneš J., Hrabinová M., Jun D., Macáková K., Opletal L., Cahlíková L. Revised NMR data for 9-O-demethylgalanthine: An alkaloid from Zephyranthes robusta (Amaryllidaceae) and its biological activity. Nat. Prod. Commun. 2014;9:787–788. PubMed
Cahlíková L., Hrabinová M., Kulhánková A., Benešová N., Chlebek J., Jun D., Novák Z., Kuča K., Macáková K., Opletal L. Alkaloids from Chlidanthus fragrans and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase activities. Nat. Prod. Commun. 2013;8:1541–1544. PubMed
Vaněčková N., Hošťálková A., Šafratová M., Kuneš J., Hulcová D., Hrabinová M., Doskočil I., Štěpánková Š., Opletal L., Nováková L., et al. Isolation of Amaryllidaceae alkaloids from Nerine bowdenii W. Watson and their biological activities. RSC Adv. 2016;6:80114–80120. doi: 10.1039/C6RA20205E. DOI
Šafratová M., Hošťálková A., Hulcová D., Breiterová K., Hrabcová V., Machado M., Fontinha D., Prudêncio M., Kuneš J., Chlebek J., et al. Alkaloids from Narcissus poeticus cv. Pink Parasol of various structural types and their biological activity. Arch. Pharm. Res. 2017;41:208–218. doi: 10.1007/s12272-017-1000-4. PubMed DOI
Havlasová J., Šafratová M., Siatka T., Štěpánková Š., Ločárek M., Opletal L., Hrabinová M., Jun D., Benešová N., Novák Z., et al. Chemical composition of bioactive alkaloid extracts from some Narcissus species and varieties and their biological activity. Nat. Prod. Commun. 2014;9:1151–1155. PubMed
Baki A., Bielik A., Molnár L., Szendrei G., Keserü G.M. A high throughput luminescent assay for glycogen synthase kinase-3β inhibitors. ASSAY Drug. Dev. Technol. 2007;5:75–83. PubMed