Chemistry and Biological Activity of Alkaloids from the Genus Lycoris (Amaryllidaceae)
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
Pre-application research into innovative medicines and medical technologies project (Reg. No. CZ.02.1.01/0.0/0.0/18_069/0010046)
European Union
PubMed
33086636
PubMed Central
PMC7587589
DOI
10.3390/molecules25204797
PII: molecules25204797
Knihovny.cz E-resources
- Keywords
- Amaryllidaceae, Lycoris, Lycoris radiata, alkaloids, biological activity, folk medicine,
- MeSH
- Amaryllidaceae Alkaloids chemistry therapeutic use MeSH
- Amaryllidaceae chemistry MeSH
- Antimalarials chemistry therapeutic use MeSH
- Phytochemicals therapeutic use MeSH
- Plant Roots chemistry MeSH
- Humans MeSH
- Lycoris chemistry MeSH
- Plant Extracts chemistry therapeutic use MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Geographicals
- China MeSH
- Names of Substances
- Amaryllidaceae Alkaloids MeSH
- Antimalarials MeSH
- Phytochemicals MeSH
- Plant Extracts MeSH
Lycoris Herbert, family Amaryllidaceae, is a small genus of about 20 species that are native to the warm temperate woodlands of eastern Asia, as in China, Korea, Japan, Taiwan, and the Himalayas. For many years, species of Lycoris have been subjected to extensive phytochemical and pharmacological investigations, resulting in either the isolation or identification of more than 110 Amaryllidaceae alkaloids belonging to different structural types. Amaryllidaceae alkaloids are frequently studied for their interesting biological properties, including antiviral, antibacterial, antitumor, antifungal, antimalarial, analgesic, cytotoxic, and cholinesterase inhibition activities. The present review aims to summarize comprehensively the research that has been reported on the phytochemistry and pharmacology of the genus Lycoris.
See more in PubMed
Nair J.J., van Staden J. Pharmacological and toxicological insights to the South African Amaryllidaceae. Food Chem. Toxicol. 2013;62:262–275. doi: 10.1016/j.fct.2013.08.042. PubMed DOI
Jin Z. Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep. 2016;33:1318–1343. doi: 10.1039/C6NP00068A. PubMed DOI
Fennell C., van Staden J. Crinum species in traditional and modern medicine. J. Ethnopharmacol. 2001;78:15–26. doi: 10.1016/S0378-8741(01)00305-1. PubMed DOI
Havelek R., Muthna D., Tomsik P., Kralovec K., Seifrtova M., Cahlikova L., Hostalkova A., Safratova M., Perwein M., Cermakova E., et al. Anticancer potential of Amaryllidaceae alkaloids evaluated by screening with a panel of human cells, real-time cellular analysis and Ehrlich tumor-bearing mice. Chem. Biol. Interact. 2017;275:121–132. doi: 10.1016/j.cbi.2017.07.018. PubMed DOI
Vaněčková N., Hošt‘álková A., Šafratová M., Kuneš J., Hulcová D., Hrabinová M., Doskočil I., Štěpánková Š., Opletal L., Nováková L., et al. Isolation of Amaryllidaceae alkaloids from Nerine bowdenii W. Watson and their biological activities. RSC Adv. 2016;6:80114–80120. doi: 10.1039/C6RA20205E. DOI
Kornienko A., Evidente A. Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chem. Rev. 2008;108:1982–2014. doi: 10.1021/cr078198u. PubMed DOI PMC
Marco L., do Carmo Carreiras M. Galanthamine, a natural product for the treatment of Alzheimer’s disease. Recent Pat. CNS Drug Discov. 2006;1:105–111. doi: 10.2174/157488906775245246. PubMed DOI
Tae K., Ko S. New taxa of the genus Lycoris. Korean J. Plant Taxon. 1993;23:233–241. doi: 10.11110/kjpt.1993.23.4.233. DOI
Tae K., Ko S. A taxonomic study on the genus Lycoris (Amaryllidaceae) Korean J. Plant Taxon. 1996;26:19–35. doi: 10.11110/kjpt.1996.26.1.019. DOI
Ping-Sheng H.S.U., Kurita S., Zhi-Zhou Y.U., Jin-Zhen L.I.N. Synopsis of the genus Lycoris (Amaryllidaceae) Sida. 1994;16:301–331.
The Plant List. [(accessed on 10 September 2020)]; Available online: http://www.theplantlist.org/tpl1.1/search?q=Lycoris.
Chen G.-L., Tian Y.-Q., Wu J.-L., Li N., Guo M.-Q. Antiproliferative activities of Amaryllidaceae alkaloids from Lycoris radiata targeting DNA topoisomerase I. Sci. Rep. 2016;6:38284. doi: 10.1038/srep38284. PubMed DOI PMC
Feng T., Wang Y.-Y., Su J., Li Y., Cai X.-H., Luo X.-D. Amaryllidaceae alkaloids from Lycoris Radiata. Helv. Chim. Acta. 2011;94:178–183. doi: 10.1002/hlca.201000176. DOI
Huang S.-D., Zhang Y., He H.-P., Li S.-F., Tang G.-H., Chen D.-Z., Cao M.-M., Di Y.-T., Hao X.-J. A new Amaryllidaceae alkaloid from the bulbs of Lycoris radiata. Chin. J. Nat. Med. 2013;11:406–410. doi: 10.3724/SP.J.1009.2013.00406. PubMed DOI PMC
Wang L., Zhang X.Q., Yin Z.Q., Wang Y., Ye W.C. Two new Amaryllidaceae alkaloids from the bulbs of Lycoris Radiata. Chem. Pharm. Bull. 2009;57:610–611. doi: 10.1248/cpb.57.610. PubMed DOI
Shen C.-Y., Xu X.-L., Yang L.-J., Jiang J.-G. Identification of narciclasine from Lycoris radiata (L’Her.) Herb. and its inhibitory effect on LPS-induced inflammatory responses in macrophages. Food Chem. Toxicol. 2019;125:605–613. doi: 10.1016/j.fct.2019.02.003. PubMed DOI
Cao Z., Yang P., Zhou Q. Multiple biological functions and pharmacological effects of lycorine. Sci. China Chem. 2013;56:1382–1391. doi: 10.1007/s11426-013-4967-9. PubMed DOI PMC
Jin Z. Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep. 2011;28:1126–1142. doi: 10.1039/c0np00073f. PubMed DOI
Duke J.A., Ayensu E.S. Medicinal Plants of China. 2nd ed. Reference Publications; Algonac, MI, USA: 1985. p. 398.
Chase M., Reveal J., Fay M. A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae. Bot. J. Linn. Soc. 2009;161:132–136. doi: 10.1111/j.1095-8339.2009.00999.x. DOI
Kilgore M.B., Kutchan T.M. The Amaryllidaceae alkaloids: Biosynthesis and methods for enzyme discovery. Phytochem. Rev. 2016;15:317–337. doi: 10.1007/s11101-015-9451-z. PubMed DOI PMC
Armengol J.B.I., Berkov S., Claveria L.T., Pigni N.B., de Andrade J.P., Martínez V., Mahrer C.C., Meya F.V. Chemical and biological aspects of Amaryllidaceae alkaloids. In: Muñoz-Torrero D., editor. Recent Advances in Pharmaceutical Sciences. Transworld Research Network; Kerala, India: 2011. pp. 65–100.
Desgagne-Penix I. Biosynthesis of the Amaryllidaceae alkaloids. Plant Sci. Today. 2014;1:114–120.
Berkov S., Martínez-Francés V., Bastida J., Codina C., Ríos S. Evolution of alkaloid biosynthesis in the genus Narcissus. Phytochemistry. 2014;99:95–106. doi: 10.1016/j.phytochem.2013.11.002. PubMed DOI
Cahlíková L., Vaněčková N., Safratova M., Breiterová K., Blunden G., Hulcova D., Opletal L. The genus Nerine Herb. (Amaryllidaceae): Ethnobotany, phytochemistry, and biological activity. Molecules. 2019;24:4238. doi: 10.3390/molecules24234238. PubMed DOI PMC
Desgagné-Penix I. Biosynthesis of alkaloids in Amaryllidaceae plants: A review. Phytochem. Rev. 2020;5:239–270. doi: 10.1007/s11101-020-09678-5. DOI
Ang S., Liu X.M., Huang X.J., Zhang D.M., Zhang W., Wang L., Ye W.C. Four new Amaryllidaceae alkaloids from Lycoris radiata and their cytotoxicity. Planta Med. 2015;81:1712–1718. doi: 10.1055/s-0035-1557743. PubMed DOI
Yan H., Xie N., Zhong C., Su A., Hui X., Zhang X., Jin Z., Li Z., Feng J., He J. Aphicidal activities of Amaryllidaceae alkaloids from bulbs of Lycoris radiata against Aphis citricola. Ind. Crop. Prod. 2018;123:372–378. doi: 10.1016/j.indcrop.2018.06.082. DOI
Berkov S., Osorio E., Viladomat F., Bastida J. Chapter Two-Chemodiversity, chemotaxonomy and chemoecology of Amaryllidaceae alkaloids. In: Knölker H.-J., editor. The Alkaloids: Chemistry and Biology. Volume 83. Academic Press; Cambridge, MA, USA: 2020. pp. 113–185. PubMed
Zhu Y.-Y., Li X., Yu H.-Y., Xiong Y.-F., Zhang P., Pi H.-F., Ruan H.-L. Alkaloids from the bulbs of Lycoris longituba and their neuroprotective and acetylcholinesterase inhibitory activities. Arch. Pharm. Res. 2014;38:604–613. doi: 10.1007/s12272-014-0397-2. PubMed DOI
Jin A., Li X., Zhu Y.Y., Yu H.Y., Pi H.F., Zhang P., Ruan H.L. Four new compounds from the bulbs of Lycoris aurea with neuroprotective effects against CoCl2 and H2O2-induced SH-SY5Y cell injuries. Arch. Pharm. Res. 2014;37:315–323. doi: 10.1007/s12272-013-0188-1. PubMed DOI
Tian Y., Zhang C., Guo M. Comparative analysis of Amaryllidaceae alkaloids from three Lycoris species. Molecules. 2015;20:21854–21869. doi: 10.3390/molecules201219806. PubMed DOI PMC
Zhang X., Huang H., Liang X., Huang H., Dai W., Shen Y., Yan S., Zhang W. Analysis of Amaryllidaceae alkaloids from Crinum by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid. Commun. Mass Spectrom. 2009;23:2903–2916. doi: 10.1002/rcm.4205. PubMed DOI
Takayama H., Kinoshita E., Kitajima M., Kogure N. Two new alkaloids from bulbs of Lycoris squamigera. Heterocycles. 2009;77:1389–1396. doi: 10.3987/COM-08-S(F)92. DOI
Li H., Ma G., Xu Y., Hong S. Alkaloids of Lycoris Guangxiensis. Planta Med. 1987;53:259–261. doi: 10.1055/s-2006-962697. PubMed DOI
Kihara M., Xu L., Konishi K., Kida K., Nagao Y., Kobayashi S., Shingu T. Isolation and structure elucidation of a novel alkaloid, incartine, a supposed biosynthetic intermediate, from flowers of Lycoris incarnata. Chem. Pharm. Bull. 1994;42:289–292. doi: 10.1248/cpb.42.289. DOI
Li X., Yu H.Y., Wang Z.Y., Pi H.F., Zhang P., Ruan H.L. Neuroprotective compounds from the bulbs of Lycoris radiata. Fitoterapia. 2013;88:82–90. doi: 10.1016/j.fitote.2013.05.006. PubMed DOI
Kihara M., Konishi K., Xu L., Kobayashi S. Alkaloidal constituents of the flowers of Lycoris radiata HERB: Amaryllidaceae. Chem. Pharm. Bull. 1991;39:1849–1853. doi: 10.1248/cpb.39.1849. DOI
Jitsuno M., Yokosuka A., Hashimoto K., Amano O., Sakagami H., Mimaki Y. Chemical constituents of Lycoris albiflora and their cytotoxic activities. Nat. Prod. Commun. 2011;6:1934578X1100600208. doi: 10.1177/1934578X1100600208. PubMed DOI
Boit H.G., Döpke W., Stender W. Alkaloide aus Hippeastrum rutilum, Lycoris albiflora, Zephyranthes andersoniana und Sternbergia fischeriana. Naturwissenschaften. 1958;45:390. doi: 10.1007/BF00678524. DOI
Guo Y., Pigni N., Zheng Y., de Andrade J., Torras-Claveria L., Borges W., Francesc V., Codina C., Bastida J. Analysis of bioactive Amaryllidaceae alkaloid profiles in Lycoris species by GC-MS. Nat. Prod. Commun. 2014;9:1081–1086. doi: 10.1177/1934578X1400900806. PubMed DOI
Boit H.-G., Ehmke H. XVI. Mitteil. über Amaryllidaceen-Alkaloide. Alkaloide von Nerine corusca, N. flexuosa, Pancratium illyricum, Lycoris aurea und L. Incarnata. Chem. Ber. 1957;90:369–373. doi: 10.1002/cber.19570900311. DOI
Mu H.M., Wang R., Li X.D., Jiang Y.M., Peng F., Xia B. Alkaloid accumulation in different parts and ages of Lycoris Chinensis. Z. Nat. C. 2010;65:458–462. doi: 10.1515/znc-2010-7-807. PubMed DOI
Wu W.-M., Zhu Y.-Y., Li H.-R., Yu H.-Y., Zhang P., Pi H.-F., Ruan H.-L. Two new alkaloids from the bulbs of Lycoris sprengeri. J. Asian Nat. Prod. Res. 2014;16:192–199. doi: 10.1080/10286020.2013.864639. PubMed DOI
Toriizuka Y., Kinoshita E., Kogure N., Kitajima M., Ishiyama A., Otoguro K., Yamada H., Ōmura S., Takayama H. New lycorine-type alkaloid from Lycoris traubii and evaluation of antitrypanosomal and antimalarial activities of lycorine derivatives. Bioorganic Med. Chem. 2008;16:10182–10189. doi: 10.1016/j.bmc.2008.10.061. PubMed DOI
Wang L., Yin Z.-Q., Cai Y., Zhang X.-Q., Yao X.-S., Ye W.-C. Amaryllidaceae alkaloids from the bulbs of Lycoris Radiata. BioChem. Syst. Ecol. 2010;38:444–446. doi: 10.1016/j.bse.2010.02.005. DOI
Hao B., Shen S.F., Zhao Q.J. Cytotoxic and antimalarial Amaryllidaceae alkaloids from the bulbs of Lycoris radiata. Molecules. 2013;18:2458–2468. doi: 10.3390/molecules18032458. PubMed DOI PMC
Liu Z.-M., Huang X.-Y., Cui M.-R., Zhang X.-D., Chen Z., Yang B.-S., Zhao X.-K. Amaryllidaceae alkaloids from the bulbs of Lycoris radiata with cytotoxic and anti-inflammatory activities. Fitoterapia. 2015;101:188–193. doi: 10.1016/j.fitote.2015.01.003. PubMed DOI
Liao N., Ao M., Zhang P., Yu L. Extracts of Lycoris aurea induce apoptosis in murine sarcoma S180 cells. Molecules. 2012;17:3723–3735. doi: 10.3390/molecules17043723. PubMed DOI PMC
Song J.-H., Zhang L., Song Y. Alkaloids from Lycoris aurea and their cytotoxicities against the head and neck squamous cell carcinoma. Fitoterapia. 2014;95:121–126. doi: 10.1016/j.fitote.2014.03.006. PubMed DOI
Deng B., Ye L., Yin H., Liu Y., Hu S., Li B. Determination of pseudolycorine in the bulb of Lycoris radiata by capillary electrophoresis combined with online electrochemiluminescence using ultrasonic-assisted extraction. J. Chromatogr. B. 2011;879:927–932. doi: 10.1016/j.jchromb.2011.03.002. PubMed DOI
Cao P., Pan D.S., Han S., Yu C.Y., Zhao Q.J., Song Y., Liang Y. Alkaloids from Lycoris caldwellii and their particular cytotoxicities against the astrocytoma and glioma cell lines. Arch. Pharm. Res. 2013;36:927–932. doi: 10.1007/s12272-013-0089-3. PubMed DOI
Yun Y.S., Tajima M., Takahashi S., Takahashi Y., Umemura M., Nakano H., Park H.S., Inoue H. Two alkaloids from bulbs of Lycoris sanguinea MAXIM. suppress PEPCK expression by inhibiting the phosphorylation of CREB. Phytother. Res. 2016;30:1689–1695. doi: 10.1002/ptr.5676. PubMed DOI
Pi H.F., Zhang P., Ruan H.L., Zhang Y.H., Sun H.D., Wu J.Z. A new alkaloid from Lycoris aurea. Chin. Chem. Lett. 2009;20:1319–1320. doi: 10.1016/j.cclet.2009.06.003. DOI
Nair J.J., van Staden J. Cytotoxicity studies of lycorine alkaloids of the Amaryllidaceae. Nat. Prod. Commun. 2014;9:1934578X1400900834. doi: 10.1177/1934578X1400900834. PubMed DOI
Habartová K., Cahlíková L., Řezáčová M., Havelek R. The biological activity of alkaloids from the Amaryllidaceae: From cholinesterases inhibition to anticancer activity. Nat. Prod. Commun. 2016;11:1934578X1601101038. doi: 10.1177/1934578X1601101038. PubMed DOI
Nair J.J., Rárová L., Strnad M., Bastida J., van Staden J. Mechanistic insights to the cytotoxicity of Amaryllidaceae alkaloids. Nat. Prod. Commun. 2015;10:1934578X1501000138. doi: 10.1177/1934578X1501000138. PubMed DOI
Nair J.J., Bastida J., Viladomat F., van Staden J. Cytotoxic agents of the crinane series of Amaryllidaceae alkaloids. Nat. Prod. Commun. 2013;8:1934578X1300800501. doi: 10.1177/1934578X1300800501. PubMed DOI
McNulty J., Nair J.J., Bastida J., Pandey S., Griffin C. Structure-activity studies on the lycorine pharmacophore: A potent inducer of apoptosis in human leukemia cells. Phytochemistry. 2009;70:913–919. doi: 10.1016/j.phytochem.2009.04.012. PubMed DOI PMC
Evdokimov N.M., Lamoral-Theys D., Mathieu V., Andolfi A., Frolova L.V., Pelly S.C., van Otterlo W.A., Magedov I.V., Kiss R., Evidente A., et al. In search of a cytostatic agent derived from the alkaloid lycorine: Synthesis and growth inhibitory properties of lycorine derivatives. Bioorganic Med. Chem. 2011;19:7252–7261. doi: 10.1016/j.bmc.2011.09.051. PubMed DOI PMC
Griffin C., Sharda N., Sood D., Nair J., McNulty J., Pandey S. Selective cytotoxicity of pancratistatin-related natural Amaryllidaceae alkaloids: Evaluation of the activity of two new compounds. Cancer Cell Int. 2007;7:10. doi: 10.1186/1475-2867-7-10. PubMed DOI PMC
Cahlíková L., Kawano I., Rezáčová M., Blunden G., Hulcova D., Havelek R. The Amaryllidaceae alkaloids haemanthamine, haemanthidine and their semisynthetic derivatives as potential drugs. Phytochem. Rev. 2020;26:1519–1524. doi: 10.1007/s11101-020-09675-8. DOI
Lefranc F., Sauvage S., Goietsenoven G., Mégalizzi V., Lamoral-Theys D., Debeir O., Spiegl-Kreinecker S., Berger W., Mathieu V., Decaestecker C., et al. Narciclasine, a plant growth modulator, activates Rho and stress fibers in glioblastoma cells. Mol. Cancer. 2009;8:1739–1750. doi: 10.1158/1535-7163.MCT-08-0932. PubMed DOI
Pettit G.R., Pettit G.R., Backhaus R.A., Boyd M.R., Meerow A.W. Antineoplastic agents, 256. Cell growth inhibitory isocarbostyrils from Hymenocallis. J. Nat. Prod. 1993;56:1682–1687. doi: 10.1021/np50100a004. PubMed DOI
Van Goietsenoven G., Hutton J., Becker J.-P., Lallemand B., Robert F., Lefranc F., Pirker C., Vandenbussche G., Van Antwerpen P., Evidente A., et al. Targeting of eEF1A with Amaryllidaceae isocarbostyrils as a strategy to combat melanomas. FASEB J. 2010;24:4575–4584. doi: 10.1096/fj.10-162263. PubMed DOI PMC
Gopalakrishnan R., Matta H., Choi S., Chaudhary P. Narciclasine, an isocarbostyril alkaloid, has preferential activity against primary effusion lymphoma. Sci. Rep. 2020;10:5712. doi: 10.1038/s41598-020-62690-9. PubMed DOI PMC
Dumont P., Ingrassia L., Rouzeau S., Ribaucour F., Thomas S., Roland I., Darro F., Lefranc F., Kiss R. The Amaryllidaceae isocarbostyril narciclasine induces apoptosis by activation of the death receptor and/or mitochondrial pathways in cancer cells but not in normal fibroblasts 1. Neoplasia. 2007;9:766–776. doi: 10.1593/neo.07535. PubMed DOI PMC
Van Goietsenoven G., Mathieu V., Lefranc F., Kornienko A., Evidente A., Kiss R. Narciclasine as well as other Amaryllidaceae isocarbostyrils are promising GTP-ase targeting agents against brain cancers. Med. Res. Rev. 2013;33:439–455. doi: 10.1002/med.21253. PubMed DOI
Stark A., Schwenk R., Wack G., Zuchtriegel G., Hatemler M., Bräutigam J., Schmidtko A., Reichel C., Bischoff I., Fürst R. Narciclasine exerts anti-inflammatory actions by blocking leukocyte–endothelial cell interactions and down-regulation of the endothelial TNF receptor 1. FASEB J. 2019;33:8771–8781. doi: 10.1096/fj.201802440R. PubMed DOI
Nordberg A., Ballard C., Bullock R., Darreh-Shori T., Somogyi M. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim. Care Companion CNS Disord. 2013;15 doi: 10.4088/PCC.12r01412. PubMed DOI PMC
Yu W., Hao W., Hong-zhuan C. AChE Inhibition-based multi-target-directed ligands, a novel pharmacological approach for the symptomatic and disease-modifying therapy of Alzheimer’s Disease. Curr. Neuropharmacol. 2016;14:364–375. PubMed PMC
De Vita D., Pandolfi F., Ornano L., Feroci M., Chiarotto I., Sileno I., Pepi F., Costi R., Di Santo R., Scipione L. New N,N-dimethylcarbamate inhibitors of acetylcholinesterase: Design, synthesis and biological evaluation. J. Enzym. Inhib. Med. Chem. 2016;31:106–113. doi: 10.1080/14756366.2016.1220377. PubMed DOI
Al Mamun A., Maříková J., Hulcová D., Janoušek J., Šafratová M., Nováková L., Kučera T., Hrabinová M., Kuneš J., Korábečný J., et al. Amaryllidaceae alkaloids of belladine type from Narcissus pseudonarcissus cv. Carlton as new selective inhibitors of butyrylcholinesterase. Biomolecules. 2020;10:800. doi: 10.3390/biom10050800. PubMed DOI PMC
Hulcová D., Maříková J., Korábečný J., Hošťálková A., Jun D., Kuneš J., Chlebek J., Opletal L., De Simone A., Nováková L., et al. Amaryllidaceae alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as potential drugs in treatment of Alzheimer’s disease. Phytochemistry. 2019;165:112055. doi: 10.1016/j.phytochem.2019.112055. PubMed DOI
Moreno R., Tallini L.R., Salazar C., Osorio E.H., Montero E., Bastida J., Oleas N.H., Acosta León K. Chemical profiling and cholinesterase inhibitory activity of five Phaedranassa Herb. (Amaryllidaceae) species from Ecuador. Molecules. 2020;25:2092. doi: 10.3390/molecules25092092. PubMed DOI PMC
T Tallini L.R., Bastida J., Cortes N., Osorio E.H., Theoduloz C., Schmeda-Hirschmann G. Cholinesterase inhibition activity, alkaloid profiling and molecular docking of Chilean Rhodophiala (Amaryllidaceae) Molecules. 2018;23:1532. doi: 10.3390/molecules23071532. PubMed DOI PMC
Tiwari M.K., Chaudhary S. Artemisinin-derived antimalarial endoperoxides from bench-side to bed-side: Chronological advancements and future challenges. Med. Res. Rev. 2020;40:1220–1275. doi: 10.1002/med.21657. PubMed DOI
Dedryver C.-A., Le Ralec A., Fabre F. The conflicting relationships between aphids and men: A review of aphid damage and control strategies. Comptes Rendus Biol. 2010;333:539–553. doi: 10.1016/j.crvi.2010.03.009. PubMed DOI
Liu B., Gao X., Zheng B. Effects of sublethal doses of anticholinesterase agents on toxicity of insecticides and their induction to acetylcholinesterase (AChE) activity in Helicoverpa armigera. Acta Entomol. Sin. 2003;46:691–696.