Distinct brain atrophy progression subtypes underlie phenoconversion in isolated REM sleep behaviour disorder
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie
PubMed
40447483
PubMed Central
PMC12177146
DOI
10.1016/j.ebiom.2025.105753
PII: S2352-3964(25)00197-5
Knihovny.cz E-zdroje
- Klíčová slova
- Dementia with Lewy bodies, MRI, Machine learning, Parkinson's disease, REM sleep behaviour disorder, Subtyping,
- MeSH
- atrofie MeSH
- demence s Lewyho tělísky patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mozek * patologie diagnostické zobrazování MeSH
- Parkinsonova nemoc patologie MeSH
- porucha chování v REM spánku * patologie etiologie diagnóza diagnostické zobrazování MeSH
- progrese nemoci MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
BACKGROUND: Synucleinopathies include a spectrum of disorders varying in features and severity, including idiopathic/isolated REM sleep behaviour disorder (iRBD), Parkinson's disease (PD), and dementia with Lewy bodies (DLB). Distinct brain atrophy patterns may already be seen in iRBD; however, how brain atrophy begins and progresses remains unclear. METHODS: A multicentric cohort of 1276 participants (451 polysomnography-confirmed iRBD, 142 PD with probable RBD, 87 DLB, and 596 controls) underwent T1-weighted MRI and longitudinal clinical assessments. Brain atrophy was quantified using vertex-based cortical surface reconstruction and volumetric segmentation. The unsupervised machine learning algorithm, Subtype and Stage Inference (SuStaIn), was used to reconstruct spatiotemporal patterns of brain atrophy progression. FINDINGS: SuStaIn identified two distinct subtypes of brain atrophy progression: 1) a "cortical-first" subtype, with atrophy beginning in the frontal lobes and involving the subcortical structures at later stages; and 2) a "subcortical-first" subtype, with atrophy beginning in the limbic areas and involving cortical structures at later stages. Both cortical- and subcortical-first subtypes were associated with a higher rate of increase in MDS-UPDRS-III scores over time, but cognitive decline was subtype-specific, being associated with advancing stages in patients classified as cortical-first but not subcortical-first. Classified patients were more likely to phenoconvert over time compared to stage 0/non-classified patients. Among the 88 patients with iRBD who phenoconverted during follow-up, those classified within the cortical-first subtype had a significantly increased likelihood of developing DLB compared to PD, unlike those classified within the subcortical-first subtype. INTERPRETATION: There are two distinct atrophy progression subtypes in iRBD, with the cortical-first subtype linked to an increased likelihood of developing DLB, while both subtypes were associated with worsening parkinsonian motor features. This underscores the potential utility of subtype identification and staging for monitoring disease progression and patient selection for trials. FUNDING: This study was supported by grants to S.R. from Alzheimer Society Canada (0000000082) and by Parkinson Canada (PPG-2023-0000000122). The work performed in Montreal was supported by the Canadian Institutes of Health Research (CIHR), the Fonds de recherche du Québec - Santé (FRQS), and the W. Garfield Weston Foundation. The work performed in Oxford was funded by Parkinson's UK (J-2101) and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC). The work performed in Prague was funded by the Czech Health Research Council (grant NU21-04-00535) and by The National Institute for Neurological Research (project number LX22NPO5107), financed by the European Union - Next Generation EU. The work performed in Newcastle was funded by the NIHR Newcastle BRC based at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University. The work performed in Paris was funded by grants from the Programme d'investissements d'avenir (ANR-10-IAIHU-06), the Paris Institute of Neurosciences - IHU (IAIHU-06), the Agence Nationale de la Recherche (ANR-11-INBS-0006), Électricité de France (Fondation d'Entreprise EDF), the EU Joint Programme-Neurodegenerative Disease Research (JPND) for the Control-PD Project (Cognitive Propagation in Prodromal Parkinson's disease), the Fondation Thérèse et René Planiol, the Fonds Saint-Michel; by unrestricted support for research on Parkinson's disease from Energipole (M. Mallart) and the Société Française de Médecine Esthétique (M. Legrand); and by a grant from the Institut de France to Isabelle Arnulf (for the ALICE Study). The work performed in Sydney was supported by a Dementia Team Grant from the National Health and Medical Research Council (#1095127). The work performed in Cologne was funded by the Else Kröner-Fresenius-Stiftung (grant number 2019_EKES.02), the Köln Fortune Program, Faculty of Medicine, University of Cologne, and the "Netzwerke 2021 Program (Ministry of Culture and Science of Northrhine Westphalia State). The work performed in Aarhus was supported by funding from the Lundbeck Foundation, Parkinsonforeningen (The Danish Parkinson Association), and the Jascha Foundation.
Department of Nuclear Medicine and PET Aarhus University Hospital Aarhus DK 8200 Denmark
Department of Psychiatry University of Cambridge School of Clinical Medicine Cambridge UK
Parkinson's Disease Research Clinic Macquarie Medical School Macquarie University Sydney Australia
The Neuro McGill University Montreal H3A 2B4 Canada
Translational and Clinical Research Institute Newcastle University Newcastle UK
Zobrazit více v PubMed
Spillantini M.G., Schmidt M.L., Lee V.M.Y., Trojanowski J.Q., Jakes R., Goedert M. α-Synuclein in Lewy bodies. Nature. 1997;388(6645):839–840. PubMed
Darweesh S.K.L., Verlinden V.J.A., Stricker B.H., Hofman A., Koudstaal P.J., Ikram M.A. Trajectories of prediagnostic functioning in Parkinson's disease. Brain. 2017;140(2):429–441. PubMed
Berg D., Borghammer P., Fereshtehnejad S.M., et al. Prodromal Parkinson disease subtypes — key to understanding heterogeneity. Nat Rev Neurol. 2021;17(6):349–361. PubMed
Joza S., Hu M.T., Jung K.Y., et al. Progression of clinical markers in prodromal Parkinson's disease and dementia with Lewy bodies: a multicentre study. Brain. 2023;146(8):3258–3272. PubMed
Rahayel S., Tremblay C., Vo A., et al. Brain atrophy in prodromal synucleinopathy is shaped by structural connectivity and gene expression. Brain. 2022;145(9):3162–3178. PubMed
Rahayel S., Tremblay C., Vo A., et al. Mitochondrial function-associated genes underlie cortical atrophy in prodromal synucleinopathies. Brain. 2023;146(8):3301–3318. PubMed PMC
Rahayel S., Postuma R.B., Montplaisir J., et al. Cortical and subcortical gray matter bases of cognitive deficits in REM sleep behavior disorder. Neurology. 2018;90(20):e1759–e1770. PubMed PMC
Rahayel S., Postuma R.B., Montplaisir J., et al. A prodromal brain-clinical pattern of cognition in synucleinopathies. Ann Neurol. 2021;89(2):341–357. PubMed
Pereira J.B., Weintraub D., Chahine L., Aarsland D., Hansson O., Westman E. Cortical thinning in patients with REM sleep behavior disorder is associated with clinical progression. NPJ Parkinsons Dis. 2019;5:7. PubMed PMC
Joza S., Hu M.T., Jung K.Y., et al. Prodromal dementia with Lewy bodies in REM sleep behavior disorder: a multicenter study. Alzheimers Dement. 2024;20(1):91–102. PubMed PMC
Rahayel S., Mišić B., Zheng Y.Q., et al. Differentially targeted seeding reveals unique pathological alpha-synuclein propagation patterns. Brain. 2021;145(5):1743–1756. PubMed PMC
Zheng Y.Q., Zhang Y., Yau Y., et al. Local vulnerability and global connectivity jointly shape neurodegenerative disease propagation. PLoS Biol. 2019;17(11) PubMed PMC
Abdelgawad A., Rahayel S., Zheng Y.Q., et al. Predicting longitudinal brain atrophy in Parkinson's disease using a Susceptible-Infected-Removed agent-based model. Netw Neurosci. 2023;7(3):906–925. PubMed PMC
Campabadal A., Segura B., Junque C., Iranzo A. Structural and functional magnetic resonance imaging in isolated REM sleep behavior disorder: a systematic review of studies using neuroimaging software. Sleep Med Rev. 2021;59 PubMed
Shin J.H., Kim H., Kim Y.K., et al. Longitudinal evolution of cortical thickness signature reflecting Lewy body dementia in isolated REM sleep behavior disorder: a prospective cohort study. Transl Neurodegener. 2023;12(1):27. PubMed PMC
Young A.L., Marinescu R.V., Oxtoby N.P., et al. Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference. Nat Commun. 2018;9(1):4273. PubMed PMC
Chertkow H., Borrie M., Whitehead V., et al. The comprehensive assessment of neurodegeneration and dementia: Canadian cohort study. Can J Neurol Sci. 2019;46(5):499–511. PubMed
Duchesne S., Chouinard I., Potvin O., et al. The Canadian dementia imaging protocol: harmonizing national cohorts. J Magn Reson Imaging. 2019;49(2):456–465. PubMed
Mohaddes Z., Das S., Abou-Haidar R., et al. National neuroinformatics framework for canadian consortium on neurodegeneration in aging (CCNA) Front Neuroinform. 2018;12:85. PubMed PMC
Marek K., Chowdhury S., Siderowf A., et al. The Parkinson's progression markers initiative (PPMI) - establishing a PD biomarker cohort. Ann Clin Transl Neurol. 2018;5(12):1460–1477. PubMed PMC
American Academy of Sleep Medicine . International Classification of Sleep Disorders. Third ed. American Acad. of Sleep Medicine; Darien, Ill: 2014. p. 383.
McKeith I.G., Boeve B.F., Dickson D.W., et al. Diagnosis and management of dementia with Lewy bodies. Neurology. 2017;89(1):88–100. PubMed PMC
Stiasny-Kolster K., Mayer G., Schäfer S., Möller J.C., Heinzel-Gutenbrunner M., Oertel W.H. The REM sleep behavior disorder screening questionnaire--a new diagnostic instrument. Mov Disord. 2007;22(16):2386–2393. PubMed
Klapwijk E.T., van de Kamp F., van der Meulen M., Peters S., Wierenga L.M. Qoala-T: a supervised-learning tool for quality control of FreeSurfer segmented MRI data. Neuroimage. 2019;189:116–129. PubMed
Monereo-Sánchez J., de Jong J.J.A., Drenthen G.S., et al. Quality control strategies for brain MRI segmentation and parcellation: practical approaches and recommendations - insights from the Maastricht study. Neuroimage. 2021;237 PubMed
Rahayel S., Gaubert M., Postuma R.B., et al. Brain atrophy in Parkinson's disease with polysomnography-confirmed REM sleep behavior disorder. Sleep. 2019;42(6) PubMed PMC
Voevodskaya O., Simmons A., Nordenskjöld R., et al. The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer's disease. Front Aging Neurosci. 2014;6:264. PubMed PMC
Vogel J.W., Young A.L., Oxtoby N.P., et al. Four distinct trajectories of tau deposition identified in Alzheimer's disease. Nat Med. 2021;27(5):871–881. PubMed PMC
Scotton W.J., Shand C., Todd E., et al. Uncovering spatiotemporal patterns of atrophy in progressive supranuclear palsy using unsupervised machine learning. Brain Communications. 2023;5(2) PubMed PMC
Fortin J.P. neuroCombat: harmonization of multi-site imaging data with ComBat [Internet] 2023. https://github.com/Jfortin1/neuroCombat_Rpackage Available from:
Fortin J.P., Cullen N., Sheline Y.I., et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage. 2018;167:104–120. PubMed PMC
Radua J., Vieta E., Shinohara R., et al. Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. Neuroimage. 2020;218 PubMed PMC
Potvin O., Chouinard I., Dieumegarde L., et al. The Canadian dementia imaging protocol: harmonization validity for morphometry measurements. Neuroimage Clin. 2019;24 PubMed PMC
Aksman L.M., Wijeratne P.A., Oxtoby N.P., et al. pySuStaIn: A Python implementation of the Subtype and Stage Inference algorithm. SoftwareX. 2021;16 PubMed PMC
Guillerme T. dispRity: A modular R package for measuring disparity. Methods Ecol Evol. 2018;9(7):1755–1763.
Marinescu R.V., Eshaghi A., Alexander D.C., Golland P. In: Zhu D., Yan J., Huang H., et al., editors. 2019. BrainPainter: A Software for the Visualisation of Brain Structures, Biomarkers and Associated Pathological Processes. (Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy). PubMed DOI PMC
Fasnacht J.S., Wueest A.S., Berres M., et al. Conversion between the Montreal cognitive assessment and the mini-mental status examination. J Am Geriatr Soc. 2023;71(3):869–879. PubMed
Campabadal A., Inguanzo A., Segura B., et al. Cortical gray matter progression in idiopathic REM sleep behavior disorder and its relation to cognitive decline. Neuroimage Clin. 2020;28 PubMed PMC
Vo A., Tremblay C., Rahayel S., et al. Network connectivity and local transcriptomic vulnerability underpin cortical atrophy progression in Parkinson's disease. Neuroimage Clin. 2023;40 PubMed PMC
Shafiei G., Bazinet V., Dadar M., et al. Network structure and transcriptomic vulnerability shape atrophy in frontotemporal dementia. Brain. 2023;146(1):321–336. PubMed PMC
Kantarci K., Nedelska Z., Chen Q., et al. Longitudinal atrophy in prodromal dementia with Lewy bodies points to cholinergic degeneration. Brain Commun. 2022;4(2) PubMed PMC
Oppedal K., Ferreira D., Cavallin L., et al. A signature pattern of cortical atrophy in dementia with Lewy bodies: a study on 333 patients from the European DLB consortium. Alzheimers Dement. 2019;15(3):400–409. PubMed
Constant A.B., Basavaraju R., France J., et al. Longitudinal patterns of cortical atrophy on MRI in patients with Alzheimer disease with and without Lewy body pathology. Neurology. 2022;99(17):e1843–e1852. PubMed PMC
Nedelska Z., Ferman T.J., Boeve B.F., et al. Pattern of brain atrophy rates in autopsy-confirmed dementia with Lewy bodies. Neurobiol Aging. 2015;36(1):452–461. PubMed PMC
Zhou C., Wang L., Cheng W., et al. Two distinct trajectories of clinical and neurodegeneration events identified in Parkinson’s disease. NPJ Parkinsons Dis. 2023;9(1):111. PubMed PMC
Fereshtehnejad S.M., Yao C., Pelletier A., Montplaisir J.Y., Gagnon J.F., Postuma R.B. Evolution of prodromal Parkinson's disease and dementia with Lewy bodies: a prospective study. Brain. 2019;142(7):2051–2067. PubMed
Postuma R.B., Iranzo A., Hu M., et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain. 2019;142(3):744–759. PubMed PMC
Sarro L., Senjem M.L., Lundt E.S., et al. Amyloid-β deposition and regional grey matter atrophy rates in dementia with Lewy bodies. Brain. 2016;139(Pt 10):2740–2750. PubMed PMC
Irwin D.J., Hurtig H.I. The contribution of tau, amyloid-beta and alpha-synuclein pathology to dementia in Lewy body disorders. J Alzheimers Dis Parkinsonism. 2018;8(4) PubMed PMC
Fernandes M., Maio S., Eusebi P., et al. Cerebrospinal-fluid biomarkers for predicting phenoconversion in patients with isolated rapid-eye movement sleep behavior disorder. Sleep. 2024;47(1) PubMed
Delva A., Pelletier A., Somerville E., et al. Plasma pTau181 and amyloid markers predict conversion to dementia in idiopathic REM sleep behaviour disorder. Brain. 2025 doi: 10.1093/brain/awaf003. PubMed DOI PMC
Diaz-Galvan P., Przybelski S.A., Lesnick T.G., et al. β-Amyloid load on PET along the continuum of dementia with Lewy bodies. Neurology. 2023;101(2):e178–e188. PubMed PMC
Borghammer P. The brain-first vs. body-first model of Parkinson's disease with comparison to alternative models. J Neural Transm (Vienna) 2023;130(6):737–753. PubMed
Marchand D.G., Postuma R.B., Escudier F., et al. How does dementia with Lewy bodies start? prodromal cognitive changes in REM sleep behavior disorder. Ann Neurol. 2018;83(5):1016–1026. PubMed
Borghammer P., Okkels N., Weintraub D. Parkinson's disease and dementia with Lewy bodies: one and the same. J Parkinsons Dis. 2024;14(3):383–397. PubMed PMC
Torontali Z.A., Fraigne J.J., Sanghera P., Horner R., Peever J. The sublaterodorsal tegmental nucleus functions to couple brain state and motor activity during REM sleep and wakefulness. Curr Biol. 2019;29(22):3803–3813.e5. PubMed
Biondetti E., Santin M.D., Valabrègue R., et al. The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson's disease. Brain. 2021;144(10):3114–3125. PubMed PMC
Nepozitek J., Varga Z., Dostalova S., et al. Magnetic susceptibility changes in the brainstem reflect REM sleep without atonia severity in isolated REM sleep behavior disorder. NPJ Parkinsons Dis. 2023;9(1):112. PubMed PMC
Zhang X., Sun X., Wang J., Tang L., Xie A. Prevalence of rapid eye movement sleep behavior disorder (RBD) in Parkinson's disease: a meta and meta-regression analysis. Neurol Sci. 2017;38(1):163–170. PubMed