Magnetic susceptibility changes in the brainstem reflect REM sleep without atonia severity in isolated REM sleep behavior disorder
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Cooperatio Program in Neuroscience
Univerzita Karlova v Praze (Charles University)
Cooperatio Program in Neuroscience
Univerzita Karlova v Praze (Charles University)
Cooperatio Program in Neuroscience
Univerzita Karlova v Praze (Charles University)
Cooperatio Program in Neuroscience
Univerzita Karlova v Praze (Charles University)
31452
Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
PubMed
37452075
PubMed Central
PMC10349141
DOI
10.1038/s41531-023-00557-2
PII: 10.1038/s41531-023-00557-2
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
REM sleep without atonia (RWA) is the hallmark of isolated REM sleep behavior disorder (iRBD) and is caused by neurodegeneration of brainstem structures. Previously, quantitative susceptibility mapping (QSM) was shown to detect microstructural tissue changes in neurodegenerative diseases. The goal of the study was to compare brainstem magnetic susceptibility (MS) in iRBD and controls using the voxel-based QSM approach and to examine the association between brainstem MS and severity of RWA in iRBD. Sixty iRBD patients and 41 healthy controls were included in the study. Phasic, tonic, mixed RWA and SINBAR score was quantified. QSM maps were reconstructed with QSMbox software from a multi-gradient-echo sequence acquired at 3T MRI system and normalized using a custom T1 template. Voxel-based analysis with age and gender as covariates was performed using a two-sample t-test model for between-group comparison and using a linear regression model for association with the RWA parameters. Statistical maps were generated using threshold free cluster enhancement with p-value p < 0.05, corrected for family wise error. Compared to controls, the iRBD group had higher MS in bilateral substantia nigra (SN), red nucleus and the ventral tegmental area. MS positively correlated with iRBD duration in the right pedunculotegmental nucleus and white matter of caudal mesencephalic and pontine tegmentum and with phasic RWA in bilateral SN. QSM was able to detect MS abnormalities in several brainstem structures in iRBD. Association of MS levels in the brainstem with the intensity of RWA suggests that increased iron content in SN is related to RWA severity.
Centre of Advanced Imaging University of Queensland Brisbane Queensland Australia
Radiodiagnostic Department Na Homolce Hospital Prague Czech Republic
Zobrazit více v PubMed
Schenck CH, Bundlie SR, Ettinger MG, Mahowald MW. Chronic behavioral disorders of human REM sleep: a new category of parasomnia. Sleep. 1986;9:293–308. doi: 10.1093/sleep/9.2.293. PubMed DOI
Arnulf I. REM sleep behavior disorder: motor manifestations and pathophysiology. Mov. Disord. 2012;27:677–689. doi: 10.1002/mds.24957. PubMed DOI
Schenck CH. Rapid eye movement sleep behavior disorder: current knowledge and future directions. Sleep. Med. 2013;14:699–702. doi: 10.1016/j.sleep.2013.04.011. PubMed DOI
Schenck CH, Bundlie SR, Mahowald MW. Delayed emergence of a parkinsonian disorder in 38% of 29 older men initially diagnosed with idiopathic rapid eye movement sleep behaviour disorder. Neurology. 1996;46:388–393. doi: 10.1212/WNL.46.2.388. PubMed DOI
Iranzo A, et al. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol. 2006;5:572–577. doi: 10.1016/S1474-4422(06)70476-8. PubMed DOI
Postuma RB, et al. Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder. Neurology. 2009;72:1296–1300. doi: 10.1212/01.wnl.0000340980.19702.6e. PubMed DOI PMC
Claassen DO, et al. REM sleep behavior disorder preceding other aspects of synucleinopathies by up to half a century. Neurology. 2010;75:494–499. doi: 10.1212/WNL.0b013e3181ec7fac. PubMed DOI PMC
Postuma RB, et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain. 2019;142:744–759. doi: 10.1093/brain/awz030. PubMed DOI PMC
Miglis MG, et al. Biomarkers of conversion to alpha-synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder. Lancet Neurol. 2021;20:671–684. doi: 10.1016/S1474-4422(21)00176-9. PubMed DOI PMC
Lapierre O, Montplaisir J. Polysomnographic features of REM sleep behavior disorder: development of a scoring method. Neurology. 1992;42:1371–1374. doi: 10.1212/WNL.42.7.1371. PubMed DOI
American Academy of Sleep Medicine. International classification of sleep disorders, 3rd edn, (American Academy of Sleep Medicine, 2014).
Frauscher B, et al. Normative EMG values during REM sleep for the diagnosis of REM sleep behavior disorder. Sleep. 2012;35:835–847. doi: 10.5665/sleep.1886. PubMed DOI PMC
Nepozitek, J. et al. Simultaneous tonic and phasic REM sleep without atonia best predicts early phenoconversion to neurodegenerative disease in idiopathic REM sleep behavior disorder. Sleep42, 10.1093/sleep/zsz132 (2019). PubMed
Postuma RB, Gagnon JF, Rompre S, Montplaisir JY. Severity of REM atonia loss in idiopathic REM sleep behavior disorder predicts Parkinson disease. Neurology. 2010;74:239–244. doi: 10.1212/WNL.0b013e3181ca0166. PubMed DOI PMC
Liu Y, et al. Electromyography activity level in rapid eye movement sleep predicts neurodegenerative diseases in idiopathic rapid eye movement sleep behavior disorder: a 5-year longitudinal study. Sleep. Med. 2019;56:128–134. doi: 10.1016/j.sleep.2019.01.018. PubMed DOI
Postuma RB, et al. Risk factors for neurodegeneration in idiopathic rapid eye movement sleep behavior disorder: a multicenter study. Ann. Neurol. 2015;77:830–839. doi: 10.1002/ana.24385. PubMed DOI PMC
McCarter SJ, et al. REM sleep muscle activity in idiopathic REM sleep behavior disorder predicts phenoconversion. Neurology. 2019;93:e1171–e1179. doi: 10.1212/WNL.0000000000008127. PubMed DOI PMC
Iranzo A, et al. Excessive muscle activity increases over time in idiopathic REM sleep behavior disorder. Sleep. 2009;32:1149–1153. doi: 10.1093/sleep/32.9.1149. PubMed DOI PMC
McCarter SJ, St Louis EK, Boeve BF. REM sleep behavior disorder and REM sleep without atonia as an early manifestation of degenerative neurological disease. Curr. Neurol. Neurosci. Rep. 2012;12:182–192. doi: 10.1007/s11910-012-0253-z. PubMed DOI PMC
Hogl B, Stefani A, Videnovic A. Idiopathic REM sleep behaviour disorder and neurodegeneration - an update. Nat. Rev. Neurol. 2018;14:40–55. doi: 10.1038/nrneurol.2017.157. PubMed DOI
Dusek P, et al. Relations of non-motor symptoms and dopamine transporter binding in REM sleep behavior disorder. Sci. Rep. 2019;9:15463. doi: 10.1038/s41598-019-51710-y. PubMed DOI PMC
Nepozitek J, et al. Systematic video-analysis of motor events during REM sleep in idiopathic REM sleep behavior disorder, follow-up and DAT-SPECT. Sleep. Med. 2021;83:132–144. doi: 10.1016/j.sleep.2021.04.033. PubMed DOI
Boeve BF, et al. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain. 2007;130:2770–2788. doi: 10.1093/brain/awm056. PubMed DOI
Iranzo A. The REM sleep circuit and how its impairment leads to REM sleep behavior disorder. Cell Tissue Res. 2018;373:245–266. doi: 10.1007/s00441-018-2852-8. PubMed DOI
McKenna D, Peever J. Degeneration of rapid eye movement sleep circuitry underlies rapid eye movement sleep behavior disorder. Mov. Disord. 2017;32:636–644. doi: 10.1002/mds.27003. PubMed DOI
Peever J, Luppi PH, Montplaisir J. Breakdown in REM sleep circuitry underlies REM sleep behavior disorder. Trends Neurosci. 2014;37:279–288. doi: 10.1016/j.tins.2014.02.009. PubMed DOI
Valencia Garcia S, et al. Ventromedial medulla inhibitory neuron inactivation induces REM sleep without atonia and REM sleep behavior disorder. Nat. Commun. 2018;9:504. doi: 10.1038/s41467-017-02761-0. PubMed DOI PMC
Fraigne JJ, Torontali ZA, Snow MB, Peever JH. REM Sleep at its Core - Circuits, Neurotransmitters, and Pathophysiology. Front Neurol. 2015;6:123. doi: 10.3389/fneur.2015.00123. PubMed DOI PMC
Luppi PH, et al. The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder. Sleep. Med Rev. 2011;15:153–163. doi: 10.1016/j.smrv.2010.08.002. PubMed DOI
Braak H, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging. 2003;24:197–211. doi: 10.1016/S0197-4580(02)00065-9. PubMed DOI
Garcia-Gomar MG, et al. Disruption of brainstem structural connectivity in REM sleep behavior disorder using 7 Tesla magnetic resonance imaging. Mov. Disord. 2022;37:847–853. doi: 10.1002/mds.28895. PubMed DOI PMC
Valli M, Uribe C, Mihaescu A, Strafella AP. Neuroimaging of rapid eye movement sleep behavior disorder and its relation to Parkinson’s disease. J. Neurosci. Res. 2022;100:1815–1833. doi: 10.1002/jnr.25099. PubMed DOI
Bourgouin PA, et al. Neuroimaging of rapid eye movement sleep behavior disorder. Int Rev. Neurobiol. 2019;144:185–210. doi: 10.1016/bs.irn.2018.10.006. PubMed DOI
Stuber C, et al. Myelin and iron concentration in the human brain: a quantitative study of MRI contrast. Neuroimage. 2014;93 Pt 1:95–106. doi: 10.1016/j.neuroimage.2014.02.026. PubMed DOI
Heller J, et al. Brain imaging findings in idiopathic REM sleep behavior disorder (RBD) - a systematic review on potential biomarkers for neurodegeneration. Sleep. Med Rev. 2017;34:23–33. doi: 10.1016/j.smrv.2016.06.006. PubMed DOI
Barbosa JH, et al. Quantifying brain iron deposition in patients with Parkinson’s disease using quantitative susceptibility mapping, R2 and R2. Magn. Reson Imaging. 2015;33:559–565. doi: 10.1016/j.mri.2015.02.021. PubMed DOI
He N, et al. Region-specific disturbed iron distribution in early idiopathic Parkinson’s disease measured by quantitative susceptibility mapping. Hum. Brain Mapp. 2015;36:4407–4420. doi: 10.1002/hbm.22928. PubMed DOI PMC
Langkammer C, et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage. 2012;62:1593–1599. doi: 10.1016/j.neuroimage.2012.05.049. PubMed DOI PMC
Langkammer C, et al. Quantitative susceptibility mapping in Parkinson’s disease. PLoS One. 2016;11:e0162460. doi: 10.1371/journal.pone.0162460. PubMed DOI PMC
Jiang H, Song N, Jiao Q, Shi L, Du X. Iron pathophysiology in Parkinson diseases. Adv. Exp. Med Biol. 2019;1173:45–66. doi: 10.1007/978-981-13-9589-5_4. PubMed DOI
Mochizuki H, Choong CJ, Baba K. Parkinson’s disease and iron. J. Neural Transm. 2020;127:181–187. doi: 10.1007/s00702-020-02149-3. PubMed DOI
Martin WR, Wieler M, Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology. 2008;70:1411–1417. doi: 10.1212/01.wnl.0000286384.31050.b5. PubMed DOI
Chen Q, et al. Iron deposition in Parkinson’s disease by quantitative susceptibility mapping. BMC Neurosci. 2019;20:23. doi: 10.1186/s12868-019-0505-9. PubMed DOI PMC
Chen Q, et al. MRI quantitative susceptibility mapping of the substantia nigra as an early biomarker for Lewy body disease. J. Neuroimaging. 2021;31:1020–1027. doi: 10.1111/jon.12878. PubMed DOI PMC
Lee JH, et al. Evaluation of brain iron content in idiopathic REM sleep behavior disorder using quantitative magnetic resonance imaging. Parkinsonism Relat. Disord. 2014;20:776–778. doi: 10.1016/j.parkreldis.2014.03.023. PubMed DOI
Barber TR, et al. Nigrosome 1 imaging in REM sleep behavior disorder and its association with dopaminergic decline. Ann. Clin. Transl. Neurol. 2020;7:26–35. doi: 10.1002/acn3.50962. PubMed DOI PMC
Sun J, et al. Quantitative evaluation of iron content in idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 2020;35:478–485. doi: 10.1002/mds.27929. PubMed DOI
Lancione M, et al. Evaluation of iron overload in nigrosome 1 via quantitative susceptibility mapping as a progression biomarker in prodromal stages of synucleinopathies. Neuroimage. 2022;260:119454. doi: 10.1016/j.neuroimage.2022.119454. PubMed DOI
Huddleston DE, et al. Imaging Parkinsonian pathology in substantia nigra with MRI. Curr. Radiol. Rep. 2018;6:15. doi: 10.1007/s40134-018-0272-x. DOI
Drayer B, et al. MRI of brain iron. AJR Am. J. Roentgenol. 1986;147:103–110. doi: 10.2214/ajr.147.1.103. PubMed DOI
Snyder AM, Connor JR. Iron, the substantia nigra and related neurological disorders. Biochim Biophys. Acta. 2009;1790:606–614. doi: 10.1016/j.bbagen.2008.08.005. PubMed DOI
Lewis MM, et al. Higher iron in the red nucleus marks Parkinson’s dyskinesia. Neurobiol. Aging. 2013;34:1497–1503. doi: 10.1016/j.neurobiolaging.2012.10.025. PubMed DOI PMC
Kolpakwar S, et al. Volumetric analysis of subthalamic nucleus and red nucleus in patients of advanced Parkinson’s disease using SWI sequences. Surg. Neurol. Int. 2021;12:377. doi: 10.25259/SNI_584_2021. PubMed DOI PMC
Yu X, et al. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat. Neurosci. 2019;22:106–119. doi: 10.1038/s41593-018-0288-9. PubMed DOI PMC
Zhao Y-N, et al. GABAergic neurons in the rostromedial tegmental nucleus are essential for rapid eye movement sleep suppression. Nat. Commun. 2022;13:7552. doi: 10.1038/s41467-022-35299-x. PubMed DOI PMC
Tsang EW, et al. Involvement of the human pedunculopontine nucleus region in voluntary movements. Neurology. 2010;75:950–959. doi: 10.1212/WNL.0b013e3181f25b35. PubMed DOI PMC
Tattersall TL, et al. Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus. Nat. Neurosci. 2014;17:449–454. doi: 10.1038/nn.3642. PubMed DOI
Martinez-Gonzalez C, Bolam JP, Mena-Segovia J. Topographical organization of the pedunculopontine nucleus. Front. Neuroanat. 2011;5:22. doi: 10.3389/fnana.2011.00022. PubMed DOI PMC
Rahayel S, et al. Cortical and subcortical gray matter bases of cognitive deficits in REM sleep behavior disorder. Neurology. 2018;90:e1759–e1770. doi: 10.1212/WNL.0000000000005523. PubMed DOI PMC
Meles SK, et al. The metabolic pattern of idiopathic REM sleep behavior disorder reflects early-stage Parkinson disease. J. Nucl. Med. 2018;59:1437–1444. doi: 10.2967/jnumed.117.202242. PubMed DOI
Zoetmulder M, et al. Increased motor activity during REM sleep is linked with dopamine function in idiopathic REM sleep behavior disorder and Parkinson disease. J. Clin. Sleep. Med. 2016;12:895–903. doi: 10.5664/jcsm.5896. PubMed DOI PMC
Sunwoo, J. S. et al. Abnormal activation of motor cortical network during phasic REM sleep in idiopathic REM sleep behavior disorder. Sleep42, 10.1093/sleep/zsy227 (2019). PubMed
Gjerstad MD, Boeve B, Wentzel-Larsen T, Aarsland D, Larsen JP. Occurrence and clinical correlates of REM sleep behaviour disorder in patients with Parkinson’s disease over time. J. Neurol. Neurosurg. Psychiatry. 2008;79:387–391. doi: 10.1136/jnnp.2007.116830. PubMed DOI
Cicero CE, et al. Prevalence of isolated RBD in the city of Catania, Italy: a population-based study. J. Clin. Sleep. Med. 2021;17:2241–2248. doi: 10.5664/jcsm.9416. PubMed DOI PMC
Kang SH, et al. REM sleep behavior disorder in the Korean elderly population: prevalence and clinical characteristics. Sleep. 2013;36:1147–1152. doi: 10.5665/sleep.2874. PubMed DOI PMC
Iranzo A, et al. Neurodegenerative disorder risk in idiopathic REM sleep behavior disorder: study in 174 patients. PLoS One. 2014;9:e89741. doi: 10.1371/journal.pone.0089741. PubMed DOI PMC
Schenck CH, Boeve BF, Mahowald MW. Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series. Sleep. Med. 2013;14:744–748. doi: 10.1016/j.sleep.2012.10.009. PubMed DOI
Buskova J, Ibarburu V, Sonka K, Ruzicka E. Screening for REM sleep behavior disorder in the general population. Sleep. Med. 2016;24:147. doi: 10.1016/j.sleep.2016.07.003. PubMed DOI
Goetz CG, et al. Movement disorder society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Process, format, and clinimetric testing plan. Mov. Disord. 2007;22:41–47. doi: 10.1002/mds.21198. PubMed DOI
Kopecek M, et al. Montreal cognitive assessment (MoCA): normative data for old and very old Czech adults. Appl Neuropsychol. Adult. 2017;24:23–29. doi: 10.1080/23279095.2015.1065261. PubMed DOI
Buskova J, et al. Validation of the REM sleep behavior disorder screening questionnaire in the Czech population. BMC Neurol. 2019;19:110. doi: 10.1186/s12883-019-1340-4. PubMed DOI PMC
Stiasny-Kolster K, et al. The REM sleep behavior disorder screening questionnaire–a new diagnostic instrument. Mov. Disord. 2007;22:2386–2393. doi: 10.1002/mds.21740. PubMed DOI
Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113. doi: 10.1016/0028-3932(71)90067-4. PubMed DOI
Berry, R. B. et al. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications, Version 2.2, (American Academy of Sleep Medicine, 2015).
Schenck CH, Mahowald MW. Rapid eye movement sleep parasomnias. Neurol. Clin. 2005;23:1107–1126. doi: 10.1016/j.ncl.2005.06.002. PubMed DOI
Eckstein K, et al. Computationally efficient combination of multi-channel phase data from multi-echo acquisitions (ASPIRE) Magn. Reson Med. 2018;79:2996–3006. doi: 10.1002/mrm.26963. PubMed DOI
Acosta-Cabronero J, et al. A robust multi-scale approach to quantitative susceptibility mapping. Neuroimage. 2018;183:7–24. doi: 10.1016/j.neuroimage.2018.07.065. PubMed DOI PMC
Keller SS, Wilke M, Wieshmann UC, Sluming VA, Roberts N. Comparison of standard and optimized voxel-based morphometry for analysis of brain changes associated with temporal lobe epilepsy. Neuroimage. 2004;23:860–868. doi: 10.1016/j.neuroimage.2004.07.030. PubMed DOI
Lee JE, et al. A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis. Neuroimage. 2009;44:870–883. doi: 10.1016/j.neuroimage.2008.09.041. PubMed DOI PMC
Bianciardi, M. Brainstem Navigator [Tool/Resource.]. Washington: NITRC. https://www.nitrc.org/doi/landing_page.php?table=groups&id=1551 (2021).
Coulombe V, et al. A topographic atlas of the human brainstem in the ponto-mesencephalic junction plane. Front Neuroanat. 2021;15:627656. doi: 10.3389/fnana.2021.627656. PubMed DOI PMC
Whole brain pattern of iron accumulation in REM sleep behavior disorder