Splice variants of CK1α and CK1α-like: Comparative analysis of subcellular localization, kinase activity, and function in the Wnt signaling pathway
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, srovnávací studie
PubMed
38796065
PubMed Central
PMC11255964
DOI
10.1016/j.jbc.2024.107407
PII: S0021-9258(24)01908-2
Knihovny.cz E-zdroje
- Klíčová slova
- Axin, NanoBRET, Wnt pathway, alternative splicing, casein kinase 1 alpha (CK1α), casein kinase 1 alpha-like (CK1α-like), gene knockout, inhibitor, phosphorylation, β-catenin,
- MeSH
- alternativní sestřih MeSH
- beta-katenin * metabolismus genetika MeSH
- fosforylace MeSH
- HEK293 buňky MeSH
- kaseinkinasa Ialfa * metabolismus genetika MeSH
- kinasa 3 glykogensynthasy metabolismus genetika MeSH
- kinasa glykogensynthasy 3beta metabolismus genetika MeSH
- lidé MeSH
- protein Wnt3A metabolismus genetika MeSH
- signální dráha Wnt * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- beta-katenin * MeSH
- kaseinkinasa Ialfa * MeSH
- kinasa 3 glykogensynthasy MeSH
- kinasa glykogensynthasy 3beta MeSH
- protein Wnt3A MeSH
- WNT3A protein, human MeSH Prohlížeč
Members of the casein kinase 1 (CK1) family are important regulators of multiple signaling pathways. CK1α is a well-known negative regulator of the Wnt/β-catenin pathway, which promotes the degradation of β-catenin via its phosphorylation of Ser45. In contrast, the closest paralog of CK1α, CK1α-like, is a poorly characterized kinase of unknown function. In this study, we show that the deletion of CK1α, but not CK1α-like, resulted in a strong activation of the Wnt/β-catenin pathway. Wnt-3a treatment further enhanced the activation, which suggests there are at least two modes, a CK1α-dependent and Wnt-dependent, of β-catenin regulation. Rescue experiments showed that only two out of ten naturally occurring splice CK1α/α-like variants were able to rescue the augmented Wnt/β-catenin signaling caused by CK1α deficiency in cells. Importantly, the ability to phosphorylate β-catenin on Ser45 in the in vitro kinase assay was required but not sufficient for such rescue. Our compound CK1α and GSK3α/β KO models suggest that the additional nonredundant function of CK1α in the Wnt pathway beyond Ser45-β-catenin phosphorylation includes Axin phosphorylation. Finally, we established NanoBRET assays for the three most common CK1α splice variants as well as CK1α-like. Target engagement data revealed comparable potency of known CK1α inhibitors for all CK1α variants but not for CK1α-like. In summary, our work brings important novel insights into the biology of CK1α, including evidence for the lack of redundancy with other CK1 kinases in the negative regulation of the Wnt/β-catenin pathway at the level of β-catenin and Axin.
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Krebs E.G., Beavo J.A. Phosphorylation-dephosphorylation of enzymes. Annu. Rev. Biochem. 1979;48:923–959. PubMed
Manning G. The protein kinase complement of the human genome. Science. 2002;298:1912–1934. PubMed
Bingham E.W., Farrell H.M., Basch J.J. Phosphorylation of casein: role of the golgi apparatus. J. Biol. Chem. 1972;247:8193–8194. PubMed
Gross S.D., Anderson R.A. Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cell. Signal. 1998;10:699–711. PubMed
Löhler J., Hirner H., Schmidt B., Kramer K., Fischer D., Thal D.R., et al. Immunohistochemical characterisation of cell-type specific expression of CK1δ in various tissues of young adult BALB/c mice. PLoS One. 2009;4 PubMed PMC
Utz A.C., Hirner H., Blatz A., Hillenbrand A., Schmidt B., Deppert W., et al. Analysis of cell type-specific expression of CK1ε in various tissues of young adult BALB/c mice and in mammary tumors of SV40 T-Ag-transgenic mice. J. Histochem. Cytochem. 2010;58:1–15. PubMed PMC
Jiang S., Zhang M., Sun J., Yang X. Casein kinase 1α: biological mechanisms and theranostic potential. Cell Commun. Signal. 2018;16:23. PubMed PMC
Bedri S., Cizek S.M., Rastarhuyeva I., Stone J.R. Regulation of protein kinase CK1αLS by dephosphorylation in response to hydrogen peroxide. Arch. Biochem. Biophys. 2007;466:242–249. PubMed PMC
Zhang J., Gross S.D., Schroeder M.D., Anderson R.A. Casein kinase I α and αL: alternative splicing-generated kinases exhibit different catalytic properties. Biochemistry. 1996;35:16319–16327. PubMed
Fu Z., Chakraborti T., Morse S., Bennett G.S., Shaw G. Four casein kinase I isoforms are differentially partitioned between nucleus and cytoplasm. Exp. Cell Res. 2001;269:275–286. PubMed
Minzel W., Venkatachalam A., Fink A., Hung E., Brachya G., Burstain I., et al. Small molecules Co-targeting CKIα and the transcriptional kinases CDK7/9 control AML in preclinical models. Cell. 2018;175:171–185.e25. PubMed PMC
Petzold G., Fischer E.S., Thomä N.H. Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase. Nature. 2016;532:127–130. PubMed
Berginski M.E., Moret N., Liu C., Goldfarb D., Sorger P.K., Gomez S.M. The Dark Kinase Knowledgebase: an online compendium of knowledge and experimental results of understudied kinases. Nucleic Acids Res. 2021;49:D529–D535. PubMed PMC
Janovská P., Normant E., Miskin H., Bryja V. Targeting casein kinase 1 (CK1) in hematological cancers. Int. J. Mol. Sci. 2020;21:9026. PubMed PMC
Amit S., Hatzubai A., Birman Y., Andersen J.S., Ben-Shushan E., Mann M., et al. Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev. 2002;16:1066–1076. PubMed PMC
Liu C., Li Y., Semenov M., Han C., Baeg G.-H., Tan Y., et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108:837–847. PubMed
Ball B., Borthakur G., Stein A.S., Chan K., Thai D.L., Stein E. Safety and efficacy of casein kinase 1α and cyclin dependent kinase 7/9 inhibition in patients with relapsed or refractory AML: a first-in-human study of BTX-A51. J. Clin. Oncol. 2022;40:7030.
Ebert B.L., Krönke J. Inhibition of casein kinase 1 alpha in acute myeloid leukemia. N. Engl. J. Med. 2018;379:1873–1874. PubMed
Deng C., Lipstein M.R., Scotto L., Jirau Serrano X.O., Mangone M.A., Li S., et al. Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies. Blood. 2017;129:88–99. PubMed PMC
O’Leary N.A., Wright M.W., Brister J.R., Ciufo S., Haddad D., McVeigh R., et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D745. PubMed PMC
Chen S., Francioli L.C., Goodrich J.K., Collins R.L., Kanai M., Wang Q., et al. A genome-wide mutational constraint map quantified from variation in 76,156 human genomes. bioRxiv. 2022 doi: 10.1101/2022.03.20.485034. [preprint] DOI
Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alföldi J., Wang Q., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–443. PubMed PMC
Bidère N., Ngo V.N., Lee J., Collins C., Zheng L., Wan F., et al. Casein kinase 1α governs antigen receptor-induced NF-κB and human lymphoma cell survival. Nature. 2009;458:92–96. PubMed PMC
Davidson G., Wu W., Shen J., Bilic J., Fenger U., Stannek P., et al. Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature. 2005;438:867–872. PubMed
Fish K.J., Cegielska A., Getman M.E., Landes G.M., Virshup D.M. Isolation and characterization of human casein kinase I∊ (CKI), a novel member of the CKI gene family. J. Biol. Chem. 1995;270:14875–14883. PubMed
Peters J.M., McKay R.M., McKay J.P., Graff J.M. Casein kinase I transduces Wnt signals. Nature. 1999;401:345–350. PubMed
Borgal L., Rinschen M.M., Dafinger C., Hoff S., Reinert M.J., Lamkemeyer T., et al. Casein kinase 1 α phosphorylates the Wnt regulator jade-1 and modulates its activity. J. Biol. Chem. 2014;289:26344–26356. PubMed PMC
Zeng X., Tamai K., Doble B., Li S., Huang H., Habas R., et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature. 2005;438:873–877. PubMed PMC
Korinek V., Barker N., Morin P.J., Van Wichen D., De Weger R., Kinzler K.W., et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC −/− colon carcinoma. Science. 1997;275:1784–1787. PubMed
Liu J., Pan S., Hsieh M.H., Ng N., Sun F., Wang T., et al. Targeting Wnt-driven cancer through the inhibition of porcupine by LGK974. Proc. Natl. Acad. Sci. U. S. A. 2013;110:20224–20229. PubMed PMC
He S., Lu Y., Liu X., Huang X., Keller E.T., Qian C.-N., et al. Wnt3a: functions and implications in cancer. Chin. J. Cancer. 2015;34:50. PubMed PMC
Jiang X., Charlat O., Zamponi R., Yang Y., Cong F. Dishevelled promotes Wnt receptor degradation through Recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol. Cell. 2015;58:522–533. PubMed
Gietzen K.F., Virshup D.M. Identification of inhibitory autophosphorylation sites in casein kinase I ε. J. Biol. Chem. 1999;274:32063–32070. PubMed
Graves P.R., Roach P.J. Role of COOH-terminal phosphorylation in the regulation of casein kinase Iδ. J. Biol. Chem. 1995;270:21689–21694. PubMed
Zhai L., Graves P.R., Robinson L.C., Italiano M., Culbertson M.R., Rowles J., et al. Casein kinase I gamma subfamily. Molecular cloning, expression, and characterization of three mammalian isoforms and complementation of defects in the Saccharomyces cerevisiae YCK genes. J. Biol. Chem. 1995;270:12717–12724. PubMed
Budini M., Jacob G., Jedlicki A., Pérez C., Allende C.C., Allende J.E. Autophosphorylation of carboxy-terminal residues inhibits the activity of protein kinase CK1α. J. Cell. Biochem. 2009;106:399–408. PubMed
Song X., Wang S., Li L. New insights into the regulation of Axin function in canonical Wnt signaling pathway. Protein Cell. 2014;5:186–193. PubMed PMC
Qiu L., Sun Y., Ning H., Chen G., Zhao W., Gao Y. The scaffold protein AXIN1: gene ontology, signal network, and physiological function. Cell Commun. Signal. 2024;22:77. PubMed PMC
Yamamoto H., Kishida S., Kishida M., Ikeda S., Takada S., Kikuchi A. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3β regulates its stability. J. Biol. Chem. 1999;274:10681–10684. PubMed
Kim S.-E., Huang H., Zhao M., Zhang X., Zhang A., Semenov M.V., et al. Wnt stabilization of β-catenin reveals principles for morphogen receptor-scaffold assemblies. Science. 2013;340:867–870. PubMed PMC
Tacchelly-Benites O., Wang Z., Yang E., Benchabane H., Tian A., Randall M.P., et al. Axin phosphorylation in both Wnt-off and Wnt-on states requires the tumor suppressor APC. PLoS Genet. 2018;14 PubMed PMC
Willert K., Shibamoto S., Nusse R. Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex. Genes Dev. 1999;13:1768–1773. PubMed PMC
Luo W., Peterson A., Garcia B.A., Coombs G., Kofahl B., Heinrich R., et al. Protein phosphatase 1 regulates assembly and function of the beta-catenin degradation complex. EMBO J. 2007;26:1511–1521. PubMed PMC
Doble B.W., Patel S., Wood G.A., Kockeritz L.K., Woodgett J.R. Functional redundancy of GSK-3α and GSK-3β in Wnt/β-catenin signaling shown by using an allelic series of embryonic stem cell lines. Dev. Cell. 2007;12:957–971. PubMed PMC
Robers M.B., Wilkinson J.M., Vasta J.D., Berger L.M., Berger B.-T., Knapp S. Single tracer-based protocol for broad-spectrum kinase profiling in live cells with NanoBRET. STAR Protoc. 2021;2 PubMed PMC
Robers M.B., Friedman-Ohana R., Huber K.V.M., Kilpatrick L., Vasta J.D., Berger B.-T., et al. Quantifying target occupancy of small molecules within living cells. Annu. Rev. Biochem. 2020;89:557–581. PubMed
Rena G., Bain J., Elliott M., Cohen P. D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep. 2004;5:60–65. PubMed PMC
Anastassiadis T., Deacon S.W., Devarajan K., Ma H., Peterson J.R. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat. Biotechnol. 2011;29:1039–1045. PubMed PMC
Bryja V., Schulte G., Rawal N., Grahn A., Arenas E. Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism. J. Cell Sci. 2007;120:586–595. PubMed
Němec V., Khirsariya P., Janovská P., Moyano P.M., Maier L., Procházková P., et al. Discovery of potent and exquisitely selective inhibitors of kinase CK1 with tunable isoform selectivity. Angew. Chem. Int. Ed. 2023;62 PubMed
Harwood A.J. Regulation of GSK-3: a cellular multiprocessor. Cell. 2001;105:821–824. PubMed
Ikeda S., Kishida S., Yamamoto H., Murai H., Koyama S., Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 1998;17:1371–1384. PubMed PMC
Thomas G.M., Frame S., Goedert M., Nathke I., Polakis P., Cohen P. A GSK3-binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of Axin and β-catenin. FEBS Lett. 1999;458:247–251. PubMed
Frame S., Cohen P., Biondi R.M. A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell. 2001;7:1321–1327. PubMed
Cselenyi C.S., Jernigan K.K., Tahinci E., Thorne C.A., Lee L.A., Lee E. LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3’s phosphorylation of beta-catenin. Proc. Natl. Acad. Sci. U. S. A. 2008;105:8032–8037. PubMed PMC
Mi K., Dolan P.J., Johnson G.V.W. The low density lipoprotein receptor-related protein 6 interacts with glycogen synthase kinase 3 and attenuates activity. J. Biol. Chem. 2006;281:4787–4794. PubMed
Piao S., Lee S.-H., Kim H., Yum S., Stamos J.L., Xu Y., et al. Direct inhibition of GSK3β by the phosphorylated cytoplasmic domain of LRP6 in Wnt/β-catenin signaling. PLoS One. 2008;3 PubMed PMC
Taelman V.F., Dobrowolski R., Plouhinec J.L., Fuentealba L.C., Vorwald P.P., Gumper I., et al. Wnt signaling requires sequestration of Glycogen Synthase Kinase 3 inside multivesicular endosomes. Cell. 2010;143:1136–1148. PubMed PMC
Wu G., Huang H., Abreu J.G., He X. Inhibition of GSK3 phosphorylation of β-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. PLoS One. 2009;4 PubMed PMC
Burzio V., Antonelli M., Allende C.C., Allende J.E. Biochemical and cellular characteristics of the four splice variants of protein kinase CK1 α from zebrafish (Danio rerio) J. Cell. Biochem. 2002;86:805–814. PubMed
Yong T.J.K., Gan Y.Y., Toh B.H., Sentry J.W. Human CKIαL and CKIαS are encoded by both 2.4- and 4.2-kb transcripts, the longer containing multiple RNA-destablising elements. Biochim. Biophys. Acta. 2000;1492:425–433. PubMed
Fulcher L.J., Sapkota G.P. Functions and regulation of the serine/threonine protein kinase CK1 family: moving beyond promiscuity. Biochem. J. 2020;477:4603–4621. PubMed PMC
Hornbeck P.V., Zhang B., Murray B., Kornhauser J.M., Latham V., Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43:D512–D520. PubMed PMC
Seal R.L., Braschi B., Gray K., Jones T.E.M., Tweedie S., Haim-Vilmovsky L., et al. Genenames.org: the HGNC resources in 2023. Nucleic Acids Res. 2023;51:D1003–D1009. PubMed PMC
Wlodarchak N., Tariq R., Striker R. Comparative analysis of the human and zebrafish kinomes: focus on the development of kinase inhibitors. Trends Cell Mol. Biol. 2015;10:49–75. PubMed PMC
The UniProt Consortium, Bateman A., Martin M.-J., Orchard S., Magrane M., Ahmad S., et al. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 2023;51:D523–D531. PubMed PMC
García-Ibarbia C., Delgado-Calle J., Casafont I., Velasco J., Arozamena J., Pérez-Núñez M.I., et al. Contribution of genetic and epigenetic mechanisms to Wnt pathway activity in prevalent skeletal disorders. Gene. 2013;532:165–172. PubMed
Sjöblom T., Jones S., Wood L.D., Parsons D.W., Lin J., Barber T.D., et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–274. PubMed
Xiao K., McClatchy D.B., Shukla A.K., Zhao Y., Chen M., Shenoy S.K., et al. Functional specialization of beta-arrestin interactions revealed by proteomic analysis. Proc. Natl. Acad. Sci. U. S. A. 2007;104:12011–12016. PubMed PMC
Yamaki Y., Kagawa H., Hatta T., Natsume T., Kawahara H. The C-terminal cytoplasmic tail of hedgehog receptor Patched1 is a platform for E3 ubiquitin ligase complexes. Mol. Cell. Biochem. 2016;414:1–12. PubMed
Wang J., Huo K., Ma L., Tang L., Li D., Huang X., et al. Toward an understanding of the protein interaction network of the human liver. Mol. Syst. Biol. 2011;7:536. PubMed PMC
Huttlin E.L., Bruckner R.J., Paulo J.A., Cannon J.R., Ting L., Baltier K., et al. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017;545:505–509. PubMed PMC
Huttlin E.L., Ting L., Bruckner R.J., Gebreab F., Gygi M.P., Szpyt J., et al. The BioPlex network: a systematic exploration of the human interactome. Cell. 2015;162:425–440. PubMed PMC
Li X., Wang W., Wang J., Malovannaya A., Xi Y., Li W., et al. Proteomic analyses reveal distinct chromatin-associated and soluble transcription factor complexes. Mol. Syst. Biol. 2015;11:775. PubMed PMC
Maréchal A., Li J.M., Ji X.Y., Wu C.S., Yazinski S.A., Nguyen H.D., et al. PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol. Cell. 2014;53:235–246. PubMed PMC
Golkowski M., Lius A., Sapre T., Lau H.-T., Moreno T., Maly D.J., et al. Multiplexed kinase interactome profiling quantifies cellular network activity and plasticity. Mol. Cell. 2023;83:803–818.e8. PubMed PMC
Huttlin E.L., Bruckner R.J., Navarrete-Perea J., Cannon J.R., Baltier K., Gebreab F., et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell. 2021;184:3022–3040.e28. PubMed PMC
Janovska P., Verner J., Kohoutek J., Bryjova L., Gregorova M., Dzimkova M., et al. Casein kinase 1 is a therapeutic target in chronic lymphocytic leukemia. Blood. 2018;131:1206–1218. PubMed
Schittek B., Sinnberg T. Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol. Cancer. 2014;13:231. PubMed PMC
Sunkari Y.K., Meijer L., Flajolet M. The protein kinase CK1: inhibition, activation, and possible allosteric modulation. Front. Mol. Biosci. 2022;9 PubMed PMC
Johannessen C.M., Boehm J.S., Kim S.Y., Thomas S.R., Wardwell L., Johnson L.A., et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 2010;468:968–972. PubMed PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. PubMed PMC
Stringer C., Wang T., Michaelos M., Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods. 2021;18:100–106. PubMed
Waisman A., Norris A.M., Elías Costa M., Kopinke D. Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle. Sci. Rep. 2021;11 PubMed PMC
Goedhart J. SuperPlotsOfData—a web app for the transparent display and quantitative comparison of continuous data from different conditions. Mol. Biol. Cell. 2021;32:470–474. PubMed PMC
Doench J.G., Fusi N., Sullender M., Hegde M., Vaimberg E.W., Donovan K.F., et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 2016;34:184–191. PubMed PMC
Sanson K.R., Hanna R.E., Hegde M., Donovan K.F., Strand C., Sullender M.E., et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat. Commun. 2018;9:5416. PubMed PMC
Chu V.T., Weber T., Wefers B., Wurst W., Sander S., Rajewsky K., et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 2015;33:543–548. PubMed
Ran F.A., Hsu P.D., Wright J., Agarwala V., Scott D.A., Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013;8:2281–2308. PubMed PMC
Malcikova J., Stano-Kozubik K., Tichy B., Kantorova B., Pavlova S., Tom N., et al. Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia. Leukemia. 2015;29:877–885. PubMed PMC
Robinson J.T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E.S., Getz G., et al. Integrative genomics viewer. Nat. Biotechnol. 2011;29:24–26. PubMed PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC
Veeman M.T., Slusarski D.C., Kaykas A., Louie S.H., Moon R.T. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr. Biol. 2003;13:680–685. PubMed
Waterhouse A.M., Procter J.B., Martin D.M.A., Clamp M., Barton G.J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–1191. PubMed PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. PubMed PMC
Varadi M., Anyango S., Deshpande M., Nair S., Natassia C., Yordanova G., et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–D444. PubMed PMC
Mirdita M., Schütze K., Moriwaki Y., Heo L., Ovchinnikov S., Steinegger M. ColabFold: making protein folding accessible to all. Nat. Methods. 2022;19:679–682. PubMed PMC
Rowles J., Slaughter C., Moomaw C., Hsu J., Cobb M.H. Purification of casein kinase I and isolation of cDNAs encoding multiple casein kinase I-like enzymes. Proc. Natl. Acad. Sci. U. S. A. 1991;88:9548–9552. PubMed PMC
Tapia C., Featherstone T., Gómez C., Taillon-Miller P., Allende C.C., Allende J.E. Cloning and chromosomal localization of the gene coding for human protein kinase CK1. FEBS Lett. 1994;349:307–312. PubMed
Gross S.D., Hoffman D.P., Fisette P.L., Baas P., Anderson R.A. A phosphatidylinositol 4,5-bisphosphate-sensitive casein kinase I alpha associates with synaptic vesicles and phosphorylates a subset of vesicle proteins. J. Cell Biol. 1995;130:711–724. PubMed PMC
Kuret J., Johnson G.S., Cha D., Christenson E.R., DeMaggio A.J., Hoekstra M.F. Casein kinase 1 is tightly associated with paired-helical filaments isolated from Alzheimer’s disease brain. J. Neurochem. 1997;69:2506–2515. PubMed
Green C.L., Bennett G.S. Identification of four alternatively spliced isoforms of chicken casein kinase I alpha that are all expressed in diverse cell types. Gene. 1998;216:189–195. PubMed
Panchenko M.P., Siddiquee Z., Dombkowski D.M., Alekseyev Y.O., Lenburg M.E., Walker J.D., et al. Protein kinase CK1alphaLS promotes vascular cell proliferation and intimal hyperplasia. Am. J. Pathol. 2010;177:1562–1572. PubMed PMC
Shen C., Li B., Astudillo L., Deutscher M.P., Cobb M.H., Capobianco A.J., et al. The CK1α activator pyrvinium enhances the catalytic efficiency (kcat/Km) of CK1α. Biochemistry. 2019;58:5102–5106. PubMed PMC