Lutzomyia longipalpis Antimicrobial Peptides: Differential Expression during Development and Potential Involvement in Vector Interaction with Microbiota and Leishmania

. 2021 Jun 11 ; 9 (6) : . [epub] 20210611

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34207941

Grantová podpora
VPPCB-007-FIO-18 Fundação Oswaldo Cruz
CNPq/Proc. 465678/2014-9 Conselho Nacional de Desenvolvimento Científico e Tecnológico
PAEF Fundação Oswaldo Cruz
CZ.02.2.69/0.0/0.0/16_027/0008495 Univerzita Karlova v Praze

Odkazy

PubMed 34207941
PubMed Central PMC8230673
DOI 10.3390/microorganisms9061271
PII: microorganisms9061271
Knihovny.cz E-zdroje

Antimicrobial peptides (AMPs) are produced to control bacteria, fungi, protozoa, and other infectious agents. Sand fly larvae develop and feed on a microbe-rich substrate, and the hematophagous females are exposed to additional pathogens. We focused on understanding the role of the AMPs attacin (Att), cecropin (Cec), and four defensins (Def1, Def2, Def3, and Def4) in Lutzomyia longipalpis, the main vector of visceral leishmaniasis in the Americas. Larvae and adults were collected under different feeding regimens, in addition to females artificially infected by Leishmania infantum. AMPs' gene expression was assessed by qPCR, and gene function of Att and Def2 was investigated by gene silencing. The gene knockdown effect on bacteria and parasite abundance was evaluated by qPCR, and parasite development was verified by light microscopy. We demonstrate that L. longipalpis larvae and adults trigger AMPs expression during feeding, which corresponds to an abundant presence of bacteria. Att and Def2 expression were significantly increased in Leishmania-infected females, while Att suppression favored bacteria growth. In conclusion, L. longipalpis AMPs' expression is tuned in response to bacteria and parasites but does not seem to interfere with the Leishmania cycle.

Zobrazit více v PubMed

Zhang L.J., Gallo R.L. Antimicrobial peptides. Curr. Biol. 2016;26:R14–R19. doi: 10.1016/j.cub.2015.11.017. PubMed DOI

Hancock R.E.W., Scott M.G. The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. USA. 2000;97:8856–8861. doi: 10.1073/pnas.97.16.8856. PubMed DOI PMC

Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–395. doi: 10.1038/415389a. PubMed DOI

Westerhoff H.V., Juretic D., Hendler R.W., Zasloff M. Magainins and the disruption of membrane-linked free-energy transduction. Proc. Natl. Acad. Sci. USA. 1989;86:6597–6601. doi: 10.1073/pnas.86.17.6597. PubMed DOI PMC

Yang L., Weiss T.M., Lehrer R.I., Huang H.W. Crystallization of antimicrobial pores in membranes: Magainin and protegrin. Biophys. J. 2000;79:2002–2009. doi: 10.1016/S0006-3495(00)76448-4. PubMed DOI PMC

Bulet P., Hetru C., Dimarcq J.L., Hoffmann D. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 1999;23:329–344. doi: 10.1016/S0145-305X(99)00015-4. PubMed DOI

De Gregorio E., Spellman P.T., Tzou P., Rubin G.M., Lemaitre B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 2002;21:2568–2579. doi: 10.1093/emboj/21.11.2568. PubMed DOI PMC

Kounatidis I., Ligoxygakis P. Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biol. 2012;2:120075. doi: 10.1098/rsob.120075. PubMed DOI PMC

Tanji T., Hu X.D., Weber A.N.R., Ip Y.T. Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster. Mol. Cell. Biol. 2007;27:4578–4588. doi: 10.1128/MCB.01814-06. PubMed DOI PMC

Hultmark D., Engstrom A., Andersson K., Steiner H., Bennich H., Boman H.G. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J. 1983;2:571–576. doi: 10.1002/j.1460-2075.1983.tb01465.x. PubMed DOI PMC

Hu Y., Aksoy S. An antimicrobial peptide with trypanocidal activity characterized from Glossina morsitans morsitans. Insect Biochem. Mol. Biol. 2005;35:105–115. doi: 10.1016/j.ibmb.2004.10.007. PubMed DOI

Brady D., Grapputo A., Romoli O., Sandrelli F. Insect cecropins, antimicrobial peptides with potential therapeutic applications. Int. J. Mol. Sci. 2019;20:5862. doi: 10.3390/ijms20235862. PubMed DOI PMC

Hultmark D., Engström Å., Bennich H., Kapur R., Boman H.G. Insect Immunity: Isolation and Structure of Cecropin D and Four Minor Antibacterial Components from Cecropia Pupae. Eur. J. Biochem. 1982;127:207–217. doi: 10.1111/j.1432-1033.1982.tb06857.x. PubMed DOI

Li Z.Q., Merrifield R.B., Boman I.A., Boman H.G. Effects on electrophoretic mobility and antibacterial spectrum of removal of two residues from synthetic sarcotoxin IA and addition of the same residues to cecropin B. FEBS Lett. 1988;231:299–302. doi: 10.1016/0014-5793(88)80837-8. PubMed DOI

Ekengren S., Hultmark D. Drosophila cecropin as an antifungal agent. Insect Biochem. Mol. Biol. 1999;29:965–972. doi: 10.1016/S0965-1748(99)00071-5. PubMed DOI

Carmen Rodriguez M.D., Zamudio F., Torres J.A., Gonzalez-Ceron L., Possani L.D., Rodriguez M.H. Effect of a cecropin-like synthetic peptide (Shiva-3) on the sporogonic development of plasmodium berghei. Exp. Parasitol. 1995;80:596–604. doi: 10.1006/expr.1995.1075. PubMed DOI

Boisbouvier J., Prochnicka-Chalufour A., Nieto A.R., Torres J.A., Nanard N., Possani L.D., Delepierre M. Structural information on a cecropin-like synthetic peptide, Shiva-3 toxic to the sporogonic development of Plasmodium berghei. Eur. J. Biochem. 1998;257:263–273. doi: 10.1046/j.1432-1327.1998.2570263.x. PubMed DOI

Gwadz R.W., Kaslow D., Lee J.Y., Maloy W.L., Zasloff M., Miller L.H. Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect. Immun. 1989;57:2628–2633. doi: 10.1128/IAI.57.9.2628-2633.1989. PubMed DOI PMC

Yi H.Y., Chowdhury M., Huang Y.D., Yu X.Q. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 2014;98:5807–5822. doi: 10.1007/s00253-014-5792-6. PubMed DOI PMC

Amerikova M., Pencheva E.I., Maslarska V., Bozhanov S., Tachkov K. Antimicrobial activity, mechanism of action, and methods for stabilisation of defensins as new therapeutic agents. Biotechnol. Biotechnol. Equip. 2019;33:671–682. doi: 10.1080/13102818.2019.1611385. DOI

Lambert J., Keppi E., Dimarcq J.L., Wicker C., Reichhart J.M., Dunbar B., Lepage P., Van Dorsselaer A., Hoffmann J., Fothergill J. Insect immunity: Isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc. Natl. Acad. Sci. USA. 1989;86:262–266. doi: 10.1073/pnas.86.1.262. PubMed DOI PMC

Cociancich S., Goyffon M., Bontems F., Bulet P., Bouet F., Menez A., Hoffmann J. Purification and characterization of a scorpion defensin, a 4kDa antibacterial peptide presenting structural similarities with insect defensins and scorpion toxins. Biochem. Biophys Res. Commun. 1993;194:17–22. doi: 10.1006/bbrc.1993.1778. PubMed DOI

Shahabuddin M., Fields I., Bulet P., Hoffmann J.A., Miller L.H. Plasmodium gallinaceum: Differential killing of some mosquito stages of the parasite by insect defensin. Exp. Parasitol. 1998;89:103–112. doi: 10.1006/expr.1998.4212. PubMed DOI

Maroli M., Feliciangeli M.D., Bichaud L., Charrel R.N., Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med. Vet. Entomol. 2013;27:123–147. doi: 10.1111/j.1365-2915.2012.01034.x. PubMed DOI

WHO Leishmaniasis—Health Topics. [(accessed on 3 December 2020)]; Available online: https://www.who.int/health-topics/leishmaniasis.

Dostalova A., Volf P. Leishmania development in sand flies: Parasite-vector interactions overview. Parasit. Vectors. 2012;5:276. doi: 10.1186/1756-3305-5-276. PubMed DOI PMC

Anderson J.M., Oliveira F., Kamhawi S., Mans B.J., Reynoso D., Seitz A.E., Lawyer P., Garfield M., Pham M., Valenzuela J.G. Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genom. 2006;7:52. doi: 10.1186/1471-2164-7-52. PubMed DOI PMC

Telleria E.L., Martins-Da-Silva A., Tempone A.J., Traub-Cseko Y.M. Leishmania, microbiota and sand fly immunity. Parasitology. 2018;145:1336–1353. doi: 10.1017/S0031182018001014. PubMed DOI PMC

Nimmo D.D., Ham P.J., Ward R.D., Maingon R. The sandfly Lutzomyia longipalpis shows specific humoral responses to bacterial challenge. Med. Vet. Entomol. 1997;11:324–328. doi: 10.1111/j.1365-2915.1997.tb00417.x. PubMed DOI

Boulanger N., Lowenberger C., Volf P., Ursic R., Sigutova L., Sabatier L., Svobodova M., Beverley S.M., Spath G., Brun R., et al. Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infect. Immun. 2004;72:7140–7146. doi: 10.1128/IAI.72.12.7140-7146.2004. PubMed DOI PMC

Pitaluga A.N., Mason P.W., Traub-Cseko Y.M. Non-specific antiviral response detected in RNA-treated cultured cells of the sandfly, Lutzomyia longipalpis. Dev. Comp. Immunol. 2008;32:191–197. doi: 10.1016/j.dci.2007.06.008. PubMed DOI

Telleria E.L., Sant’Anna M.R.V., Alkurbi M.O., Pitaluga A.N., Dillon R.J., Traub-Csekö Y.M. Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis. Parasites Vectors. 2013;6:12. doi: 10.1186/1756-3305-6-12. PubMed DOI PMC

Tinoco-Nunes B., Telleria E.L., Da Silva-Neves M., Marques C., Azevedo-Brito D.A., Pitaluga A.N., Traub-Csekö Y.M. The sandfly Lutzomyia longipalpis LL5 embryonic cell line has active Toll and Imd pathways and shows immune responses to bacteria, yeast and Leishmania. Parasites Vectors. 2016;9:222. doi: 10.1186/s13071-016-1507-4. PubMed DOI PMC

Mcwilliam H., Valentin F., Goujon M., Li W., Narayanasamy M., Martin J., Miyar T., Lopez R. Web services at the European Bioinformatics Institute-2009. Nucleic Acids Res. 2009;37:W6–W10. doi: 10.1093/nar/gkp302. PubMed DOI PMC

Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC

Le S.Q., Gascuel O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008;25:1307–1320. doi: 10.1093/molbev/msn067. PubMed DOI

Lawyer P., Killick-Kendrick M., Rowland T., Rowton E., Volf P. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae) Parasite. 2017;24:42. doi: 10.1051/parasite/2017041. PubMed DOI PMC

Sant’Anna M.R., Alexander B., Bates P.A., Dillon R.J. Gene silencing in phlebotomine sand flies: Xanthine dehydrogenase knock down by dsRNA microinjections. Insect Biochem. Mol. Biol. 2008;38:652–660. doi: 10.1016/j.ibmb.2008.03.012. PubMed DOI PMC

Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI

Myskova J., Votypka J., Volf P. Leishmania in Sand Flies: Comparison of Quantitative Polymerase Chain Reaction with Other Techniques to Determine the Intensity of Infection. J. Med. Entomol. 2008;45:133–138. doi: 10.1093/jmedent/45.1.133. PubMed DOI

Sadlova J., Price H.P., Smith B.A., Votypka J., Volf P., Smith D.F. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell Microbiol. 2010;12:1765–1779. doi: 10.1111/j.1462-5822.2010.01507.x. PubMed DOI PMC

Rasband W. ImageJ Website. [(accessed on 10 August 2019)]; Available online: https://imagej.nih.gov/ij/

Walters L.L., Chaplin G.L., Modi G.B., Tesh R.B. Ultrastructural biology of Leishmania (Viannia) panamensis (=Leishmania braziliensis panamensis) in Lutzomyia gomezi (Diptera: Psychodidae): A natural host-parasite association. Am. J. Trop. Med. Hyg. 1989;40:19–39. doi: 10.4269/ajtmh.1989.40.19. PubMed DOI

Shafee T.M.A., Lay F.T., Phan T.K., Anderson M.A., Hulett M.D. Convergent evolution of defensin sequence, structure and function. Cell Mol. Life Sci. 2017;74:663–682. doi: 10.1007/s00018-016-2344-5. PubMed DOI PMC

Casanova C., Andrighetti M.T., Sampaio S.M., Marcoris M.L., Colla-Jacques F.E., Prado A.P. Larval breeding sites of Lutzomyia longipalpis (Diptera: Psychodidae) in visceral leishmaniasis endemic urban areas in Southeastern Brazil. PLoS Negl. Trop Dis. 2013;7:e2443. doi: 10.1371/journal.pntd.0002443. PubMed DOI PMC

Ferro C., Pardo R., Torres M., Morrison A.C. Larval Microhabitats of Lutzomyia longipalpis (Diptera: Psychodidae) in an Endemic Focus of Visceral Leishmaniasis in Colombia. J. Med. Entomol. 1997;34:719–728. doi: 10.1093/jmedent/34.6.719. PubMed DOI

Nannipieri P., Ascher J., Ceccherini M.T., Landi L., Pietramellara G., Renella G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003;54:655–670. doi: 10.1046/j.1351-0754.2003.0556.x. DOI

Mendes L.W., Tsai S.M., Navarrete A.A., de Hollander M., van Veen J.A., Kuramae E.E. Soil-Borne Microbiome: Linking Diversity to Function. Microb. Ecol. 2015;70:255–265. doi: 10.1007/s00248-014-0559-2. PubMed DOI

Baldrian P. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 2017;41:109–130. doi: 10.1093/femsre/fuw040. PubMed DOI

Volf P., Kiewegova A., Nemec A. Bacterial colonisation in the gut of Phlebotomus duboseqi (Diptera: Psychodidae): Transtadial passage and the role of female diet. Folia Parasitol. 2002;49:73–77. doi: 10.14411/fp.2002.014. PubMed DOI

Guernaoui S., Garcia D., Gazanion E., Ouhdouch Y., Boumezzough A., Pesson B., Fontenille D., Sereno D. Bacterial flora as indicated by PCR-temperature gradient gel electrophoresis (TGGE) of 16S rDNA gene fragments from isolated guts of phlebotomine sand flies (Diptera: Psychodidae) J. Vector Ecol. 2011;36 doi: 10.1111/j.1948-7134.2011.00124.x. PubMed DOI

Vivero R.J., Jaramillo N.G., Cadavid-Restrepo G., Soto S.I., Herrera C.X. Structural differences in gut bacteria communities in developmental stages of natural populations of Lutzomyia evansi from Colombia’s Caribbean coast. Parasit Vectors. 2016;9:496. doi: 10.1186/s13071-016-1766-0. PubMed DOI PMC

Heerman M., Weng J.L., Hurwitz I., Durvasula R., Ramalho-Ortigao M. Bacterial Infection and Immune Responses in Lutzomyia longipalpis Sand Fly Larvae Midgut. PLoS Negl. Trop. Dis. 2015;9:e0003923. doi: 10.1371/journal.pntd.0003923. PubMed DOI PMC

Ximenes M.D.F.F.D.M., Maciel J.C., Jerônimo S.M.B. Characteristics of the Biological Cycle of Lutzomyia evandroi Costa Lima & Antunes, 1936 (Diptera: Psychodidae) under Experimental Conditions. Mem. Inst. Oswaldo Cruz. 2001;96:883–886. doi: 10.1590/S0074-02762001000600025. PubMed DOI

Hurwitz I., Hillesland H., Fieck A., Das P., Durvasula R. The paratransgenic sand fly: A platform for control of Leishmania transmission. Parasit Vectors. 2011;4:82. doi: 10.1186/1756-3305-4-82. PubMed DOI PMC

Peterkova-Koci K., Robles-Murguia M., Ramalho-Ortigao M., Zurek L. Significance of bacteria in oviposition and larval development of the sand fly Lutzomyia longipalpis. Parasit Vectors. 2012;5:145. doi: 10.1186/1756-3305-5-145. PubMed DOI PMC

Hammer T.J., Moran N.A. Links between metamorphosis and symbiosis in holometabolous insects. Philos. Trans. R. Soc. B Biol. Sci. 2019;374:20190068. doi: 10.1098/rstb.2019.0068. PubMed DOI PMC

Schlein Y., Muller G. Assessment of plant tissue feeding by sand flies (Diptera: Psychodidae) and mosquitoes (Diptera: Culicidae) J. Med. Entomol. 1995;32:882–887. doi: 10.1093/jmedent/32.6.882. PubMed DOI

Moore J.S., Kelly T.B., Killick-Kendrick R., Killick-Kendrick M., Wallbanks K.R., Molyneux D.H. Honeydew sugars in wild-caught Phlebotomus ariasi detected by high performance liquid chromatography (HPLC) and gas chromatography (GC) Med. Vet. Entomol. 1987;1:427–434. doi: 10.1111/j.1365-2915.1987.tb00373.x. PubMed DOI

Cameron M.M., Pessoa F.A.C., Vasconcelos A.W., Ward R.D. Sugar meal sources for the phlebotomine sandfly Lutzomyia longipalpis in Ceará State, Brazil. Med. Vet. Entomol. 1995;9:263–272. doi: 10.1111/j.1365-2915.1995.tb00132.x. PubMed DOI

Wallbanks K.R., Moore J.S., Bennett L.R., Soren R., Molyneux D.H., Carlin J.M., Perez J.E. Aphid derived sugars in the neotropical sandfly--Lutzomyia peruensis. Trop Med. Parasitol. 1991;42:60–62. PubMed

Tang Y., Ward R.D. Sugar feeding and fluid destination control in the phlebotomine sandfly Lutzomyia longipalpis (Diptera: Psychodidae) Med. Vet. Entomol. 1998;12:13–19. doi: 10.1046/j.1365-2915.1998.00063.x. PubMed DOI

Samakovlis C., Kylsten P., Kimbrell D.A., Engstrom A., Hultmark D. The Andropin gene and its product, a male-specific antibacterial peptide in Drosophila melanogaster. EMBO J. 1991;10:163–169. doi: 10.1002/j.1460-2075.1991.tb07932.x. PubMed DOI PMC

Lung O., Kuo L., Wolfner M.F. Drosophila males transfer antibacterial proteins from their accessory gland and ejaculatory duct to their mates. J. Insect Physiol. 2001;47:617–622. doi: 10.1016/S0022-1910(00)00151-7. PubMed DOI

Ferrandon D., Jung A.C., Criqui M., Lemaitre B., Uttenweiler-Joseph S., Michaut L., Reichhart J., Hoffmann J.A. A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 1998;17:1217–1227. doi: 10.1093/emboj/17.5.1217. PubMed DOI PMC

Kelly P.H., Bahr S.M., Serafim T.D., Ajami N.J., Petrosino J.F., Meneses C., Kirby J.R., Valenzuela J.G., Kamhawi S., Wilson M.E. The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum. mBio. 2017;8:e01121-16. doi: 10.1128/mBio.01121-16. PubMed DOI PMC

Shir-Shapira H., Sharabany J., Filderman M., Ideses D., Ovadia-Shochat A., Mannervik M., Juven-Gershon T. Structure-function analysis of the Drosophila melanogaster caudal transcription factor provides insights into core promoter-preferential activation. J. Biol. Chem. 2015;290:17293–17305. doi: 10.1074/jbc.M114.632109. PubMed DOI PMC

Ryu J.H., Kim S.H., Lee H.Y., Jin Y.B., Nam Y., Bae J.W., Dong G.L., Seung C.S., Ha E.M., Lee W.J. Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science. 2008;319:777–782. doi: 10.1126/science.1149357. PubMed DOI

Lainson R., Rangel E.F. Lutzomyia longipalpis and the eco-epidemiology of American visceral leishmaniasis, with particular reference to Brazil: A review. Mem. Inst. Oswaldo. Cruz. 2005;100:811–827. doi: 10.1590/S0074-02762005000800001. PubMed DOI

Secundino N.F., Eger-Mangrich I., Braga E.M., Santoro M.M., Pimenta P.F. Lutzomyia longipalpis peritrophic matrix: Formation, structure, and chemical composition. J. Med. Entomol. 2005;42:928–938. doi: 10.1093/jmedent/42.6.928. PubMed DOI

Freitas V.C., Parreiras K.P., Duarte A.P., Secundino N.F., Pimenta P.F. Development of Leishmania (Leishmania) infantum chagasi in its natural sandfly vector Lutzomyia longipalpis. Am. J.Trop Med. Hyg. 2012;86:606–612. doi: 10.4269/ajtmh.2012.11-0386. PubMed DOI PMC

Wilson R., Bates M.D., Dostalova A., Jecna L., Dillon R.J., Volf P., Bates P.A. Stage-specific adhesion of Leishmania promastigotes to sand fly midguts assessed using an improved comparative binding assay. PLoS Negl. Trop. Dis. 2010;4 doi: 10.1371/journal.pntd.0000816. PubMed DOI PMC

Mukhopadhyay J., Braig H.R., Rowton E.D., Ghosh K. Naturally occurring culturable aerobic gut flora of adult Phlebotomus papatasi, vector of Leishmania major in the Old World. PLoS ONE. 2012;7:e35748. doi: 10.1371/journal.pone.0035748. PubMed DOI PMC

McCarthy C.B., Diambra L.A., Rivera Pomar R.V. Metagenomic analysis of taxa associated with Lutzomyia longipalpis, vector of visceral leishmaniasis, using an unbiased high-throughput approach. PLoS Negl. Trop Dis. 2011;5:e1304. doi: 10.1371/journal.pntd.0001304. PubMed DOI PMC

Sant’Anna M.R., Darby A.C., Brazil R.P., Montoya-Lerma J., Dillon V.M., Bates P.A., Dillon R.J. Investigation of the bacterial communities associated with females of Lutzomyia sand fly species from South America. PLoS ONE. 2012;7:e42531. doi: 10.1371/journal.pone.0042531. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace