RNAi-mediated gene silencing of Phlebotomus papatasi defensins favors Leishmania major infection

. 2023 ; 14 () : 1182141. [epub] 20230509

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37265840

Introduction: Production of different antimicrobial peptides (AMPs) is one of the insect's prominent defense strategies, regulated mainly by Toll and immune deficiency (IMD) humoral pathways. Here we focused mainly on two AMPs of Phlebotomus papatasi, vector of Leishmania major parasites, their association with the relish transcription factor and the effective participation on Leishmania infection. Methods and results: We further characterized the role of previously described gut-specific P. papatasi defensin (PpDef1) and identified the second defensin (PpDef2) expressed in various sand fly tissues. Using the RNAi-mediated gene silencing, we report that the silencing of PpDef1 gene or simultaneous silencing of both defensin genes (PpDef1 and PpDef2) resulted in increased parasite levels in the sand fly (detectable by PCR) and higher sand fly mortality. In addition, we knocked down relish, the sole transcription factor of the IMD pathway, to evaluate the association of the IMD pathway with AMPs expression in P. papatasi. We demonstrated that the relish gene knockdown reduced the expression of PpDef2 and attacin, another AMP abundantly expressed in the sand fly body. Conclusions: Altogether, our experiments show the importance of defensins in the sand fly response toward L. major and the role of the IMD pathway in regulating AMPs in P. papatasi.

Zobrazit více v PubMed

Abràmoff M. D., Magalhães P. J., Ram S. J. (2004). Image processing with imageJ. Biophot. Int. 11, 36–41. 10.1201/9781420005615.ax4 DOI

Akhoundi M., Kuhls K., Cannet A., Votýpka J., Marty P., Delaunay P., et al. (2016). A historical overview of the classification, evolution, and dispersion of leishmania parasites and sandflies. PLoS negl . Trop. Dis. 10, e0004349. 10.1371/journal.pntd.0004349 PubMed DOI PMC

Amos B., Aurrecoechea C., Barba M., Barreto A., Basenko E. Y., Bażant W., et al. (2022). VEuPathDB: The eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res. 50, D898–D911. 10.1093/nar/gkab929 PubMed DOI PMC

Blandin S., Moita L. F., Köcher T., Wilm M., Kafatos F. C., Levashina E. A. (2002). Reverse genetics in the mosquito Anopheles gambiae: Targeted disruption of the Defensin gene. EMBO Rep. 3, 852–856. 10.1093/embo-reports/kvf180 PubMed DOI PMC

Blum M., Chang H. Y., Chuguransky S., Grego T., Kandasaamy S., Mitchell A., et al. (2021). The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 49, D344–D354. 10.1093/nar/gkaa977 PubMed DOI PMC

Boulanger N., Lowenberger C., Volf P., Ursic R., Sigutova L., Sabatier L., et al. (2004). Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infect. Immun. 72, 7140–7146. 10.1128/IAI.72.12.7140-7146.2004 PubMed DOI PMC

Bulet P., Hetru C., Dimarcq J. L., Hoffmann D. (1999). Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329–344. 10.1016/s0145-305x(99)00015-4 PubMed DOI

Cociancich S., Ghazi A., Hetru C., Hoffmann J. A., Letellier L. (1993). Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 268, 19239–19245. 10.1016/s0021-9258(19)36505-6 PubMed DOI

Coutinho-Abreu I. V., Zhu K. Y., Ramalho-Ortigao M. (2010b). Transgenesis and paratransgenesis to control insect-borne diseases: Current status and future challenges. Parasitol. Int. 59, 1–8. 10.1016/j.parint.2009.10.002 PubMed DOI PMC

Coutinho-Abreu I. V., Sharma N. K., Robles-Murguia M., Ramalho-Ortigao M. (2010a). Targeting the midgut secreted PpChit1 reduces leishmania major development in its natural vector, the sand fly Phlebotomus papatasi. PLoS Negl. Trop. Dis. 4, e901. 10.1371/journal.pntd.0000901 PubMed DOI PMC

De Gregorio E., Spellman P. T., Tzou P., Rubin G. M., Lemaitre B. (2002). The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21, 2568–2579. 10.1093/emboj/21.11.2568 PubMed DOI PMC

Dey R., Joshi A. B., Oliveira F., Pereira L., Guimaraes-Costa A. B., Serafim T. D., et al. (2018). Gut microbes egested during bites of infected sand flies augment severity of leishmaniasis via inflammasome-derived IL-1β. Cell Host Microbe 23, 134–143. 10.1016/j.chom.2017.12.002 PubMed DOI PMC

Di-Blasi T., Lobo A. R., Nascimento L. M., Córdova-Rojas J. L., Pestana K., Marín-Villa M., et al. (2015). The flagellar protein FLAG1/SMP1 is a candidate for leishmania-sand fly interaction. Vector-Borne Zoonotic Dis. 15, 202–209. 10.1089/vbz.2014.1736 PubMed DOI PMC

Di-Blasi T., Telleria E. L., Marques C., De Macedo Couto R., Da Silva-Neves M., Jancarova M., et al. (2019). Lutzomyia longipalpis tgf-β has a role in leishmania infantum chagasi survival in the vector. Front. Cell. Infect. Microbiol. 9, 71. 10.3389/fcimb.2019.00071 PubMed DOI PMC

Diaz-Albiter H., Mitford R., Genta F. A., Sant’Anna M. R., Dillon R. J. (2011). Reactive oxygen species scavenging by catalase is important for female Lutzomyia longipalpis fecundity and mortality. PLoS One 6, e17486. 10.1371/journal.pone.0017486 PubMed DOI PMC

Díaz-Garrido P., Cárdenas-Guerra R. E., Martínez I., Poggio S., Rodríguez-Hernández K., Rivera-Santiago L., et al. (2021). Differential activity on trypanosomatid parasites of a novel recombinant defensin type 1 from the insect Triatoma (Meccus) pallidipennis. Insect biochem. Mol. Biol. 139, 103673. 10.1016/j.ibmb.2021.103673 PubMed DOI

Dillon R. J., Lane R. P. (1993). Influence of Leishmania infection on blood-meal digestion in the sandflies Phlebotomus papatasi and P. langeroni. Parasitol. Res. 79, 492–496. 10.1007/BF00931590 PubMed DOI

Dornseifer S., Willkomm S., Far R. K. K., Liebschwager J., Beltsiou F., Frank K., et al. (2015). RNAi revised - target mRNA-dependent enhancement of gene silencing. Nucleic Acids Res. 43, 10623–10632. 10.1093/nar/gkv1200 PubMed DOI PMC

Dostálová A., Volf P. (2012). Leishmania development in sand flies: Parasite-vector interactions overview. Parasites Vectors 2012 51 (5), 276. 10.1186/1756-3305-5-276 PubMed DOI PMC

Dushay M. S., Åsling B., Hultmark D. (1996). Origins of immunity: Relish, a compound rel-like gene in the antibacterial defense of Drosophila. Proc. Natl. Acad. Sci. U. S. A. 93, 10343–10347. 10.1073/pnas.93.19.10343 PubMed DOI PMC

Edgar R. C. (2004). Muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. 10.1093/nar/gkh340 PubMed DOI PMC

Ferrandon D., Jung A. C., Criqui M., Lemaitre B., Uttenweiler-Joseph S., Michaut L., et al. (1998). A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 17, 1217–1227. 10.1093/emboj/17.5.1217 PubMed DOI PMC

Garver L. S., Dong Y., Dimopoulos G. (2009). Caspar controls resistance to Plasmodium falciparum in diverse anopheline species. PLoS Pathog. 5, e1000335. 10.1371/journal.ppat.1000335 PubMed DOI PMC

Hanson M. A., Dostálová A., Ceroni C., Poidevin M., Kondo S., Lemaitre B. (2019). Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach. Elife 8, e44341. 10.7554/eLife.44341 PubMed DOI PMC

Hoffmann J. A., Reichhart J. M. (2004). The immune response of Drosophila melanogaster . Immunol. Rev. 198, 59–71. 10.1111/j.0105-2896.2004.0130.x PubMed DOI

Hu C., Aksoy S. (2006). Innate immune responses regulate trypanosome parasite infection of the tsetse fly Glossina morsitans morsitans. Mol. Microbiol. 60, 1194–1204. 10.1111/j.1365-2958.2006.05180.x PubMed DOI

Huguet C., Crepieux P., Laudet V. (1997). Rel/NF-kappa B transcription factors and I kappa B inhibitors: Evolution from a unique common ancestor. Oncogene 15, 2965–2974. 10.1038/sj.onc.1201471 PubMed DOI

Kelly P. H., Bahr S. M., Serafim T. D., Ajami N. J., Petrosino J. F., Meneses C., et al. (2017). The gut microbiome of the vector Lutzomyia longipalpis is essential for survival of leishmania infantum. MBio 8, e01121–16. 10.1128/mBio.01121-16 PubMed DOI PMC

Keshavarz M., Jo Y. H., Edosa T. T., Han Y. S. (2020). Two roles for the Tenebrio molitor relish in the regulation of antimicrobial peptides and autophagy-related genes in response to Listeria monocytogenes. Insects 11 11, 188. 10.3390/insects11030188 PubMed DOI PMC

Kokoza V., Ahmed A., Shin S. W., Okafor N., Zou Z., Raikhel A. S. (2010). Blocking of Plasmodium transmission by cooperative action of Cecropin a and Defensin a in transgenic Aedes aegypti mosquitoes. Proc. Natl. Acad. Sci. U. S. A. 107, 8111–8116. 10.1073/pnas.1003056107 PubMed DOI PMC

Krautz R., Arefin B., Theopold U. (2014). Damage signals in the insect immune response. Front. Plant Sci. 5, 342. 10.3389/fpls.2014.00342 PubMed DOI PMC

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). Mega X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. 10.1093/molbev/msy096 PubMed DOI PMC

Kykalová B., Tichá L., Volf P., Telleria E. L. (2021). Phlebotomus papatasi antimicrobial peptides in larvae and females and a gut-specific defensin upregulated by leishmania major infection. Microorg. 2021, Vol. 9, Page 2307 (9), 2307. 10.3390/microorganisms9112307 PubMed DOI PMC

Louradour I., Ghosh K., Inbar E., Sacks D. L. (2019). CRISPR/Cas9 mutagenesis in Phlebotomus papatasi: The immune deficiency pathway impacts vector competence for Leishmania major. MBio 10, 019411-19–e2019. 10.1128/mBio.01941-19 PubMed DOI PMC

Lu S., Wang J., Chitsaz F., Derbyshire M. K., Geer R. C., Gonzales N. R., et al. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 48, D265–D268. 10.1093/nar/gkz991 PubMed DOI PMC

Manniello M. D., Moretta A., Salvia R., Scieuzo C., Lucchetti D., Vogel H., et al. (2021). Insect antimicrobial peptides: Potential weapons to counteract the antibiotic resistance. Cell. Mol. Life Sci. 2021 789 (78), 4259–4282. 10.1007/s00018-021-03784-z PubMed DOI PMC

Molina-Cruz A., DeJong R. J., Charles B., Gupta L., Kumar S., Jaramillo-Gutierrez G., et al. (2008). Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium. J. Biol. Chem. 283, 3217–3223. 10.1074/jbc.M705873200 PubMed DOI

Myskova J., Votypka J., Volf P. (2008). Leishmania in sand flies: Comparison of quantitative Polymerase chain reaction with other techniques to determine the intensity of infection. J. Med. Entomol. 45, 133–138. 10.1603/0022-2585(2008)45[133:lisfco]2.0.co;2 PubMed DOI

Pancoska P., Moravek Z., Moll U. M. (2004). Efficient RNA interference depends on global context of the target sequence: Quantitative analysis of silencing efficiency using eulerian graph representation of siRNA. Nucleic Acids Res. 32, 1469–1479. 10.1093/nar/gkh314 PubMed DOI PMC

Pruzinova K., Sadlova J., Seblova V., Homola M., Votypka J., Volf P. (2015). Comparison of bloodmeal digestion and the peritrophic matrix in four sand fly species differing in susceptibility to leishmania donovani. PLoS One 10 10, e0128203. 10.1371/journal.pone.0128203 PubMed DOI PMC

Sádlová J., Price H. P., Smith B. A., Votỳpka J., Volf P., Smith D. F. (2010). The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell. Microbiol. 12, 1765–1779. 10.1111/j.1462-5822.2010.01507.x PubMed DOI PMC

Sanda N. B., Hou B., Muhammad A., Ali H., Hou Y. (2019). Exploring the role of relish on antimicrobial peptide expressions (AMPs) upon nematode-bacteria complex challenge in the nipa palm hispid beetle, Octodonta nipae maulik (coleoptera: Chrysomelidae). Front. Microbiol. 10, 2466–2512. 10.3389/fmicb.2019.02466 PubMed DOI PMC

Sant’Anna M. R., Diaz-Albiter H., Mubaraki M., Dillon R. J., Bates P. A. (2009). Inhibition of trypsin expression in Lutzomyia longipalpis using RNAi enhances the survival of Leishmania. Parasites Vectors 2, 62–10. 10.1186/1756-3305-2-62 PubMed DOI PMC

Sant’Anna M. R. V., Alexander B., Bates P. A., Dillon R. J. (2008). Gene silencing in phlebotomine sand flies: Xanthine dehydrogenase knock down by dsRNA microinjections. Insect biochem. Mol. Biol. 38, 652–660. 10.1016/j.ibmb.2008.03.012 PubMed DOI PMC

Sarvari M., Mikani A., Mehrabadi M. (2020). The innate immune gene Relish and Caudal jointly contribute to the gut immune homeostasis by regulating antimicrobial peptides in Galleria mellonella. Dev. Comp. Immunol. 110, 103732. 10.1016/j.dci.2020.103732 PubMed DOI

Shahabuddin M., Fields I., Bulet P., Hoffmann J. A., Miller L. H. (1998). Plasmodium gallinaceum: Differential killing of some mosquito stages of the parasite by insect defensin. Exp. Parasitol. 89, 103–112. 10.1006/expr.1998.4212 PubMed DOI

Sloan M. A., Sadlova J., Lestinova T., Sanders M. J., Cotton J. A., Volf P., et al. (2021). The Phlebotomus papatasi systemic transcriptional response to trypanosomatid-contaminated blood does not differ from the non-infected blood meal. Parasites Vectors 14, 15–14. 10.1186/s13071-020-04498-0 PubMed DOI PMC

Svoboda P. (2020). Key mechanistic principles and considerations concerning RNA interference. Interf. Front. Plant Sci. 11, 1237. 10.3389/fpls.2020.01237 PubMed DOI PMC

Telleria E. L., Azevedo-Brito D. A., Kykalová B., Tinoco-Nunes B., Pitaluga A. N., Volf P., et al. (2021a). Leishmania infantum infection modulates the jak-STAT pathway in Lutzomyia longipalpis LL5 embryonic cells and adult females, and affects parasite growth in the sand fly. Front. Trop. Dis. 2, 747820. 10.3389/fitd.2021.747820 DOI

Telleria E. L., Martins-Da-Silva A., Tempone A. J., Traub-Cseko Y. M. (2018). Leishmania, microbiota and sand fly immunity. Parasitology 145, 1336–1353. 10.1017/S0031182018001014 PubMed DOI PMC

Telleria E. L., Sant’Anna M. R. V., Ortigão-Farias J. R., Pitaluga A. N., Dillon V. M., Bates P. A., et al. (2012). Caspar-like gene depletion reduces leishmania infection in sand fly host Lutzomyia longipalpis. J. Biol. Chem. 287, 12985–12993. 10.1074/jbc.M111.331561 PubMed DOI PMC

Telleria E. L., Tinoco-Nunes B., Leštinová T., de Avellar L. M., Tempone A. J., Pitaluga A. N., et al. (2021b). Lutzomyia longipalpis antimicrobial peptides: Differential expression during development and potential involvement in vector interaction with microbiota and leishmania. Microorganisms 9, 1271. 10.3390/microorganisms9061271 PubMed DOI PMC

Tinoco-Nunes B., Telleria E. L., Da Silva-Neves M., Marques C., Azevedo-Brito D. A., Pitaluga A. N., et al. (2016). The sandfly Lutzomyia longipalpis LL5 embryonic cell line has active Toll and Imd pathways and shows immune responses to bacteria, yeast and Leishmania. Parasites Vectors 9, 222. 10.1186/s13071-016-1507-4 PubMed DOI PMC

Tzou P., Ohresser S., Ferrandon D., Capovilla M., Reichhart J. M., Lemaitre B., et al. (2000). Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737–748. 10.1016/s1074-7613(00)00072-8 PubMed DOI

Vieira C. S., Waniek P. J., Castro D. P., Mattos D. P., Moreira O. C., Azambuja P. (2016). Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus . Parasites Vectors 9, 119. 10.1186/s13071-016-1398-4 PubMed DOI PMC

Vizioli J., Bulet P., Hoffmann J. A., Kafatos F. C., Müller H. M., Dimopoulos G. (2001). Gambicin: A novel immune responsive antimicrobial peptide from the malaria vector Anopheles gambiae . Proc. Natl. Acad. Sci. U. S. A. 98, 12630–12635. 10.1073/pnas.221466798 PubMed DOI PMC

Volf P., Volfova V. (2011). Establishment and maintenance of sand fly colonies. J. Vector Ecol. 36, S1–S9. 10.1111/j.1948-7134.2011.00106.x PubMed DOI

Whelan S., Goldman N. (2001). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18, 691–699. 10.1093/oxfordjournals.molbev.a003851 PubMed DOI

Zanchi C., Johnston P. R., Rolff J. (2017). Evolution of defence cocktails: Antimicrobial peptide combinations reduce mortality and persistent infection. Mol. Ecol. 26, 5334–5343. 10.1111/mec.14267 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...