Evidence of a conserved mammalian immunosuppression mechanism in Lutzomyia longipalpis upon infection with Leishmania

. 2023 ; 14 () : 1162596. [epub] 20231102

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38022562

INTRODUCTION: Sand flies (Diptera: Phlebotominae) belonging to the Lutzomyia genus transmit Leishmania infantum parasites. To understand the complex interaction between the vector and the parasite, we have been investigating the sand fly immune responses during the Leishmania infection. Our previous studies showed that genes involved in the IMD, Toll, and Jak-STAT immunity pathways are regulated upon Leishmania and bacterial challenges. Nevertheless, the parasite can thrive in the vectors' gut, indicating the existence of mechanisms capable of modulating the vector defenses, as was already seen in mammalian Leishmania infections. METHODS RESULTS AND DISCUSSION: In this study, we investigated the expression of Lutzomyia longipalpis genes involved in regulating the Toll pathway under parasitic infection. Leishmania infantum infection upregulated the expression of two L. longipalpis genes coding for the putative repressors cactus and protein tyrosine phosphatase SHP. These findings suggest that the parasite can modulate the vectors' immune response. In mammalian infections, the Leishmania surface glycoprotein GP63 is one of the inducers of host immune depression, and one of the known effectors is SHP. In L. longipalpis we found a similar effect: a genetically modified strain of Leishmania amazonensis over-expressing the metalloprotease GP63 induced a higher expression of the sand fly SHP indicating that the L. longipalpis SHP and parasite GP63 increased expressions are connected. Immuno-stained microscopy of L. longipalpis LL5 embryonic cells cultured with Leishmania strains or parasite conditioned medium showed cells internalization of parasite GP63. A similar internalization of GP63 was observed in the sand fly gut tissue after feeding on parasites, parasite exosomes, or parasite conditioned medium, indicating that GP63 can travel through cells in vitro or in vivo. When the sand fly SHP gene was silenced by RNAi and females infected by L. infantum, parasite loads decreased in the early phase of infection as expected, although no significant differences were seen in late infections of the stomodeal valve. CONCLUSIONS: Our findings show the possible role of a pathway repressor involved in regulating the L. longipalpis immune response during Leishmania infections inside the insect. In addition, they point out a conserved immunosuppressive effect of GP63 between mammals and sand flies in the early stage of parasite infection.

Zobrazit více v PubMed

Sheehan G, Garvey A, Croke M, Kavanagh K. Innate humoral immune defences in mammals and insects: The same, with differences? Virulence (2018) 9(1):1625–39. doi: 10.1080/21505594.2018.1526531 PubMed DOI PMC

Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol (2007) 25:697–743. doi: 10.1146/annurev.immunol.25.022106.141615 PubMed DOI

Kingsolver MB, Hardy RW. Making connections in insect innate immunity. Proc Natl Acad Sci U S A (2012) 109(46):18639–40. doi: 10.1073/pnas.1216736109 PubMed DOI PMC

Bang IS. JAK/STAT signaling in insect innate immunity. Entomological Res (2019) 49:339–53. doi: 10.1111/1748-5967.12384 DOI

Feldhaar H, Gross R. Immune reactions of insects on bacterial pathogens and mutualists. Microbes Infect (2008) 10(9):1082–8. doi: 10.1016/j.micinf.2008.07.010 PubMed DOI

Ali Mohammadie Kojour M, Han YS, Jo YH. An overview of insect innate immunity. Entomological Res (2020) 50(6):282–91. doi: 10.1111/1748-5967.12437 DOI

De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J (2002) 21(11):2568–79. doi: 10.1093/emboj/21.11.2568 PubMed DOI PMC

Agaisse H, Petersen UM, Boutros M, Mathey-Prevot B, Perrimon N. Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev Cell (2003) 5(3):441–50. doi: 10.1016/S1534-5807(03)00244-2 PubMed DOI

Lee KZ, Ferrandon D. Negative regulation of immune responses on the fly. EMBO J (2011) 30(6):988–90. doi: 10.1038/emboj.2011.47 PubMed DOI PMC

Ganesan S, Aggarwal K, Paquette N, Silverman N. NF-κB/rel proteins and the humoral immune responses of drosophila melanogaster. Curr Topics Microbiol Immunol (2011) 349:25. doi: 10.1007/82_2010_107 PubMed DOI PMC

Morrison DK, Murakami MS, Cleghon V. Protein kinases and phosphatases in the drosophila genome. J Cell Biol (2000) 150(2):57. doi: 10.1083/jcb.150.2.F57 PubMed DOI PMC

Neel BG. Structure and function of SH2-domain containing tyrosine phosphatases. Semin Cell Dev Biol (1993) 4(6):419–32. doi: 10.1006/scel.1993.1050 PubMed DOI

Klingmoller U, Lorenz U, Cantley LC, Neel BG, Lodish HF. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell (1995) 80:729–38. doi: 10.1016/0092-8674(95)90351-8 PubMed DOI

Muller P, Kuttenkeuler D, Gesellchen V, Zeidler MP, Boutros M. Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature (2005) 436(7052):871–5. doi: 10.1038/nature03869 PubMed DOI

Davis MM, Engstrom Y. Immune response in the barrier epithelia: lessons from the fruit fly Drosophila melanogaster. J Innate Immun (2012) 4(3):273–83. doi: 10.1159/000332947 PubMed DOI PMC

Matetovici I, De Vooght L, Van Den Abbeele J. Innate immunity in the tsetse fly (Glossina), vector of African trypanosomes. Dev Comp Immunol (2019) 98:181–8. doi: 10.1016/j.dci.2019.05.003 PubMed DOI

Carmona-Peña SP, Contreras-Garduño J, Castro DP, Manjarrez J, Vázquez-Chagoyán JC. The innate immune response of triatomines against Trypanosoma cruzi and Trypanosoma rangeli with an unresolved question: Do triatomines have immune memory? Acta Tropica (2021) 224:106108. doi: 10.1016/j.actatropica.2021.106108 PubMed DOI

Gabrieli P, Caccia S, Varotto-Boccazzi I, Epis S. Mosquito trilogy: microbiota, immunity and pathogens, and their implications for the control of disease transmission. Front Microbiol (2021) 12:630438. doi: 10.3389/fmicb.2021.630438 PubMed DOI PMC

Xi Z, Ramirez JL, Dimopoulos G. The aedes aEgypti toll pathway controls dengue virus infection. PloS Pathog (2008) 4(7):e1000098. doi: 10.1371/journal.ppat.1000098 PubMed DOI PMC

Sanders HR, Foy BD, Evans AM, Gill SS. Sindbis virus induces transport processes and alters expression of innate immunity pathway genes in the midgut of the disease vector, Aedes aEgypti. Insect Biochem Mol Biol (2005) 35(11):1293–307. doi: 10.1016/j.ibmb.2005.07.006 PubMed DOI

Vizioli J, Bulet P, Hoffmann JA, Kafatos FC, Müller HM, Dimopoulos G. Gambicin: A novel immune responsive antimicrobial peptide from the malaria vector Anopheles Gambiae. Proc Natl Acad Sci United States America (2001) 98(22):12630–5. doi: 10.1073/pnas.221466798 PubMed DOI PMC

Souza-Neto JA, Sim S, Dimopoulos G. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci U S A (2009) 106(42):17841–6. doi: 10.1073/pnas.0905006106 PubMed DOI PMC

Angleró-Rodríguez YI, MacLeod HJ, Kang S, Carlson JS, Jupatanakul N, Dimopoulos G. Aedes aegypti molecular responses to Zika Virus: Modulation of infection by the toll and Jak/Stat immune pathways and virus host factors. Front Microbiol (2017) 8:2050(OCT). doi: 10.3389/fmicb.2017.02050 PubMed DOI PMC

Gupta L, Molina-Cruz A, Kumar S, Barillas-Mury C. The STAT Pathway Mediates Late-Phase Immunity against Plasmodium in the Mosquito Anopheles Gambiae. Cell Host Microbe (2009) 5(5):498–507. doi: 10.1016/j.chom.2009.04.003 PubMed DOI PMC

Bahia AC, Kubota MS, Tempone AJ, Traub-Cseko YM. The JAK-STAT pathway controls Plasmodium vivax load in early stages of Anopheles aquasalis infection. PLoS Negl Trop Dis (2011) 5(11):e1317. doi: 10.1371/journal.pntd.0001317 PubMed DOI PMC

Boulanger N, Brun R, Ehret-Sabatier L, Kunz C, Bulet P. Immunopeptides in the defense reactions of Glossina morsitans to bacterial and Trypanosoma brucei brucei infections. Insect Biochem Mol Biol (2002) 32(4):369–75. doi: 10.1016/S0965-1748(02)00029-2 PubMed DOI

Vieira CS, Waniek PJ, Castro DP, Mattos DP, Moreira OC, Azambuja P. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Parasites Vectors (2016) 9:119. doi: 10.1186/s13071-016-1398-4 PubMed DOI PMC

Tinoco-Nunes B, Telleria EL, Da Silva-Neves M, Traub-Csekö YM. The sandfly Lutzomyia longipalpis LL5 embryonic cell line has active Toll and Imd pathways and shows immune responses to bacteria, yeast and Leishmania. Parasites Vectors (2016) 9:222. doi: 10.1186/s13071-016-1507-4 PubMed DOI PMC

da Silva Goncalves D, Iturbe-Ormaetxe I, Martins-da-Silva A, Moreira LA. Wolbachia introduction into Lutzomyia longipalpis (Diptera: Psychodidae) cell lines and its effects on immune-related gene expression and interaction with Leishmania infantum. Parasit Vectors (2019) 12(1):33. doi: 10.1186/s13071-018-3227-4 PubMed DOI PMC

Telleria EL, Azevedo-Brito DA, Kykalová B, Traub-Csekö YM. Leishmania infantum Infection Modulates the Jak-STAT Pathway in Lutzomyia longipalpis LL5 Embryonic Cells and Adult Females, and Affects Parasite Growth in the Sand Fly. Front Trop Dis (2021) 2:747820. doi: 10.3389/fitd.2021.747820 DOI

Telleria EL, Sant’Anna MRV, Ortigão-Farias JR, Dillon RJ. Caspar-like gene depletion reduces leishmania infection in sand fly host Lutzomyia longipalpis. J Biol Chem (2012) 287(16):12985–93. doi: 10.1074/jbc.M111.331561 PubMed DOI PMC

Louradour I, Ghosh K, Inbar E, Sacks DL. CRISPR/Cas9 mutagenesis in Phlebotomus papatasi: The immune deficiency pathway impacts vector competence for Leishmania major. MBio (2019) 10(4):e01941–19. doi: 10.1128/mBio.01941-19 PubMed DOI PMC

Coutinho-Abreu IV, Serafim TD, Meneses C, Kamhawi S, Oliveira F, Valenzuela JG. Leishmania infection induces a limited differential gene expression in the sand fly midgut. BMC Genomics (2020) 21:608. doi: 10.1186/s12864-020-07025-8 PubMed DOI PMC

Sloan MA, Sadlova J, Lestinova T, Ligoxygakis P. The Phlebotomus papatasi systemic transcriptional response to trypanosomatid-contaminated blood does not differ from the non-infected blood meal. Parasites Vectors (2021) 14(15):1–14. doi: 10.1186/s13071-020-04498-0 PubMed DOI PMC

Telleria EL, Sant’Anna MRV, Alkurbi MO, Pitaluga AN, Dillon RJ, Traub-Csekö YM. Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis. Parasites Vectors (2013) 6:12. doi: 10.1186/1756-3305-6-12 PubMed DOI PMC

Telleria EL, Tinoco-Nunes B, Leštinová T, Traub-Csekö YM. Lutzomyia longipalpis Antimicrobial Peptides: Differential Expression during Development and Potential Involvement in Vector Interaction with Microbiota and Leishmania. Microorganisms (2021) 9(6):1271. doi: 10.3390/microorganisms9061271 PubMed DOI PMC

Kykalová B, Tichá L, Volf P, Telleria EL. Phlebotomus papatasi Antimicrobial Peptides in Larvae and Females and a Gut-Specific Defensin Upregulated by Leishmania major Infection. Microorganisms (2021) 9(11):2307. doi: 10.3390/microorganisms9112307 PubMed DOI PMC

Di-Blasi T, Telleria EL, Marques C, Traub-Csekö YM. Lutzomyia longipalpis tgf-β has a role in leishmania infantum chagasi survival in the vector. Front Cell Infection Microbiol (2019) 9:71. doi: 10.3389/fcimb.2019.00071 PubMed DOI PMC

de Castro Neto AL, da Silveira JF, Mortara RA. Comparative analysis of virulence mechanisms of trypanosomatids pathogenic to humans. Front Cell Infection Microbiol (2021) 11:669079. doi: 10.3389/fcimb.2021.669079 PubMed DOI PMC

Kotb Elmahallawy E, Alkhaldi AAM, Wikel S, Sa AAMA. Insights into leishmania molecules and their potential contribution to the virulence of the parasite. Veterinary Sci (2021) 8(2):33. doi: 10.3390/vetsci8020033 PubMed DOI PMC

Gomez MA, Contreras I, Hallé M, Tremblay ML, McMaster RW, Olivier M. Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases. Sci Signaling (2009) 2(90):ra58. doi: 10.1126/SCISIGNAL.2000213 PubMed DOI

Abu-Dayyeh I, Shio MT, Sato S, Akira S, Cousineau B, Olivier M. Leishmania-induced IRAK-1 inactivation is mediated by SHP-1 interacting with an evolutionarily conserved KTIM motif. PLoS Negl Trop Dis (2008) 2(12):e305. doi: 10.1371/journal.pntd.0000305 PubMed DOI PMC

Boguski MS, Lowe TMJ, Tolstoshev CM. dbEST — database for “expressed sequence tags”. Nat Genet (1993) 4:332–3. doi: 10.1038/ng0893-332 PubMed DOI

Giraldo-Calderón GI, Emrich SJ, MacCallum RM, Wieck R. VectorBase: An updated Bioinformatics Resource for invertebrate vectors and other organisms related with human diseases. Nucleic Acids Res (2015) 43(D1):D707–13. doi: 10.1093/nar/gku1117 PubMed DOI PMC

Acland A, Agarwala R, Barrett T, Zbicz K. Database resources of the national center for biotechnology information. Nucleic Acids Res (2014) 42(D1):D7–D17. doi: 10.1093/nar/gkt1146 PubMed DOI PMC

Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res (2003) 13(9):2178–89. doi: 10.1101/gr.1224503 PubMed DOI PMC

Blum M, Chang HY, Chuguransky S, Finn RD. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res (2021) 49(D1):D344–54. doi: 10.1093/nar/gkaa977 PubMed DOI PMC

Lu S, Wang J, Chitsaz F, Marchler-Bauer A. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res (2020) 48(D1):D265–8. doi: 10.1093/nar/gkz991 PubMed DOI PMC

Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res (2004) 32(5):1792–7. doi: 10.1093/nar/gkh340 PubMed DOI PMC

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol (2018) 35:1547–9. doi: 10.1093/molbev/msy096 PubMed DOI PMC

Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Bioinformatics (1992) 8(3):275–82. doi: 10.1093/bioinformatics/8.3.275 PubMed DOI

Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol (2008) 25(7):1307–20. doi: 10.1093/molbev/msn067 PubMed DOI

Tesh RB, Modi GB. Development of a continuous cell line from the sand fly Lutzomyia longipalpis (Diptera: Psychodidae), and its susceptibility to infection with arboviruses. J Med Entomol (1983) 20(2):199–202. doi: 10.1093/jmedent/20.2.199 PubMed DOI

Chen D-Q, Kolli BK, Yadava N, Chang K-P. Episomal Expression of Specific Sense and Antisense mRNAs in Leishmania amazonensis: Modulation of gp63 Level in Promastigotes and Their Infection of Macrophages In Vitro . Infection Immun (2000) 68(1):80–6. doi: 10.1128/IAI.68.1.80-86.2000 PubMed DOI PMC

Hendricks L, Wright N. Diagnosis of cutaneous leishmaniasis by in vitro cultivation of saline aspirates in Schneider’s drosophila medium. Am J Trop Med Hygiene (1979) 28(6):962–4. doi: 10.4269/ajtmh.1979.28.962 PubMed DOI

Forrest DM, Batista M, Marchini FK, Tempone AJ, Traub-Csekö YM. Proteomic analysis of exosomes derived from procyclic and metacyclic-like cultured Leishmania infantum chagasi. J Proteomics (2020) 227(15):103902. doi: 10.1016/j.jprot.2020.103902 PubMed DOI

Keerthikumar S, Chisanga D, Ariyaratne D, Mathivanan S. ExoCarta: A web-Based compendium of exosomal cargo. J Mol Biol (2016) 428(4):688–92. doi: 10.1016/j.jmb.2015.09.019 PubMed DOI PMC

Lawyer P, Killick-Kendrick M, Rowland T, Rowton E, Volf P. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae). Parasite (2017) 24:42. doi: 10.1051/parasite/2017041 PubMed DOI PMC

Molina-Cruz A, DeJong RJ, Charles B, Gupta L, Kumar S, Jaramillo-Gutierrez G, et al. . Reactive Oxygen Species Modulate Anopheles gambiae Immunity against Bacteria and Plasmodium. Journal of Biological Chemistry (2008) 283(6):3217–3223. doi: 10.1074/jbc.M705873200 PubMed DOI

Di-Blasi T, Lobo AR, Nascimento LM, Córdova-Rojas JL, Pestana K, Marín-Villa M, et al. . The Flagellar Protein FLAG1/SMP1 is a Candidate for Leishmania–Sand Fly Interaction. Vector-Borne and Zoonotic Diseases (2015) 15(3):202–9. doi: 10.1089/vbz.2014.1736 PubMed DOI PMC

Meireles-Filho AC, Amoretty PR, Souza NA, Kyriacou CP, Peixoto AA. Rhythmic expression of the cycle gene in a hematophagous insect vector. BMC Molecular Biol (2006) 7:38. doi: 10.1186/1471-2199-7-38 PubMed DOI PMC

Sant’Anna MRV, Alexander B, Bates PA, Dillon RJ. Gene silencing in phlebotomine sand flies: Xanthine dehydrogenase knock down by dsRNA microinjections. Insect Biochem Mol Biol (2008) 38(6):652–60. doi: 10.1016/j.ibmb.2008.03.012 PubMed DOI PMC

Myskova J, Votypka J, Volf P. Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomology (2008) 45(1):133–8. doi: 10.1093/jmedent/45.1.133 PubMed DOI

Sádlová J, Price HP, Smith BA, Votỳpka J, Volf P, Smith DF. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell Microbiol (2010) 12(12):1765–79. doi: 10.1111/j.1462-5822.2010.01507.x PubMed DOI PMC

Rasband W. ImageJ website(2004). Available at: https://imagej.nih.gov/ij/.

Walters LL, Chaplin GL, Modi GB, Tesh RB. Ultrastructural biology of Leishmania (Viannia) panamensis (=Leishmania Braziliensis panamensis) in Lutzomyia gomezi (Diptera: Psychodidae): a natural host-parasite association. Am J Trop Med Hyg (1989) 40(1):19–39. doi: 10.4269/ajtmh.1989.40.19 PubMed DOI

Jaffray E, Wood KM, Hay RT. Domain organization of I kappa B alpha and sites of interaction with NF-kappa B p65. Mol Cell Biol (1995) 15(4):2166–72. doi: 10.1128/MCB.15.4.2166 PubMed DOI PMC

Perkins ND. Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol (2007) 8:49–62. doi: 10.1038/nrm2083 PubMed DOI

Valanne S, Wang J-H, Rämet M. The drosophila toll signaling pathway. J Immunol (2011) 186(2):649–56. doi: 10.4049/jimmunol.1002302 PubMed DOI

Dillon RJ, Ivens AC, Churcher C, Bates PA. Analysis of ESTs from Lutzomyia longipalpis sand flies and their contribution toward understanding the insect–parasite relationship. Genomics (2006) 88(6):831–40. doi: 10.1016/j.ygeno.2006.06.011 PubMed DOI PMC

Pitaluga AN, Mason PW, Traub-Cseko YM. Non-specific antiviral response detected in RNA-treated cultured cells of the sandfly, Lutzomyia longipalpis. Dev Comp Immunol (2008) 32(3):191–7. doi: 10.1016/j.dci.2007.06.008 PubMed DOI

Basith S, Manavalan B, Gosu V, Choi S. Evolutionary, Structural and Functional Interplay of the IκB Family Members. PLOS ONE (2013) 8(1):e54178. doi: 10.1371/journal.pone.0054178 PubMed DOI PMC

Lannoy V, Côté-Biron A, Asselin C, Rivard N. Phosphatases in toll-like receptors signaling: the unfairly-forgotten. Cell Communication Signaling (2021) 19(10):1–15. doi: 10.1186/s12964-020-00693-9 PubMed DOI PMC

Yuk JM, Shin DM, Lee HM, Jo EK. The orphan nuclear receptor SHP acts as a negative regulator in inflammatory signaling triggered by Toll-like receptors. Nat Immunol (2011) 12(8):742–51. doi: 10.1038/ni.2064 PubMed DOI

Neel BG, Gu H, Pao L. The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci (2003) 28(6):284–93. doi: 10.1016/S0968-0004(03)00091-4 PubMed DOI

Freeman RM, Plutzky J, Neel BG. Identification of a human src homology 2-containing protein-tyrosine-phosphatase: a putative homolog of Drosophila corkscrew. Proc Natl Acad Sci United States America (1992) 89(23):11239–43. doi: 10.1073/pnas.89.23.11239 PubMed DOI PMC

Perkins LA, Larsen I, Perrimon N. corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell (1992) 70(2):225–36. doi: 10.1016/0092-8674(92)90098-W PubMed DOI

Moretti DM, Ahuja LG, Nunes RD, Silva-Neto MAC. Molecular analysis of Aedes aegypti classical protein tyrosine phosphatases uncovers an ortholog of mammalian PTP-1B implicated in the control of egg production in mosquitoes. PLoS One (2014) 9(8):e104878. doi: 10.1371/journal.pone.0104878 PubMed DOI PMC

Telleria EL, Martins-Da-Silva A, Tempone AJ, Traub-Cseko YM. Leishmania, microbiota and sand fly immunity. Parasitology (2018) 145(10):1336–53. doi: 10.1017/S0031182018001014 PubMed DOI PMC

Nimmo DD, Ham PJ, Ward RD, Maingon R. The sandfly Lutzomyia longipalpis shows specific humoral responses to bacterial challenge. Med Veterinary Entomology (1997) 11(4):324–8. doi: 10.1111/j.1365-2915.1997.tb00417.x PubMed DOI

Boulanger N, Lowenberger C, Volf P, Bulet P. Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infection Immun (2004) 72(12):7140–6. doi: 10.1128/IAI.72.12.7140-7146.2004 PubMed DOI PMC

Habtewold T, Groom Z, Christophides GK. Immune resistance and tolerance strategies in malaria vector and non-vector mosquitoes. Parasites Vectors (2017) 10:186. doi: 10.1186/s13071-017-2109-5 PubMed DOI PMC

Dostálová A, Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasites Vectors (2012) 5:276. doi: 10.1186/1756-3305-5-276 PubMed DOI PMC

Molina-Cruz A, Garver LS, Alabaster A, Barillas-Mury C. The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system. Sci (New York N.Y.) (2013) 340(6135):984–7. doi: 10.1126/science.1235264 PubMed DOI PMC

Ramphul UN, Garver LS, Molina-Cruz A, Canepa GE, Barillas-Mury C. Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells. Proc Natl Acad Sci U S A (2015) 112(5):1273–80. doi: 10.1073/pnas.1423586112 PubMed DOI PMC

Liongue C, O’Sullivan LA, Trengove MC, Ward AC. Evolution of JAK-STAT pathway components: mechanisms and role in immune system development. PLoS One (2012) 7(3):e32777. doi: 10.1371/journal.pone.0032777 PubMed DOI PMC

Hassani K, Olivier M. Immunomodulatory impact of leishmania-induced macrophage exosomes: a comparative proteomic and functional analysis. PLoS Negl Trop Dis (2013) 7(5):e2185. doi: 10.1371/journal.pntd.0002185 PubMed DOI PMC

Hajmova M, Chang KP, Kolli B, Volf P. Down-regulation of gp63 in Leishmania amazonensis reduces its early development in Lutzomyia longipalpis. Microbes Infect (2004) 6(7):646–9. doi: 10.1016/j.micinf.2004.03.003 PubMed DOI

Silverman JM, Chan SK, Robinson DP, Reiner NE. Proteomic analysis of the secretome of Leishmania donovani. Genome Biol (2008) 9(2):R35. doi: 10.1186/gb-2008-9-2-r35 PubMed DOI PMC

Corrales RM, Sereno D, Mathieu-Daudé F. Deciphering the Leishmania exoproteome: what we know and what we can learn. FEMS Immunol Med Microbiol (2010) 58(1):27–38. doi: 10.1111/j.1574-695X.2009.00608.x PubMed DOI

Arango Duque G, Jardim A, Gagnon É, Fukuda M, Descoteaux A. The host cell secretory pathway mediates the export of Leishmania virulence factors out of the parasitophorous vacuole. PLoS Pathog (2019) 15(7):e1007982. doi: 10.1371/journal.ppat.1007982 PubMed DOI PMC

Pissarra J, Pagniez J, Petitdidier E, Holzmuller P. Proteomic analysis of the promastigote secretome of seven leishmania species. J Proteome Res (2022) 21(1):30–48. doi: 10.1021/acs.jproteome.1c00244 PubMed DOI

Atayde VD, Hassani K, da Silva Lira Filho A, Olivier M. Leishmania exosomes and other virulence factors: Impact on innate immune response and macrophage functions. Cell Immunol (2016) 309:7–18. doi: 10.1016/j.cellimm.2016.07.013 PubMed DOI

Dong G, Filho AL, Olivier M. Modulation of host-pathogen communication by extracellular vesicles (EVs) of the protozoan parasite Leishmania. Front Cell Infection Microbiol (2019) 9:100. doi: 10.3389/fcimb.2019.00100 PubMed DOI PMC

Huang JH, Jing X, Douglas AE. The multi-tasking gut epithelium of insects. Insect Biochem Mol Biol (2015) 67:15–20. doi: 10.1016/j.ibmb.2015.05.004 PubMed DOI PMC

Steck N, Hoffmann M, Sava IG, Haller D. Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Gastroenterology (2011) 141(3):959–71. doi: 10.1053/j.gastro.2011.05.035 PubMed DOI

Luo Q, Kumar P, Vickers TJ, Fleckenstein JM. Enterotoxigenic escherichia coli secretes a highly conserved mucin-degrading metalloprotease to effectively engage intestinal epithelial cells. Infection Immun (2014) 82(2):509–21. doi: 10.1128/IAI.01106-13 PubMed DOI PMC

Deolindo P, Evans-Osses I, Ramirez MI. Microvesicles and exosomes as vehicles between protozoan and host cell communication. Biochem Soc Trans (2013) 41(1):252–7. doi: 10.1042/BST20120217 PubMed DOI

Coakley G, Maizels RM, Buck AH. Exosomes and other extracellular vesicles: the new communicators in parasite infections. Trends Parasitol (2015) 31(10):477–89. doi: 10.1016/j.pt.2015.06.009 PubMed DOI PMC

Marcilla A, Trelis M, Cortés A, Bernal D. Extracellular vesicles from parasitic helminths contain specific excretory/Secretory proteins and are internalized in intestinal host cells. PLoS One (2012) 7(9):e45974. doi: 10.1371/journal.pone.0045974 PubMed DOI PMC

Vomáčková Kykalová B, Sassù F, Volf P, Telleria EL. RNAi-mediated gene silencing of Phlebotomus papatasi defensins favors Leishmania major infection. Front Physiol (2023) 14:1182141. doi: 10.3389/fphys.2023.1182141 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...