Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Boostering diagnosis of frontotemporal lobar degeneration with AI-driven neuroimaging - A systematic review and meta-analysis

Q. Wu, D. Kiakou, K. Mueller, W. Köhler, ML. Schroeter

. 2025 ; 45 (-) : 103757. [pub] 20250217

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, systematický přehled, metaanalýza

Perzistentní odkaz   https://www.medvik.cz/link/bmc25010366

BACKGROUND AND OBJECTIVES: Frontotemporal lobar degeneration (FTLD) as the second most common dementia encompasses a range of syndromes and often shows overlapping symptoms with other subtypes or neurodegenerative diseases, which poses a significant clinical diagnostic challenge. Recent advancements in artificial intelligence (AI), specifically the application of machine learning (ML) algorithms to neuroimaging, have significantly progressed in addressing this challenge. This study aims to assess the diagnostic and predictive efficacy of neuroimaging feature-based AI algorithms for FTLD. METHODS: We conducted a systematic review and meta-analysis following PRISMA guidelines. We searched Pubmed, Scopus, and Web of Science for English-language, peer-reviewed studies using the following three umbrella terms: artificial intelligence, frontotemporal lobar degeneration, and neuroimaging modality. Our survey focused on computer-aided diagnosis for FTLD, employing machine/deep learning with neuroimaging radiomic features. RESULTS: The meta-analysis includes 75 articles with 20,601 subjects, including 8,051 FTLD patients. The results reveal that FTLD can be automatically classified against healthy controls (HC) with pooled sensitivity and specificity of 86% and 89%, respectively. Likewise, FTLD versus Alzheimer's disease (AD) classification exhibits pooled sensitivity and specificity of 84% and 81%, while FTLD versus Parkinson's disease (PD) demonstrates pooled sensitivity and specificity of 84% and 75%, respectively. Classification performance distinguishing FTLD from atypical Parkinsonian syndromes (APS) showed pooled sensitivity and specificity of 84% and 79%, respectively. Multiclass classification sensitivity ranges from 42% to 100%, with lower sensitivity occurring in higher class distinctions (e.g., 5-class and 11-class). DISCUSSION: Our study demonstrates the effectiveness of utilizing neuroimaging features to distinguish FTLD from HC, AD, APS, and PD in binary classification. Utilizing deep learning with multimodal neuroimaging data to differentiate FTLD subtypes and perform multiclassification among FTLD and other neurodegenerative disease holds promise for expediting diagnosis. In sum, the meta-analysis supports translation of machine learning tools in combination with imaging to clinical routine paving the way to precision medicine.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25010366
003      
CZ-PrNML
005      
20250429135401.0
007      
ta
008      
250415e20250217ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.nicl.2025.103757 $2 doi
035    __
$a (PubMed)39983552
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Wu, Qiong $u Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Neurology, University of Leipzig Medical Center, Leipzig, Germany. Electronic address: wuqi@cbs.mpg.de
245    10
$a Boostering diagnosis of frontotemporal lobar degeneration with AI-driven neuroimaging - A systematic review and meta-analysis / $c Q. Wu, D. Kiakou, K. Mueller, W. Köhler, ML. Schroeter
520    9_
$a BACKGROUND AND OBJECTIVES: Frontotemporal lobar degeneration (FTLD) as the second most common dementia encompasses a range of syndromes and often shows overlapping symptoms with other subtypes or neurodegenerative diseases, which poses a significant clinical diagnostic challenge. Recent advancements in artificial intelligence (AI), specifically the application of machine learning (ML) algorithms to neuroimaging, have significantly progressed in addressing this challenge. This study aims to assess the diagnostic and predictive efficacy of neuroimaging feature-based AI algorithms for FTLD. METHODS: We conducted a systematic review and meta-analysis following PRISMA guidelines. We searched Pubmed, Scopus, and Web of Science for English-language, peer-reviewed studies using the following three umbrella terms: artificial intelligence, frontotemporal lobar degeneration, and neuroimaging modality. Our survey focused on computer-aided diagnosis for FTLD, employing machine/deep learning with neuroimaging radiomic features. RESULTS: The meta-analysis includes 75 articles with 20,601 subjects, including 8,051 FTLD patients. The results reveal that FTLD can be automatically classified against healthy controls (HC) with pooled sensitivity and specificity of 86% and 89%, respectively. Likewise, FTLD versus Alzheimer's disease (AD) classification exhibits pooled sensitivity and specificity of 84% and 81%, while FTLD versus Parkinson's disease (PD) demonstrates pooled sensitivity and specificity of 84% and 75%, respectively. Classification performance distinguishing FTLD from atypical Parkinsonian syndromes (APS) showed pooled sensitivity and specificity of 84% and 79%, respectively. Multiclass classification sensitivity ranges from 42% to 100%, with lower sensitivity occurring in higher class distinctions (e.g., 5-class and 11-class). DISCUSSION: Our study demonstrates the effectiveness of utilizing neuroimaging features to distinguish FTLD from HC, AD, APS, and PD in binary classification. Utilizing deep learning with multimodal neuroimaging data to differentiate FTLD subtypes and perform multiclassification among FTLD and other neurodegenerative disease holds promise for expediting diagnosis. In sum, the meta-analysis supports translation of machine learning tools in combination with imaging to clinical routine paving the way to precision medicine.
650    _2
$a lidé $7 D006801
650    12
$a frontotemporální lobární degenerace $x diagnostické zobrazování $7 D057174
650    12
$a neurozobrazování $x metody $x normy $7 D059906
650    12
$a umělá inteligence $7 D001185
650    _2
$a strojové učení $7 D000069550
655    _2
$a časopisecké články $7 D016428
655    _2
$a systematický přehled $7 D000078182
655    _2
$a metaanalýza $7 D017418
700    1_
$a Kiakou, Dimitra $u Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
700    1_
$a Mueller, Karsten $u Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
700    1_
$a Köhler, Wolfgang $u Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Neurology, University of Leipzig Medical Center, Leipzig, Germany
700    1_
$a Schroeter, Matthias L $u Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany. Electronic address: schroet@cbs.mpg.de
773    0_
$w MED00188130 $t NeuroImage. Clinical $x 2213-1582 $g Roč. 45 (20250217), s. 103757
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39983552 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429135357 $b ABA008
999    __
$a ok $b bmc $g 2311616 $s 1247447
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 45 $c - $d 103757 $e 20250217 $i 2213-1582 $m NeuroImage. Clinical $n Neuroimage Clin $x MED00188130
LZP    __
$a Pubmed-20250415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...