The effect of psilocin on memory acquisition, retrieval, and consolidation in the rat

. 2014 ; 8 () : 180. [epub] 20140516

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid24904332

The involvement of the serotonin system in the pathophysiology of schizophrenia has been elucidated by experiments with hallucinogens. Application of a hallucinogen to humans leads to changes in perception, cognition, emotions, and induction of psychotic-like symptoms that resemble symptoms of schizophrenia. In rodent studies, their acute administration affects sensorimotor gating, locomotor activity, social behavior, and cognition including working memory, the phenotypes are considered as an animal model of schizophrenia. The complexity and singularity of human cognition raises questions about the validity of animal models utilizing agonists of 5-HT2A receptors. The present study thus investigated the effect of psilocin on memory acquisition, reinforced retrieval, and memory consolidation in rats. Psilocin is a main metabolite of psilocybin acting as an agonist at 5-HT2A receptors with a contribution of 5-HT2C and 5-HT1A receptors. First, we tested the effect of psilocin on the acquisition of a Carousel maze, a spatial task requiring navigation using distal cues, attention, and cognitive coordination. Psilocin significantly impaired the acquisition of the Carousel maze at both doses (1 and 4 mg/kg). The higher dose of psilocin blocked the learning processes even in an additional session when the rats received only saline. Next, we examined the effect of psilocin on reinforced retrieval and consolidation in the Morris water maze (MWM). The dose of 4 mg/kg disrupted reinforced retrieval in the MWM. However, the application of a lower dose was without any significant effect. Finally, neither the low nor high dose of psilocin injected post-training caused a deficit in memory consolidation in the MWM. Taken together, the psilocin dose dependently impaired the acquisition of the Carousel maze and reinforced retrieval in MWM; however, it had no effect on memory consolidation.

Zobrazit více v PubMed

Barnes N. M., Sharp T. (1999). Review of central 5-HT receptors and their function. Neuropharmacology 28, 1083–115210.1016/S0028-3908(99)00010-6 PubMed DOI

Blahna K., Svoboda J., Telensky P., Klement D. (2011). Inertial stimuli generated by arena rotation are important for acquisition of the active place avoidance task. Behav. Brain Res. 216, 207–21310.1016/j.bbr.2010.07.038 PubMed DOI

Bogenschutz M. P., Pommy J. M. (2012). Therapeutic mechanisms of classic hallucinogens in the treatment of addictions: from indirect evidence to testable hypotheses. Drug Test. Anal. 4, 543–55510.1002/dta.1376 PubMed DOI

Buhot M. C., Patra S. K., Naïli S. (1995). Spatial memory deficits following stimulation of hippocampal 5-HT1B receptors in the rat. Eur. J. Pharmacol. 285, 221–22810.1016/0014-2999(95)00407-C PubMed DOI

Carter O. L., Pettigrew J. D., Hasler F., Wallis G. M., Liu G. B., Hell D., et al. (2005). Modulating the rate and rhythmicity of perceptual rivalry alternations with the mixed 5-HT2A and 5-HT1A agonist psilocybin. Neuropsychopharmacology 30, 1154–116210.1038/sj.npp.1300621 PubMed DOI

Castellano C. (1971). Lysergic acid diethylamide, amphetamine and chlorpromazine on water maze discrimination in mice. Psychopharmacologia 19, 16–2510.1007/BF00403698 PubMed DOI

Castellano C. (1978). Effects of mescaline and psilocin on acquisition, consolidation, and performance of light-dark discrimination in two inbred strains of mice. Psychopharmacology (Berl.) 59, 129–13710.1007/BF00427746 PubMed DOI

Cimadevilla J. M., Fenton A. A., Bures J. (2001). New spatial cognition tests for mice: passive place avoidance on stable and active place avoidance on rotating arenas. Brain Res. Bull. 54, 559–56310.1016/S0361-9230(01)00448-8 PubMed DOI

Cimadevilla J. M., Kaminsky Y., Fenton A., Bures J. (2000). Passive and active place avoidance as a tool of spatial memory research in rats. J. Neurosci. Methods 102, 155–16410.1016/S0165-0270(00)00288-0 PubMed DOI

Collins R. L., Ordy J. M., Samorajski T. (1966). Psilocin: effects on behaviour and brain serotonin in mice. Nature 209, 785–78710.1038/209785a0 PubMed DOI

Davies J. A., Redfern P. H. (1973). The effects of hallucinogenic drugs on maze exploration in the rat over a 24 hour period. Br. J. Pharmacol. 49, 121–12710.1111/j.1476-5381.1973.tb08274.x PubMed DOI PMC

dos Santos R. G. (2014). Potential therapeutic effects of psilocybin/psilocin are minimized while possible adverse reactions are overrated. Ther. Drug Monit. 36, 131–13210.1097/FTD.0000000000000028 PubMed DOI

Eichenbaum H. (2001). The hippocampus and declarative memory: cognitive mechanisms and neural codes. Behav. Brain Res. 127, 199–20710.1016/S0166-4328(01)00365-5 PubMed DOI

Fajnerova I., Kenney J., Lobellova V., Okrouhlicova S., Stuchlik A., Klement D. (2014). Can rats solve the active place avoidance task without the room-bound cues? Behav. Brain Res. 267, 126–13210.1016/j.bbr.2014.03.028 PubMed DOI

Fantegrossi W. E., Woods J. H., Winger G. (2004). Transient reinforcing effects of phenylisopropylamine and indolealkylamine hallucinogens in rhesus monkeys. Behav. Pharmacol. 15, 149–15710.1097/00008877-200403000-00007 PubMed DOI

Fedotova Y. O., Ordyan N. E. (2010). Blockade of 5-HT2A/2C-type receptors impairs learning in female rats in the course of estrous cycle. Bull. Exp. Biol. Med. 150, 6–810.1007/s10517-010-1053-6 PubMed DOI

Fenton A. A., Wesierska M., Kaminsky Y., Bures J. (1998). Both here and there: simultaneous expression of autonomous spatial memories in rats. Proc. Natl. Acad. Sci. U.S.A. 1998, 11493–1149810.1073/pnas.95.19.11493 PubMed DOI PMC

Fundaro A., Molinengo L., Cassone M. C., Orsetti M. (1986). Action of a chronic administration of mescaline in dynamic behavioural situations. Prog. Neuropsychopharmacol. Biol. Psychiatry 10, 41–4810.1016/0278-5846(86)90042-4 PubMed DOI

Geyer M. A. (1998). Behavioral studies of hallucinogenic drugs in animals: implications for schizophrenia research. Pharmacopsychiatry 2, 73–7910.1055/s-2007-979350 PubMed DOI

Grob C. S., Danforth A. L., Chopra G. S., Hagerty M., McKay C. R., Halberstadt A. L., et al. (2011). Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Arch. Gen. Psychiatry 68, 71–7810.1001/archgenpsychiatry.2010.116 PubMed DOI

Halberstadt A. L., Koedood L., Powell S. B., Geyer M. A. (2011). Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice. J. Psychopharmacol. 25, 1548–156110.1177/0269881110388326 PubMed DOI PMC

Hanks J. B., González-Maeso J. (2013). Animal models of serotonergic psychedelics. ACS Chem. Neurosci. 4, 33–4210.1021/cn300138m PubMed DOI PMC

Hasler F., Bourquin D., Brenneisen R., Bär T., Vollenweider F. X. (1997). Determination of psilocin and 4-hydroxyindole-3-acetic acid in plasma by HPLC-ECD and pharmacokinetic profiles of oral and intravenous psilocybin in man. Pharm. Acta Helv. 72, 175–18410.1016/S0031-6865(97)00014-9 PubMed DOI

Hasler F., Grimberg U., Benz M. A., Huber T., Vollenweider F. X. (2004). Acute psychological and physiological effects of psilocybin in healthy humans: a double-blind, placebo-controlled dose-effect study. Psychopharmacology (Berl.) 172, 145–15610.1007/s00213-003-1640-6 PubMed DOI

Herremans A. H., Hijzen T. H., Olivier B., Slangen J. L. (1995). Serotonergic drug effects on a delayed conditional discrimination task in the rat; involvement of the 5-HT1A receptor in working memory. J. Psychopharmacol. 9, 242–25010.1177/026988119500900307 PubMed DOI

Kant G. J., Wylie R. M., Chu K., Ghosh S. (1998). Effects of the serotonin agonists 8-OH-DPAT, buspirone, and DOI on water maze performance. Pharmacol. Biochem. Behav. 59, 729–73510.1016/S0091-3057(97)00553-4 PubMed DOI

Koenig J., Cosquer B., Cassel J. C. (2008). Activation of septal 5-HT1A receptors alters spatial memory encoding, interferes with consolidation, but does not affect retrieval in rats subjected to a water-maze task. Hippocampus 18, 99–11810.1002/hipo.20368 PubMed DOI

Koupilova M., Herink J., Hrdina V. (1989). The effect of local mescaline application on learning and memory in rats. Physiol. Bohemoslov. 38, 497–502 PubMed

Koupilova M., Herink J., Krs O. (1999). Influencing of spatial memory in rats by DSP-4 and mescaline. Acta Med. (Hradec Kralove) 42, 69–72 PubMed

Ma T. C., Yu Q. H. (1993). Effect of 20 (S)-ginsenoside-Rg2 and cyproheptadine on two-way active avoidance learning and memory in rats. Arzneimittelforschung 43, 1049–1052 PubMed

Molinengo L., Cassone M. C., Baroli A., Orsetti M. (1986). Mescaline action on “memory decay” and “problem solving” behavior in the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry 10, 709–71510.1016/0278-5846(86)90055-2 PubMed DOI

Moreno F. A., Wiegand C. B., Taitano E. K., Delgado P. L. (2006). Safety, tolerability, and efficacy of psilocybin in 9 patients with obsessive-compulsive disorder. J. Clin. Psychiatry 67, 1735–174010.4088/JCP.v67n1110 PubMed DOI

Morris R. G. M. (1981). Spatial localization does not require the presence of local cues. Learn. Motiv. 12, 239–26110.1016/0023-9690(81)90020-5 DOI

Morris R. G. M., Garrud P., Rawlings J., O’Keefe J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–68310.1038/297681a0 PubMed DOI

Morris R. (2013). “Neurobiology of learning and memory” in Neuroscience in the 21st Century, ed. Pfaff D. W. (New York: Springer; ), 2173–221110.1007/978-1-4614-1997-6 DOI

Nichols D. E. (2004). Hallucinogens. Pharmacol. Ther. 101, 131–18110.1016/j.pharmthera.2003.11.002 PubMed DOI

O’Keefe J., Nadel L. (1978). The Hippocampus as a Cognitive Map. New York: Oxford University Press

Palenicek T., Fujakova M., Brunovsky M., Horacek J., Gorman I., Balikova M., et al. (2013). Behavioral, neurochemical and pharmaco-EEG profiles of the psychedelic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats. Psychopharmacology (Berl.) 225, 75–9310.1007/s00213-012-2797-7 PubMed DOI

Palenicek T., Hlinak Z., Bubenikova-Valesova V., Novak T., Horacek J. (2012). Sex differences in the effects of N,N-diethyllysergamide (LSD) on behavioural activity and prepulse inhibition. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 588–59610.1016/j.pnpbp.2010.02.008 PubMed DOI

Park S., Holzman P. S. (1992). Schizophrenics show spatial working memory deficits. Arch. Gen. Psychiatry 49, 975–98210.1001/archpsyc.1992.01820120063009 PubMed DOI

Passie T., Seifert J., Schneider U., Emrich H. M. (2002). The pharmacology of psilocybin. Addict. Biol. 7, 357–36410.1080/1355621021000005937 PubMed DOI

Ray T. S. (2010). Psychedelics and the human receptorome. PLoS ONE 5:e9019.10.1371/journal.pone.0009019 PubMed DOI PMC

Roth B. L., Berry S. A., Kroeze W. K., Willins D. L., Kristiansen K. (1998). Serotonin 5-HT2A receptors: molecular biology and mechanisms of regulation. Crit. Rev. Neurobiol. 12, 319–33810.1615/CritRevNeurobiol.v12.i4.30 PubMed DOI

Roth B. L., Hamblin M., Ciaranello R. D. (1990). Regulation of 5-HT2 and 5-HT1C serotonin receptor levels. Methodology and mechanisms. Neuropsychopharmacology 3, 427–433 PubMed

Roth B. L., Palvimaki E. P., Berry S., Khan N., Sachs N., Uluer A., et al. (1995). 5-Hydroxytryptamine2A (5-HT2A) receptor desensitization can occur without down-regulation. J. Pharmacol. Exp. Ther. 275, 1638–1646 PubMed

Stebelska K. (2013). Fungal hallucinogens psilocin, ibotenic acid, and muscimol: analytical methods and biologic activities. Ther. Drug Monit. 35, 420–44210.1097/FTD.0b013e31828741a5 PubMed DOI

Stuchlik A., Petrasek T., Prokopova I., Holubova K., Hatalova H., Vales K., et al. (2013). Place avoidance tasks as tools in the behavioral neuroscience of learning and memory. Physiol. Res. 1, 1–19 PubMed

Stuchlik A., Rehakova L., Telensky P., Vales K. (2007). Morris water maze learning in Long-Evans rats is differentially affected by blockade of D1-like and D2-like dopamine receptors. Neurosci. Lett. 422, 169–17410.1016/j.neulet.2007.06.012 PubMed DOI

Stuchlik A., Rezacova L., Vales K., Bubenikova V., Kubik S. (2004). Application of a novel active allothetic place avoidance task (AAPA) in testing a pharmacological model of psychosis in rats: comparison with the Morris water maze. Neurosci. Lett. 366, 162–16610.1016/j.neulet.2004.05.037 PubMed DOI

Sugrue M. F. (1969). A study of the role of noradrenaline in behavioral changes produced in the rat by psychotomimetic drugs. Br. J. Pharmacol. 35, 243–25210.1111/j.1476-5381.1969.tb07983.x PubMed DOI PMC

Talpos J. C., Aerts N., Fellini L., Steckler T. (2014). A touch-screen based paired-associates learning (PAL) task for the rat may provide a translatable pharmacological model of human cognitive impairment. Pharmacol. Biochem. Behav. 122C, 97–10610.1016/j.pbb.2014.03.014 PubMed DOI

Tolman E. C. (1948). Cognitive maps in rats and men. Psychol. Rev. 55, 189–20810.1037/h0061626 PubMed DOI

Tyls F., Palenicek T., Horacek J. (2013). Psilocybin – summary of knowledge and new perspectives. Eur. Neuropsychopharmacol. 24, 342–35610.1016/j.euroneuro.2013.12.006 PubMed DOI

Uyeno E. T. (1969). Alteration of a learned response of the squirrel monkey by hallucinogens. Int. J. Neuropharmacol. 8, 245–25310.1016/0028-3908(69)90045-8 PubMed DOI

Uyeno E. T. (1986). Hallucinogenic compounds and swimming response. J. Pharmacol. Exp. Ther. 159, 216–221 PubMed

Vollenweider F. X., Leenders K. L., Scharfetter C., Maguire P., Stadelmann O., Angst J. (1997). Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology 16, 357–37210.1016/S0893-133X(96)00246-1 PubMed DOI

Vollenweider F. X., Vollenweider-Scherpenhuyzen M. F., Bäbler A., Vogel H., Hell D. (1998). Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9, 3897–390210.1097/00001756-199812010-00024 PubMed DOI

Vollenweider F. X., Vontobel P., Hell D., Leenders K. L. (1999). 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man – a PET study with [11C]raclopride. Neuropsychopharmacology 20, 424–43310.1016/S0893-133X(98)00108-0 PubMed DOI

Wesierska M., Dockery C., Fenton A. A. (2005). Beyond memory, navigation, and inhibition: behavioral evidence for hippocampus-dependent cognitive coordination in the rat. J. Neurosci. 25, 2413–241910.1523/JNEUROSCI.3962-04.2005 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...