R-Type Fonticins Produced by Pragia fontium Form Large Pores with High Conductance

. 2023 Jan 26 ; 205 (1) : e0031522. [epub] 20221221

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36541812

Fonticins are phage tail-like bacteriocins produced by the Gram-negative bacterium Pragia fontium from the family Budviciaceae. This bacterium produces contractile-type particles that adsorb on the surface of sensitive bacteria and penetrate the cell wall, probably during contraction, in a way similar to the type VI secretion system. We characterized the pore-forming activity of fonticins using both living cells and in vitro model membranes. Using a potassium leakage assay, we show that fonticins are able to permeabilize sensitive cells. On black lipid membranes, single-pore conductance is about 0.78 nS in 1 M NaCl and appears to be linearly dependent on the increasing molar strength of NaCl solution, which is a property of considerably large pores. In agreement with these findings, fonticins are not ion selective for Na+, K+, and Cl-. Polyethylene glycol 3350 (PEG 3350) molecules of about 3.5 nm in diameter can enter the fonticin pore lumen, whereas the larger molecules cannot pass the pore. The size of fonticin pores was confirmed by transmission electron microscopy. The terminal membrane-piercing complex of the fonticin tube probably creates a selective barrier restricting passage of macromolecules. IMPORTANCE Phage tail-like bacteriocins are now the subject of research as potent antibacterial agents due to their narrow host specificity and single-hit mode of action. In this work, we focused on the structure and mode of action of fonticins. According to some theories, related particles were initially adapted for passage of double-stranded DNA (dsDNA) molecules, but fonticins changed their function during the evolution; they are able to form large pores through the bacterial envelope of Gram-negative bacteria. As various pore-forming proteins are extensively used for nanopore sequencing and stochastic sensing, we decided to investigate the pore-forming properties of fonticin protein complexes on artificial lipid membranes. Our research revealed remarkable structural properties of these particles that may have a potential application as a nanodevice.

Zobrazit více v PubMed

Leiman PG, Kanamaru S, Mesyanzhinov VV, Arisaka F, Rossmann MG. 2003. Structure and morphogenesis of bacteriophage T4. Cell Mol Life Sci 60:2356–2370. 10.1007/s00018-003-3072-1. PubMed DOI PMC

Basler M, Pilhofer M, Henderson GP, Jensen GJ, Mekalanos JJ. 2012. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483:182–186. 10.1038/nature10846. PubMed DOI PMC

Jiang F, Li N, Wang X, Cheng J, Huang Y, Yang Y, Yang J, Cai B, Wang Y-P, Jin Q, Gao N. 2019. Cryo-EM structure and assembly of an extracellular contractile injection system. Cell 177:370–383.e15. 10.1016/j.cell.2019.02.020. PubMed DOI

Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, Pukatzki S, Burley SK, Almo SC, Mekalanos JJ. 2009. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA 106:4154–4159. 10.1073/pnas.0813360106. PubMed DOI PMC

Ge P, Scholl D, Prokhorov NS, Avaylon J, Shneider MM, Browning C, Buth SA, Plattner M, Chakraborty U, Ding K, Leiman PG, Miller JF, Zhou ZH. 2020. Action of a minimal contractile bactericidal nanomachine. Nature 580:658–662. 10.1038/s41586-020-2186-z. PubMed DOI PMC

Nakayama K, Takashima K, Ishihara H, Shinomiya T, Kageyama M, Kanaya S, Ohnishi M, Murata T, Mori H, Hayashi T. 2000. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 38:213–231. 10.1046/j.1365-2958.2000.02135.x. PubMed DOI

Ghequire MGK, De Mot R. 2015. The tailocin tale: peeling off phage tails. Trends Microbiol 23:587–590. 10.1016/j.tim.2015.07.011. PubMed DOI

Ghequire MGK, De Mot R. 2014. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev 38:523–568. 10.1111/1574-6976.12079. PubMed DOI

Dykes GA. 1995. Bacteriocins: ecological and evolutionary significance. Trends Ecol Evol 10:186–189. 10.1016/s0169-5347(00)89049-7. PubMed DOI

Michel-Briand Y, Baysse C. 2002. The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510. 10.1016/S0300-9084(02)01422-0. PubMed DOI

Strauch E, Kaspar H, Schaudinn C, Dersch P, Madela K, Gewinner C, Hertwig S, Wecke J, Appel B. 2001. Characterization of enterocoliticin, a phage tail-like bacteriocin, and its effect on pathogenic Yersinia enterocolitica strains. Appl Environ Microbiol 67:5634–5642. 10.1128/AEM.67.12.5634-5642.2001. PubMed DOI PMC

Šmarda J, Benada O. 2005. Phage tail-like (high-molecular-weight) bacteriocins of Budvicia aquatica and Pragia fontium (Enterobacteriaceae). Appl Environ Microbiol 71:8970–8973. 10.1128/AEM.71.12.8970-8973.2005. PubMed DOI PMC

Yao GW, Duarte I, Le TT, Carmody L, LiPuma JJ, Young R, Gonzalez CF. 2017. A broad-host-range tailocin from Burkholderia cenocepacia. Appl Environ Microbiol 83:e03414-16. 10.1128/AEM.03414-16. PubMed DOI PMC

Ge P, Scholl D, Leiman PG, Yu X, Miller JF, Zhou ZH. 2015. Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nat Struct Mol Biol 22:377–382. 10.1038/nsmb.2995. PubMed DOI PMC

Köhler T, Donner V, van Delden C. 2010. Lipopolysaccharide as shield and receptor for R-pyocin-mediated killing in Pseudomonas aeruginosa. J Bacteriol 192:1921–1928. 10.1128/JB.01459-09. PubMed DOI PMC

Ikeda K, Egami F. 1973. Lipopolysaccharide of Pseudomonas aeruginosa with special reference to pyocin R receptor activity. J Gen Appl Microbiol 19:115–128. 10.2323/jgam.19.115. DOI

Buth SA, Shneider MM, Scholl D, Leiman PG. 2018. Structure and analysis of R1 and R2 pyocin receptor-binding fibers. Viruses-Basel 10:427. 10.3390/v10080427. PubMed DOI PMC

Taylor NMI, Prokhorov NS, Guerrero-Ferreira RC, Shneider MM, Browning C, Goldie KN, Stahlberg H, Leiman PG. 2016. Structure of the T4 baseplate and its function in triggering sheath contraction. Nature 533:346–352. 10.1038/nature17971. PubMed DOI

Browning C, Shneider MM, Bowman VD, Schwarzer D, Leiman PG. 2012. Phage pierces the host cell membrane with the iron-loaded spike. Structure 20:326–339. 10.1016/j.str.2011.12.009. PubMed DOI

Jacob F. 1954. Induced biosynthesis and mode of action of a pyocine, antibiotic produced by Pseudomonas aeruginosa. Ann Inst Pasteur (Paris) 86:149–160. (In French.). PubMed

Uratani Y, Hoshino T. 1984. Pyocin R1 inhibits active transport in Pseudomonas aeruginosa and depolarizes membrane potential. J Bacteriol 157:632–636. 10.1128/jb.157.2.632-636.1984. PubMed DOI PMC

Brackmann M, Nazarov S, Wang J, Basler M. 2017. Using force to punch holes: mechanics of contractile nanomachines. Trends Cell Biol 27:623–632. 10.1016/j.tcb.2017.05.003. PubMed DOI

Scholl D. 2017. Phage tail–like bacteriocins. Annu Rev Virol 4:453–467. 10.1146/annurev-virology-101416-041632. PubMed DOI

Kuroda K, Kageyama M. 1979. Biochemical properties of a new flexuous bacteriocin, pyocin-F1, produced by Pseudomonas aeruginosa. J Biochem 85:7–19. 10.1093/oxfordjournals.jbchem.a132332. PubMed DOI

Gebhart D, Lok S, Clare S, Tomas M, Stares M, Scholl D, Donskey CJ, Lawley TD, Govoni GR. 2015. A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity. mBio 6:e02368-14. 10.1128/mBio.02368-14. PubMed DOI PMC

Damasko C, Konietzny A, Kaspar H, Appel B, Dersch P, Strauch E. 2005. Studies of the efficacy of enterocoliticin, a phage-tail like bacteriocin, as antimicrobial agent against Yersinia enterocolitica serotype O3 in a cell culture system and in mice. J Vet Med B Infect Dis Vet Public Health 52:171–179. 10.1111/j.1439-0450.2005.00841.x. PubMed DOI

Williams SR, Gebhart D, Martin DW, Scholl D. 2008. Retargeting R-type pyocins to generate novel bactericidal protein complexes. Appl Environ Microbiol 74:3868–3876. 10.1128/AEM.00141-08. PubMed DOI PMC

Šmarda J. 1987. Production of bacteriocin-like agents of Budvicia aquatica and Pragia fontinum. Zentralbl Bakteriol Mikrobiol Hyg A 265:74–81. 10.1016/S0176-6724(87)80154-2. PubMed DOI

Adeolu M, Alnajar S, Naushad S, Gupta RS. 2016. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 66:5575–5599. 10.1099/ijsem.0.001485. PubMed DOI

Strauch E, Kaspar H, Schaudinn C, Damasko C, Konietzny A, Dersch P, Skurnik M, Appel B. 2003. Analysis of enterocoliticin, a phage tail-like bacteriocin. Adv Exp Med Biol 529:249–251. 10.1007/0-306-48416-1_48. PubMed DOI

Liu J, Chen P, Zheng C, Huang Y-P. 2013. Characterization of maltocin P28, a novel phage tail-like bacteriocin from Stenotrophomonas maltophilia. Appl Environ Microbiol 79:5593–5600. 10.1128/AEM.01648-13. PubMed DOI PMC

Jabrane A, Sabri A, Compere P, Jacques P, Vandenberghe I, Van Beeumen J, Thonart P. 2002. Characterization of serracin P, a phage-tail-like bacteriocin, and its activity against Erwinia amylovora, the fire blight pathogen. Appl Environ Microbiol 68:5704–5710. 10.1128/AEM.68.11.5704-5710.2002. PubMed DOI PMC

Delgado MA, Vincent PA, Farias RN, Salomon RA. 2005. YojI of Escherichia coli functions as a microcin J25 efflux pump. J Bacteriol 187:3465–3470. 10.1128/JB.187.10.3465-3470.2005. PubMed DOI PMC

Takeda Y, Kageyama M. 1975. Subunit arrangement in the extended sheath of pyocin R. J Biochem 77:679–684. 10.1093/oxfordjournals.jbchem.a130770. PubMed DOI

Zinke M, Schröder GF, Lange A. 2022. Major tail proteins of bacteriophages of the order Caudovirales. J Biol Chem 298:101472. 10.1016/j.jbc.2021.101472. PubMed DOI PMC

Hu B, Margolin W, Molineux IJ, Liu J. 2015. Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proc Natl Acad Sci USA 112:E4919–E4928. 10.1073/pnas.1501064112. PubMed DOI PMC

Feucht A, Schmid A, Benz R, Schwarz H, Heller KJ. 1990. Pore formation associated with the tail-tip protein pb2 of bacteriophage T5. J Biol Chem 265:18561–18567. 10.1016/S0021-9258(17)44788-0. PubMed DOI

Zakharian E, Reusch RN. 2005. Kinetics of folding of Escherichia coli OmpA from narrow to large pore conformation in a planar bilayer. Biochemistry 44:6701–6707. 10.1021/bi047278e. PubMed DOI

Gray M, Szabo G, Otero AS, Gray L, Hewlett E. 1998. Distinct mechanisms for K+ efflux, intoxication, and hemolysis by Bordetella pertussis AC toxin. J Biol Chem 273:18260–18267. 10.1074/jbc.273.29.18260. PubMed DOI

Maier E, Reinhard N, Benz R, Frey J. 1996. Channel-forming activity and channel size of the RTX toxins ApxI, ApxII, and ApxIII of Actinobacillus pleuropneumoniae. Infect Immun 64:4415–4423. 10.1128/iai.64.11.4415-4423.1996. PubMed DOI PMC

Benz R, Maier E, Ladant D, Ullmann A, Sebo P. 1994. Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J Biol Chem 269:27231–27239. 10.1016/S0021-9258(18)46973-6. PubMed DOI

Bárcena-Uribarri I, Benz R, Winterhalter M, Zakharian E, Balashova N. 2015. Pore forming activity of the potent RTX-toxin produced by pediatric pathogen Kingella kingae: characterization and comparison to other RTX-family members. Biochim Biophys Acta 1848:1536–1544. 10.1016/j.bbamem.2015.03.036. PubMed DOI PMC

Wang SY, Zhao ZY, Haque F, Guo PX. 2018. Engineering of protein nanopores for sequencing, chemical or protein sensing and disease diagnosis. Curr Opin Biotechnol 51:80–89. 10.1016/j.copbio.2017.11.006. PubMed DOI PMC

Heron AJ, Thompson JR, Mason AE, Wallace MI. 2007. Direct detection of membrane channels from gels using water-in-oil droplet bilayers. J Am Chem Soc 129:16042–16047. 10.1021/ja075715h. PubMed DOI

Schwartz JL, Lu YJ, Söhnlein P, Brousseau R, Laprade R, Masson L, Adang MJ. 1997. Ion channels formed in planar lipid bilayers by Bacillus thuringiensis toxins in the presence of Manduca sexta midgut receptors. FEBS Lett 412:270–276. 10.1016/s0014-5793(97)00801-6. PubMed DOI

Song LZ, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE. 1996. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866. 10.1126/science.274.5294.1859. PubMed DOI

Krasilnikov OV, Sabirov RZ, Ternovsky VI, Merzliak PG, Muratkhodjaev JN. 1992. A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbiol Immunol 5:93–100. 10.1111/j.1574-6968.1992.tb05891.x. PubMed DOI

Merzlyak PG, Yuldasheva LN, Rodrigues CG, Carneiro CMM, Krasilnikov OV, Bezrukov SM. 1999. Polymeric nonelectrolytes to probe pore geometry: application to the alpha-toxin transmembrane channel. Biophys J 77:3023–3033. 10.1016/S0006-3495(99)77133-X. PubMed DOI PMC

Rubinson KA, Krueger S. 2009. Poly(ethylene glycol)s 2000–8000 in water may be planar: a small-angle neutron scattering (SANS) structure study. Polymer (Guildf) 50:4852–4858. 10.1016/j.polymer.2009.08.023. DOI

Oelmeier SA, Dismer F, Hubbuch J. 2012. Molecular dynamics simulations on aqueous two-phase systems-single PEG-molecules in solution. BMC Biophys 5:14. 10.1186/2046-1682-5-14. PubMed DOI PMC

Jessberger N, Dietrich R, Schauer K, Schwemmer S, Martlbauer E, Benz R. 2020. Characteristics of the protein complexes and pores formed by Bacillus cereus hemolysin BL. Toxins (Basel) 12:672. 10.3390/toxins12110672. PubMed DOI PMC

Nováček J, Šiborová M, Benešík M, Pantůček R, Doškař J, Plevka P. 2016. Structure and genome release of Twort-like Myoviridae phage with a double-layered baseplate. Proc Natl Acad Sci USA 113:9351–9356. 10.1073/pnas.1605883113. PubMed DOI PMC

Zinke M, Sachowsky KAA, Oster C, Zinn-Justin S, Ravelli R, Schroder GF, Habeck M, Lange A. 2020. Architecture of the flexible tail tube of bacteriophage SPP1. Nat Commun 11. 10.1038/s41467-020-19611-1. PubMed DOI PMC

Robertson JWF, Rodrigues CG, Stanford VM, Rubinson KA, Krasilnikov OV, Kasianowicz JJ. 2007. Single-molecule mass spectrometry in solution using a solitary nanopore. Proc Natl Acad Sci USA 104:8207–8211. 10.1073/pnas.0611085104. PubMed DOI PMC

Derrington IM, Craig JM, Stava E, Laszlo AH, Ross BC, Brinkerhoff H, Nova IC, Doering K, Tickman BI, Ronaghi M, Mandell JG, Gunderson KL, Gundlach JH. 2015. Subangstrom single-molecule measurements of motor proteins using a nanopore. Nat Biotechnol 33:1073–1075. 10.1038/nbt.3357. PubMed DOI PMC

Derrington IM, Butler TZ, Collins MD, Manrao E, Pavlenok M, Niederweis M, Gundlach JH. 2010. Nanopore DNA sequencing with MspA. Proc Natl Acad Sci USA 107:16060–16065. 10.1073/pnas.1001831107. PubMed DOI PMC

Reiner JE, Kasianowicz JJ, Nablo BJ, Robertson JWF. 2010. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Proc Natl Acad Sci USA 107:12080–12085. 10.1073/pnas.1002194107. PubMed DOI PMC

Deamer D, Akeson M, Branton D. 2016. Three decades of nanopore sequencing. Nat Biotechnol 34:518–524. 10.1038/nbt.3423. PubMed DOI PMC

Kasianowicz JJ, Robertson JWF, Chan ER, Reiner JE, Stanford VM. 2008. Nanoscopic porous sensors. Annu Rev Anal Chem (Palo Alto Calif) 1:737–766. 10.1146/annurev.anchem.1.031207.112818. PubMed DOI

Lee G, Chakraborty U, Gebhart D, Govoni GR, Zhou ZH, Scholl D. 2016. F-type bacteriocins of Listeria monocytogenes: a new class of phage tail-like structures reveals broad parallel coevolution between tailed bacteriophages and high-molecular-weight bacteriocins. J Bacteriol 198:2784–2793. 10.1128/JB.00489-16. PubMed DOI PMC

Johnson CL, Ridley H, Pengelly RJ, Salleh MZ, Lakey JH. 2013. The unstructured domain of colicin N kills Escherichia coli. Mol Microbiol 89:84–95. 10.1111/mmi.12260. PubMed DOI PMC

Nikoleli G-P, Siontorou CG, Nikolelis M-T, Bratakou S, Bendos DK. 2019. Recent lipid membrane-based biosensing platforms. Appl Sci 9:1745. 10.3390/app9091745. DOI

Nicolai C, Sachs F. 2013. Solving ion channel kinetics with the QuB software. Biophys Rev Lett 08:191–211. 10.1142/S1793048013300053. DOI

Látrová K, Havlová N, Večeřová R, Pinkas D, Bogdanová K, Kolář M, Fišer R, Konopásek I, Do Pham DD, Rejman D, Mikušová G. 2021. Outer membrane and phospholipid composition of the target membrane affect the antimicrobial potential of first- and second-generation lipophosphonoxins. Sci Rep 11:10446. 10.1038/s41598-021-89883-0. PubMed DOI PMC

Aguilella VM, Queralt-Martín M, Aguilella-Arzo M, Alcaraz A. 2011. Insights on the permeability of wide protein channels: measurement and interpretation of ion selectivity. Integr Biol (Camb) 3:159–172. 10.1039/c0ib00048e. PubMed DOI

Goldman DE. 1943. Potential, impedance, and rectification in membranes. J Gen Physiol 27:37–60. 10.1085/jgp.27.1.37. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...