Outer membrane and phospholipid composition of the target membrane affect the antimicrobial potential of first- and second-generation lipophosphonoxins
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34001940
PubMed Central
PMC8129119
DOI
10.1038/s41598-021-89883-0
PII: 10.1038/s41598-021-89883-0
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky chemická syntéza farmakologie MeSH
- Bacillus subtilis chemie cytologie účinky léků MeSH
- Escherichia coli chemie cytologie účinky léků MeSH
- fosfatidylcholiny analýza metabolismus MeSH
- fosfatidylethanolaminy analýza metabolismus MeSH
- kationické antimikrobiální peptidy chemická syntéza farmakologie MeSH
- lipidové dvojvrstvy MeSH
- membránové potenciály účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- permeabilita buněčné membrány MeSH
- vnější bakteriální membrána chemie účinky léků metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- fosfatidylcholiny MeSH
- fosfatidylethanolaminy MeSH
- kationické antimikrobiální peptidy MeSH
- lipidové dvojvrstvy MeSH
- phosphatidylethanolamine MeSH Prohlížeč
Lipophosphonoxins (LPPOs) are small modular synthetic antibacterial compounds that target the cytoplasmic membrane. First-generation LPPOs (LPPO I) exhibit an antimicrobial activity against Gram-positive bacteria; however they do not exhibit any activity against Gram-negatives. Second-generation LPPOs (LPPO II) also exhibit broadened activity against Gram-negatives. We investigated the reasons behind this different susceptibility of bacteria to the two generations of LPPOs using model membranes and the living model bacteria Bacillus subtilis and Escherichia coli. We show that both generations of LPPOs form oligomeric conductive pores and permeabilize the bacterial membrane of sensitive cells. LPPO activity is not affected by the value of the target membrane potential, and thus they are also active against persister cells. The insensitivity of Gram-negative bacteria to LPPO I is probably caused by the barrier function of the outer membrane with LPS. LPPO I is almost incapable of overcoming the outer membrane in living cells, and the presence of LPS in liposomes substantially reduces their activity. Further, the antimicrobial activity of LPPO is also influenced by the phospholipid composition of the target membrane. A higher proportion of phospholipids with neutral charge such as phosphatidylethanolamine or phosphatidylcholine reduces the LPPO permeabilizing potential.
Zobrazit více v PubMed
Scott WR, Tew NG. Mimics of host defense proteins; strategies for translation to therapeutic applications. Curr. Top. Med. Chem. 2017;17:576–589. doi: 10.2174/1568026616666160713130452. PubMed DOI
Lei J, et al. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 2019;11:3919–3931. PubMed PMC
Chen CH, Lu TK. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics. 2020;9:24. doi: 10.3390/antibiotics9010024. PubMed DOI PMC
Giuliani A, et al. Antimicrobial peptides: Natural templates for synthetic membrane-active compounds. Cell. Mol. Life Sci. 2008;65:2450–2460. doi: 10.1007/s00018-008-8188-x. PubMed DOI PMC
Matsuzaki K. Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta Biomembr. 2009;1788:1687–1692. doi: 10.1016/j.bbamem.2008.09.013. PubMed DOI
Oh D, et al. Antibacterial activities of amphiphilic cyclic cell-penetrating peptides against multidrug-resistant pathogens. Mol. Pharm. 2014;11:3528–3536. doi: 10.1021/mp5003027. PubMed DOI PMC
Kustanovich I, Shalev DE, Mikhlin M, Gaidukov L, Mor A. Structural requirements for potent versus selective cytotoxicity for antimicrobial dermaseptin S4 derivatives. J. Biol. Chem. 2002;277:16941–16951. doi: 10.1074/jbc.M111071200. PubMed DOI
Boto A, De La Lastra JMP, González CC. The road from host-defense peptides to a new generation of antimicrobial drugs. Molecules. 2018;23:311. doi: 10.3390/molecules23020311. PubMed DOI PMC
Thaker HD, Cankaya A, Scott RW, Tew GN. Role of amphiphilicity in the design of synthetic mimics of antimicrobial peptides with gram-negative activity. ACS Med. Chem. Lett. 2013;4:481–485. doi: 10.1021/ml300307b. PubMed DOI PMC
Snyder S, Kim D, McIntosh TJ. Lipopolysaccharide bilayer structure: Effect of chemotype, core mutations, divalent cations, and temperature. Biochemistry. 1999;38:10758–10767. doi: 10.1021/bi990867d. PubMed DOI
Bertani B, Ruiz N. Function and biogenesis of lipopolysaccharides. EcoSal Plus. 2018;8:1–33. doi: 10.1128/ecosalplus.ESP-0001-2018. PubMed DOI PMC
Vaara M. Polymyxin derivatives that sensitize gram-negative bacteria to other antibiotics. Molecules. 2019;24:249. doi: 10.3390/molecules24020249. PubMed DOI PMC
Brown P, Dawson MJ. Development of new polymyxin derivatives for multi-drug resistant Gram-negative infections. J. Antibiot. 2017;70:386–394. doi: 10.1038/ja.2016.146. PubMed DOI
Vaara M, Vaara T. Sensitization of Gram-negative bacteria to antibiotics and complement by a nontoxic oligopeptide. Nature. 1983;303:526–528. doi: 10.1038/303526a0. PubMed DOI
Koh JJ, et al. N-Lipidated peptide dimers: Effective antibacterial agents against gram-negative pathogens through lipopolysaccharide permeabilization. J. Med. Chem. 2015;58:6533–6548. doi: 10.1021/acs.jmedchem.5b00628. PubMed DOI
Rounds T, Straus SK. Lipidation of antimicrobial peptides as a design strategy for future alternatives to antibiotics. Int. J. Mol. Sci. 2020;21:9692. doi: 10.3390/ijms21249692. PubMed DOI PMC
Panova N, et al. Insights into the mechanism of action of bactericidal lipophosphonoxins. PLoS ONE. 2015;10:e0145918. doi: 10.1371/journal.pone.0145918. PubMed DOI PMC
Seydlová G, et al. Lipophosphonoxins II: Design, synthesis, and properties of novel broad spectrum antibacterial agents. J. Med. Chem. 2017;60:6098–6118. doi: 10.1021/acs.jmedchem.7b00355. PubMed DOI
Rejman D, et al. Lipophosphonoxins: New modular molecular structures with significant antibacterial properties. J. Med. Chem. 2011;54:7884–7898. doi: 10.1021/jm2009343. PubMed DOI
Epand RM, Epand RF. Bacterial membrane lipids in the action of antimicrobial agents. J. Pept. Sci. 2011;17:298–305. doi: 10.1002/psc.1319. PubMed DOI
Uttlová P, et al. Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure. Biochim. Biophys. Acta Biomembr. 2016;1858:2965–2971. doi: 10.1016/j.bbamem.2016.09.006. PubMed DOI
Caetano T, Krawczyk JM, Mösker E, Süssmuth RD, Mendo S. Lichenicidin biosynthesis in Escherichia coli: licFGEHI immunity genes are not essential for lantibiotic production or self-protection. Appl. Environ. Microbiol. 2011;77:5023–5026. doi: 10.1128/AEM.00270-11. PubMed DOI PMC
Braun M, Silhavy TJ. Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol. Microbiol. 2002;45:1289–1302. doi: 10.1046/j.1365-2958.2002.03091.x. PubMed DOI
Seydlová G, Sokol A, Lišková P, Konopásek I, Fišer R. Daptomycin pore formation and stoichiometry depend on membrane potential of target membrane. Antimicrob. Agents Chemother. 2019;63:e01589–18. PubMed PMC
Gray DA, Wenzel M. More than a pore: A current perspective on the in vivo mode of action of the lipopeptide antibiotic daptomycin. Antibiotics. 2020;9:17. doi: 10.3390/antibiotics9010017. PubMed DOI PMC
Zuttion F, et al. High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action. Nat. Commun. 2020;11:1–16. doi: 10.1038/s41467-020-19710-z. PubMed DOI PMC
Pinkas D, et al. Bacillus subtilis cardiolipin protects its own membrane against surfactin-induced permeabilization. Biochim. Biophys. Acta Biomembr. 2020;1862:183405. doi: 10.1016/j.bbamem.2020.183405. PubMed DOI
Song C, de Groot BL, Sansom MSP. Lipid bilayer composition influences the activity of the antimicrobial peptide dermcidin channel. Biophys. J. 2019;116:1658–1666. doi: 10.1016/j.bpj.2019.03.033. PubMed DOI PMC
Damper PD, Epstein W. Role of the membrane potential in bacterial resistance to aminoglycoside antibiotics. Antimicrob. Agents Chemother. 1981;20:803–808. doi: 10.1128/AAC.20.6.803. PubMed DOI PMC
Benarroch JM, Asally M. The microbiologist’s guide to membrane potential dynamics. Trends Microbiol. 2020;28:304–314. doi: 10.1016/j.tim.2019.12.008. PubMed DOI
Johnston CW, et al. Assembly and clustering of natural antibiotics guides target identification. Nat. Chem. Biol. 2016;12:233–239. doi: 10.1038/nchembio.2018. PubMed DOI
Hachmann AB, et al. Reduction in membrane phosphatidylglycerol content leads to daptomycin resistance in Bacillus subtilis. Antimicrob. Agents Chemother. 2011;55:4326–4337. doi: 10.1128/AAC.01819-10. PubMed DOI PMC
Papo N, Shai Y. A molecular mechanism for lipopolysaccharide protection of gram-negative bacteria from antimicrobial peptides. J. Biol. Chem. 2005;280:10378–10387. doi: 10.1074/jbc.M412865200. PubMed DOI
Snyder DS, McIntosh TJ. The lipopolysaccharide barrier: Correlation of antibiotic susceptibility with antibiotic permeability and fluorescent probe binding kinetics. Biochemistry. 2000;39:11777–11787. doi: 10.1021/bi000810n. PubMed DOI
Rosenfeld Y, Sahl HG, Shai Y. Parameters involved in antimicrobial and endotoxin detoxification activities of antimicrobial peptides. Biochemistry. 2008;47:6468–6478. doi: 10.1021/bi800450f. PubMed DOI
Cantini Y, et al. Effect of positive charges in the structural interaction of crabrolin isoforms with lipopolysaccharide. J. Pept. Sci. 2020;26:e3271–6478. doi: 10.1002/psc.3271. PubMed DOI
Rojas ER, et al. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature. 2018;559:617–621. doi: 10.1038/s41586-018-0344-3. PubMed DOI PMC
Nikaido H. Restoring permeability barrier function to outer membrane. Chem. Biol. 2005;12:507–509. doi: 10.1016/j.chembiol.2005.05.001. PubMed DOI
Allende D, McIntosh TJ. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis. Biochemistry. 2003;42:1101–1108. doi: 10.1021/bi026932s. PubMed DOI
Nicolai C, Sachs F. Solving ion channel kinetics with the QuB software. Biophys. Rev. Lett. 2013;8:191–211. doi: 10.1142/S1793048013300053. DOI
Seydlová G, et al. Lipophosphonoxins II: Design, synthesis, and properties of novel broad spectrum antibacterial agents. J. Med. Chem. 2017;60:6098–6118. doi: 10.1021/acs.jmedchem.7b00355. PubMed DOI
Nicolas P, et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science (80-). 2012;335:1103–1106. doi: 10.1126/science.1206848. PubMed DOI
Klapperstück T, Glanz D, Klapperstück M, Wohlrab J. Methodological aspects of measuring absolute values of membrane potential in human cells by flow cytometry. Cytom. Part A. 2009;75A:593–608. doi: 10.1002/cyto.a.20735. PubMed DOI
te Winkel JD, Gray DA, Seistrup KH, Hamoen LW, Strahl H. Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Front. Cell Dev. Biol. 2016;4:29. doi: 10.3389/fcell.2016.00029. PubMed DOI PMC
Whatmore AM, Chudek JA, Reed RH. The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J. Gen. Microbiol. 1990;136:2527–2535. doi: 10.1099/00221287-136-12-2527. PubMed DOI
Grassi L, et al. Generation of persister cells of Pseudomonas aeruginosa and Staphylococcus aureus by chemical treatment and evaluation of their susceptibility to membrane-targeting agents. Front. Microbiol. 2017;8:1917. doi: 10.3389/fmicb.2017.01917. PubMed DOI PMC
Helander IM, Mattila-Sandholm T. Fluorometric assessment of Gram-negative bacterial permeabilization. J. Appl. Microbiol. 2000;88:213–219. doi: 10.1046/j.1365-2672.2000.00971.x. PubMed DOI
Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 2003;67:593–656. doi: 10.1128/MMBR.67.4.593-656.2003. PubMed DOI PMC
Singh S, Kasetty G, Schmidtchen A, Malmsten M. Membrane and lipopolysaccharide interactions of C-terminal peptides from S1 peptidases. Biochim. Biophys. Acta Biomembr. 2012;1818:2244–2251. doi: 10.1016/j.bbamem.2012.03.017. PubMed DOI
European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect.9, ix–xv (2003). PubMed
R-Type Fonticins Produced by Pragia fontium Form Large Pores with High Conductance
LEGO-Lipophosphonoxins: A Novel Approach in Designing Membrane Targeting Antimicrobials