Outer membrane and phospholipid composition of the target membrane affect the antimicrobial potential of first- and second-generation lipophosphonoxins

. 2021 May 17 ; 11 (1) : 10446. [epub] 20210517

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34001940
Odkazy

PubMed 34001940
PubMed Central PMC8129119
DOI 10.1038/s41598-021-89883-0
PII: 10.1038/s41598-021-89883-0
Knihovny.cz E-zdroje

Lipophosphonoxins (LPPOs) are small modular synthetic antibacterial compounds that target the cytoplasmic membrane. First-generation LPPOs (LPPO I) exhibit an antimicrobial activity against Gram-positive bacteria; however they do not exhibit any activity against Gram-negatives. Second-generation LPPOs (LPPO II) also exhibit broadened activity against Gram-negatives. We investigated the reasons behind this different susceptibility of bacteria to the two generations of LPPOs using model membranes and the living model bacteria Bacillus subtilis and Escherichia coli. We show that both generations of LPPOs form oligomeric conductive pores and permeabilize the bacterial membrane of sensitive cells. LPPO activity is not affected by the value of the target membrane potential, and thus they are also active against persister cells. The insensitivity of Gram-negative bacteria to LPPO I is probably caused by the barrier function of the outer membrane with LPS. LPPO I is almost incapable of overcoming the outer membrane in living cells, and the presence of LPS in liposomes substantially reduces their activity. Further, the antimicrobial activity of LPPO is also influenced by the phospholipid composition of the target membrane. A higher proportion of phospholipids with neutral charge such as phosphatidylethanolamine or phosphatidylcholine reduces the LPPO permeabilizing potential.

Zobrazit více v PubMed

Scott WR, Tew NG. Mimics of host defense proteins; strategies for translation to therapeutic applications. Curr. Top. Med. Chem. 2017;17:576–589. doi: 10.2174/1568026616666160713130452. PubMed DOI

Lei J, et al. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 2019;11:3919–3931. PubMed PMC

Chen CH, Lu TK. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics. 2020;9:24. doi: 10.3390/antibiotics9010024. PubMed DOI PMC

Giuliani A, et al. Antimicrobial peptides: Natural templates for synthetic membrane-active compounds. Cell. Mol. Life Sci. 2008;65:2450–2460. doi: 10.1007/s00018-008-8188-x. PubMed DOI PMC

Matsuzaki K. Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta Biomembr. 2009;1788:1687–1692. doi: 10.1016/j.bbamem.2008.09.013. PubMed DOI

Oh D, et al. Antibacterial activities of amphiphilic cyclic cell-penetrating peptides against multidrug-resistant pathogens. Mol. Pharm. 2014;11:3528–3536. doi: 10.1021/mp5003027. PubMed DOI PMC

Kustanovich I, Shalev DE, Mikhlin M, Gaidukov L, Mor A. Structural requirements for potent versus selective cytotoxicity for antimicrobial dermaseptin S4 derivatives. J. Biol. Chem. 2002;277:16941–16951. doi: 10.1074/jbc.M111071200. PubMed DOI

Boto A, De La Lastra JMP, González CC. The road from host-defense peptides to a new generation of antimicrobial drugs. Molecules. 2018;23:311. doi: 10.3390/molecules23020311. PubMed DOI PMC

Thaker HD, Cankaya A, Scott RW, Tew GN. Role of amphiphilicity in the design of synthetic mimics of antimicrobial peptides with gram-negative activity. ACS Med. Chem. Lett. 2013;4:481–485. doi: 10.1021/ml300307b. PubMed DOI PMC

Snyder S, Kim D, McIntosh TJ. Lipopolysaccharide bilayer structure: Effect of chemotype, core mutations, divalent cations, and temperature. Biochemistry. 1999;38:10758–10767. doi: 10.1021/bi990867d. PubMed DOI

Bertani B, Ruiz N. Function and biogenesis of lipopolysaccharides. EcoSal Plus. 2018;8:1–33. doi: 10.1128/ecosalplus.ESP-0001-2018. PubMed DOI PMC

Vaara M. Polymyxin derivatives that sensitize gram-negative bacteria to other antibiotics. Molecules. 2019;24:249. doi: 10.3390/molecules24020249. PubMed DOI PMC

Brown P, Dawson MJ. Development of new polymyxin derivatives for multi-drug resistant Gram-negative infections. J. Antibiot. 2017;70:386–394. doi: 10.1038/ja.2016.146. PubMed DOI

Vaara M, Vaara T. Sensitization of Gram-negative bacteria to antibiotics and complement by a nontoxic oligopeptide. Nature. 1983;303:526–528. doi: 10.1038/303526a0. PubMed DOI

Koh JJ, et al. N-Lipidated peptide dimers: Effective antibacterial agents against gram-negative pathogens through lipopolysaccharide permeabilization. J. Med. Chem. 2015;58:6533–6548. doi: 10.1021/acs.jmedchem.5b00628. PubMed DOI

Rounds T, Straus SK. Lipidation of antimicrobial peptides as a design strategy for future alternatives to antibiotics. Int. J. Mol. Sci. 2020;21:9692. doi: 10.3390/ijms21249692. PubMed DOI PMC

Panova N, et al. Insights into the mechanism of action of bactericidal lipophosphonoxins. PLoS ONE. 2015;10:e0145918. doi: 10.1371/journal.pone.0145918. PubMed DOI PMC

Seydlová G, et al. Lipophosphonoxins II: Design, synthesis, and properties of novel broad spectrum antibacterial agents. J. Med. Chem. 2017;60:6098–6118. doi: 10.1021/acs.jmedchem.7b00355. PubMed DOI

Rejman D, et al. Lipophosphonoxins: New modular molecular structures with significant antibacterial properties. J. Med. Chem. 2011;54:7884–7898. doi: 10.1021/jm2009343. PubMed DOI

Epand RM, Epand RF. Bacterial membrane lipids in the action of antimicrobial agents. J. Pept. Sci. 2011;17:298–305. doi: 10.1002/psc.1319. PubMed DOI

Uttlová P, et al. Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure. Biochim. Biophys. Acta Biomembr. 2016;1858:2965–2971. doi: 10.1016/j.bbamem.2016.09.006. PubMed DOI

Caetano T, Krawczyk JM, Mösker E, Süssmuth RD, Mendo S. Lichenicidin biosynthesis in Escherichia coli: licFGEHI immunity genes are not essential for lantibiotic production or self-protection. Appl. Environ. Microbiol. 2011;77:5023–5026. doi: 10.1128/AEM.00270-11. PubMed DOI PMC

Braun M, Silhavy TJ. Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol. Microbiol. 2002;45:1289–1302. doi: 10.1046/j.1365-2958.2002.03091.x. PubMed DOI

Seydlová G, Sokol A, Lišková P, Konopásek I, Fišer R. Daptomycin pore formation and stoichiometry depend on membrane potential of target membrane. Antimicrob. Agents Chemother. 2019;63:e01589–18. PubMed PMC

Gray DA, Wenzel M. More than a pore: A current perspective on the in vivo mode of action of the lipopeptide antibiotic daptomycin. Antibiotics. 2020;9:17. doi: 10.3390/antibiotics9010017. PubMed DOI PMC

Zuttion F, et al. High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action. Nat. Commun. 2020;11:1–16. doi: 10.1038/s41467-020-19710-z. PubMed DOI PMC

Pinkas D, et al. Bacillus subtilis cardiolipin protects its own membrane against surfactin-induced permeabilization. Biochim. Biophys. Acta Biomembr. 2020;1862:183405. doi: 10.1016/j.bbamem.2020.183405. PubMed DOI

Song C, de Groot BL, Sansom MSP. Lipid bilayer composition influences the activity of the antimicrobial peptide dermcidin channel. Biophys. J. 2019;116:1658–1666. doi: 10.1016/j.bpj.2019.03.033. PubMed DOI PMC

Damper PD, Epstein W. Role of the membrane potential in bacterial resistance to aminoglycoside antibiotics. Antimicrob. Agents Chemother. 1981;20:803–808. doi: 10.1128/AAC.20.6.803. PubMed DOI PMC

Benarroch JM, Asally M. The microbiologist’s guide to membrane potential dynamics. Trends Microbiol. 2020;28:304–314. doi: 10.1016/j.tim.2019.12.008. PubMed DOI

Johnston CW, et al. Assembly and clustering of natural antibiotics guides target identification. Nat. Chem. Biol. 2016;12:233–239. doi: 10.1038/nchembio.2018. PubMed DOI

Hachmann AB, et al. Reduction in membrane phosphatidylglycerol content leads to daptomycin resistance in Bacillus subtilis. Antimicrob. Agents Chemother. 2011;55:4326–4337. doi: 10.1128/AAC.01819-10. PubMed DOI PMC

Papo N, Shai Y. A molecular mechanism for lipopolysaccharide protection of gram-negative bacteria from antimicrobial peptides. J. Biol. Chem. 2005;280:10378–10387. doi: 10.1074/jbc.M412865200. PubMed DOI

Snyder DS, McIntosh TJ. The lipopolysaccharide barrier: Correlation of antibiotic susceptibility with antibiotic permeability and fluorescent probe binding kinetics. Biochemistry. 2000;39:11777–11787. doi: 10.1021/bi000810n. PubMed DOI

Rosenfeld Y, Sahl HG, Shai Y. Parameters involved in antimicrobial and endotoxin detoxification activities of antimicrobial peptides. Biochemistry. 2008;47:6468–6478. doi: 10.1021/bi800450f. PubMed DOI

Cantini Y, et al. Effect of positive charges in the structural interaction of crabrolin isoforms with lipopolysaccharide. J. Pept. Sci. 2020;26:e3271–6478. doi: 10.1002/psc.3271. PubMed DOI

Rojas ER, et al. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature. 2018;559:617–621. doi: 10.1038/s41586-018-0344-3. PubMed DOI PMC

Nikaido H. Restoring permeability barrier function to outer membrane. Chem. Biol. 2005;12:507–509. doi: 10.1016/j.chembiol.2005.05.001. PubMed DOI

Allende D, McIntosh TJ. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis. Biochemistry. 2003;42:1101–1108. doi: 10.1021/bi026932s. PubMed DOI

Nicolai C, Sachs F. Solving ion channel kinetics with the QuB software. Biophys. Rev. Lett. 2013;8:191–211. doi: 10.1142/S1793048013300053. DOI

Seydlová G, et al. Lipophosphonoxins II: Design, synthesis, and properties of novel broad spectrum antibacterial agents. J. Med. Chem. 2017;60:6098–6118. doi: 10.1021/acs.jmedchem.7b00355. PubMed DOI

Nicolas P, et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science (80-). 2012;335:1103–1106. doi: 10.1126/science.1206848. PubMed DOI

Klapperstück T, Glanz D, Klapperstück M, Wohlrab J. Methodological aspects of measuring absolute values of membrane potential in human cells by flow cytometry. Cytom. Part A. 2009;75A:593–608. doi: 10.1002/cyto.a.20735. PubMed DOI

te Winkel JD, Gray DA, Seistrup KH, Hamoen LW, Strahl H. Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Front. Cell Dev. Biol. 2016;4:29. doi: 10.3389/fcell.2016.00029. PubMed DOI PMC

Whatmore AM, Chudek JA, Reed RH. The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J. Gen. Microbiol. 1990;136:2527–2535. doi: 10.1099/00221287-136-12-2527. PubMed DOI

Grassi L, et al. Generation of persister cells of Pseudomonas aeruginosa and Staphylococcus aureus by chemical treatment and evaluation of their susceptibility to membrane-targeting agents. Front. Microbiol. 2017;8:1917. doi: 10.3389/fmicb.2017.01917. PubMed DOI PMC

Helander IM, Mattila-Sandholm T. Fluorometric assessment of Gram-negative bacterial permeabilization. J. Appl. Microbiol. 2000;88:213–219. doi: 10.1046/j.1365-2672.2000.00971.x. PubMed DOI

Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 2003;67:593–656. doi: 10.1128/MMBR.67.4.593-656.2003. PubMed DOI PMC

Singh S, Kasetty G, Schmidtchen A, Malmsten M. Membrane and lipopolysaccharide interactions of C-terminal peptides from S1 peptidases. Biochim. Biophys. Acta Biomembr. 2012;1818:2244–2251. doi: 10.1016/j.bbamem.2012.03.017. PubMed DOI

European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect.9, ix–xv (2003). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace