LEGO-lipophosphonoxins: length of hydrophobic module affects permeabilizing activity in target membranes of different phospholipid composition

. 2024 Jan 10 ; 14 (4) : 2745-2756. [epub] 20240117

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38234873

In the past few decades, society has faced rapid development and spreading of antimicrobial resistance due to antibiotic misuse and overuse and the immense adaptability of bacteria. Difficulties in obtaining effective antimicrobial molecules from natural sources challenged scientists to develop synthetic molecules with antimicrobial effect. We developed modular molecules named LEGO-Lipophosphonoxins (LEGO-LPPO) capable of inducing cytoplasmic membrane perforation. In this structure-activity relationship study we focused on the role of the LEGO-LPPO hydrophobic module directing the molecule insertion into the cytoplasmic membrane. We selected three LEGO-LPPO molecules named C9, C8 and C7 differing in the length of their hydrophobic chain and consisting of an alkenyl group containing one double bond. The molecule with the long hydrophobic chain (C9) was shown to be the most effective with the lowest MIC and highest perforation rate both in vivo and in vitro. We observed high antimicrobial activity against both G+ and G- bacteria with significant differences in LEGO-LPPOs mechanism of action on these two cell types. We observed a highly cooperative mechanism of LEGO-LPPO action on G- bacteria as well as on liposomes resembling G- bacteria. LEGO-LPPO action on G- bacteria was significantly slower compared to G+ bacteria suggesting the role of the outer membrane in affecting the LEGO-LPPOs perforation rate. This notion was supported by the higher sensitivity of the E. coli strain with a compromised outer membrane. Finally, we noted that the composition of the cytoplasmic membrane affects the activity of LEGO-LPPOs since the presence of phosphatidylethanolamine increases their membrane disrupting activity.

Zobrazit více v PubMed

Zasloff M. Nature. 2002;415:389–395. PubMed

Hancock R. E. W. Sahl H.-G. Nat. Biotechnol. 2006;24:1551–1557. PubMed

Andersson D. I. Hughes D. Kubicek-Sutherland J. Z. Drug Resistance Updates. 2016;26:43–57. PubMed

Faust J. E. Yang P.-Y. Huang H. W. Biophys. J. 2017;112:1663–1672. PubMed PMC

Friedrich C. L. Moyles D. Beveridge T. J. Hancock R. E. W. Antimicrob. Agents Chemother. 2000;44:2086–2092. PubMed PMC

Gennaro R. Zanetti M. Biopolymers. 2000;55:31–49. PubMed

Lohner K. Gen. Physiol. Biophys. 2009;28:105–116. PubMed

Boerlin P. Reid-Smith R. J. Anim. Health Res. Rev. 2008;9:115–126. PubMed

Matsuzaki K. Biochim. Biophys. Acta, Biomembr. 1999;1462:1–10. PubMed

Yeaman M. R. Yount N. Y. Pharmacol. Rev. 2003;55:27–55. PubMed

Giuliani A. Pirri G. Bozzi A. Di Giulio A. Aschi M. Rinaldi A. C. Cell. Mol. Life Sci. 2008;65:2450–2460. PubMed PMC

Cooper M. A. Shlaes D. Nature. 2011;472:32. PubMed

Souza P. F. N. Marques L. S. M. Oliveira J. T. A. Lima P. G. Dias L. P. Neto N. A. S. Lopes F. E. S. Sousa J. S. Silva A. F. B. Caneiro R. F. Lopes J. L. S. Ramos M. V. Freitas C. D. T. Biochimie. 2020;175:132–145. PubMed

Pfalzgraff A. Brandenburg K. Weindl G. Front. Pharmacol. 2018;9:281. PubMed PMC

Huang Y. Huang J. Chen Y. Protein Cell. 2010;1:143–152. PubMed PMC

Liu D. Choi S. Chen B. Doerksen R. J. Clements D. J. Winkler J. D. Klein M. L. DeGrado W. F. Angew. Chem., Int. Ed. 2004;43:1158–1162. PubMed

Rejman D. Rabatinová A. Pombinho A. R. Kovačková S. Pohl R. ZbornÍková E. Kolář M. Bogdanová K. Nyč O. Šanderová H. Látal T. Bartůněk P. Krásný L. J. Med. Chem. 2011;54:7884–7898. PubMed

Panova N. Zborníková E. Šimák O. Pohl R. Kolář M. Bogdanová K. Večeřová R. Seydlová G. Fišer R. Hadravová R. Šanderová H. Vítovská D. Šiková M. Látal T. Lovecká P. Barvík I. Krásný L. Rejman D. PLoS One. 2015;10:e0145918. PubMed PMC

Seydlová G. Pohl R. Zborníková E. Ehn M. Šimák O. Panova N. Kolář M. Bogdanová K. Večeřová R. Fišer R. Šanderová H. Vítovská D. Sudzinová P. Pospíšil J. Benada O. Křížek T. Sedlák D. Bartůněk P. Krásný L. Rejman D. J. Med. Chem. 2017;60:6098–6118. PubMed

Látrová K. Havlová N. Večeřová R. Pinkas D. Bogdanová K. Kolář M. Fišer R. Konopásek I. Do Pham D. D. Rejman D. Mikušová G. Sci. Rep. 2021;11:10446. PubMed PMC

Zborníková E. Gallo J. Večeřová R. Bogdanová K. Kolář M. Vítovská D. Do Pham D. D. Pačes O. Mojr V. Šanderová H. Ulrichová J. Galandáková A. Čadek D. Hrdlička Z. Krásný L. Rejman D. ACS Omega. 2020;5:3165–3171. PubMed PMC

Do Pham D. D. Jenčová V. Kaňuchová M. Bayram J. Grossová I. Šuca H. Urban L. Havlíčková K. Novotný V. Mikeš P. Mojr V. Asatiani N. Košťáková E. K. Maixnerová M. Vlková A. Vítovská D. Šanderová H. Nemec A. Krásný L. Zajíček R. Lukáš D. Rejman D. Gál P. Sci. Rep. 2021;11:17688. PubMed PMC

Do Pham D. D. Mojr V. Helusová M. Mikušová G. Pohl R. Dávidová E. Šanderová H. Vítovská D. Bogdanová K. Večeřová R. Sedláková M. H. Fišer R. Sudzinová P. Pospíšil J. Benada O. Křížek T. Galandáková A. Kolář M. Krásný L. Rejman D. J. Med. Chem. 2022;65:10045–10078. PubMed PMC

Braun M. Silhavy T. J. Mol. Microbiol. 2002;45:1289–1302. PubMed

EUCAST, EUCAST reading guide for broth microdilution, version 4.0, https://www.eucast.org/ast_of_bacteria/mic_determination, accessed 1 January 2022

Wojdyr M. J. Appl. Crystallogr. 2010;43:1126–1128.

Rouser G. Fleischer S. Yamamoto A. Lipids. 1970;5:494–496. PubMed

Parasassi T. De Stasio G. d'Ubaldo A. Gratton E. Biophys. J. 1990;57:1179–1186. PubMed PMC

Sampson B. A. Misra R. Benson S. A. Genetics. 1989;122:491–501. PubMed PMC

Eggert U. S. Ruiz N. Falcone B. V. Branstrom A. A. Goldman R. C. Silhavy T. J. Kahne D. Science. 2001;294:361–364. PubMed

Bishop D. G. Rutberg L. Samuelsson B. Eur. J. Biochem. 1967;2:448–453. PubMed

Lohner K. Latal A. Degovics G. Garidel P. Chem. Phys. Lipids. 2001;111:177–192. PubMed

Silva T. Claro B. Silva B. F. B. Vale N. Gomes P. Gomes M. S. Funari S. S. Teixeira J. Uhríková D. Bastos M. Langmuir. 2018;34:2158–2170. PubMed

Silva T. Adão R. Nazmi K. Bolscher J. G. M. Funari S. S. Uhríková D. Bastos M. Biochim. Biophys. Acta, Biomembr. 2013;1828:1329–1339. PubMed

Valcarcel C. A. Dalla Serra M. Potrich C. Bernhart I. Tejuca M. Martinez D. Pazos F. Lanio M. E. Menestrina G. Biophys. J. 2001;80:2761–2774. PubMed PMC

Huang H. W. Biochim. Biophys. Acta, Biomembr. 2006;1758:1292–1302. PubMed

Pinkas D. Fišer R. Kozlík P. Dolejšová T. Hryzáková K. Konopásek I. Mikušová G. Biochim. Biophys. Acta, Biomembr. 2020;1862:183405. PubMed

Kopiasz R. J. Rukasz A. Chreptowicz K. Podgórski R. Kuźmińska A. Mierzejewska J. Tomaszewski W. Ciach T. Jańczewski D. Colloids Surf., B. 2021;207:112016. PubMed

Lessen H. J. Sapp K. C. Beaven A. H. Ashkar R. Sodt A. J. Biophys. J. 2022;121:3188–3199. PubMed PMC

Wei G. Liu X. Yuan L. Ju X.-J. Chu L.-Y. Yang L. J. Biomater. Sci., Polym. Ed. 2011;22:2041–2061. PubMed

Som A. Tew G. N. J. Phys. Chem. B. 2008;112:3495–3502. PubMed PMC

Wang Y. Chi E. Y. Schanze K. S. Whitten D. G. Soft Matter. 2012;8:8547.

Pokorna S. Ventura A. E. Santos T. C. B. Hof M. Prieto M. Futerman A. H. Silva L. C. J. Photochem. Photobiol., B. 2022;228:112404. PubMed

Ermilova I. Swenson J. Phys. Chem. Chem. Phys. 2020;22:28256–28268. PubMed

Maniti O. Alves I. Trugnan G. Ayala-Sanmartin J. PLoS One. 2010;5:e15819. PubMed PMC

McIntosh T. J. Biophys. J. 1980;29:237–245. PubMed PMC

Chen Y. Guarnieri M. T. Vasil A. I. Vasil M. L. Mant C. T. Hodges R. S. Antimicrob. Agents Chemother. 2007;51:1398–1406. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace