LEGO-lipophosphonoxins: length of hydrophobic module affects permeabilizing activity in target membranes of different phospholipid composition
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38234873
PubMed Central
PMC10792433
DOI
10.1039/d3ra07251g
PII: d3ra07251g
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In the past few decades, society has faced rapid development and spreading of antimicrobial resistance due to antibiotic misuse and overuse and the immense adaptability of bacteria. Difficulties in obtaining effective antimicrobial molecules from natural sources challenged scientists to develop synthetic molecules with antimicrobial effect. We developed modular molecules named LEGO-Lipophosphonoxins (LEGO-LPPO) capable of inducing cytoplasmic membrane perforation. In this structure-activity relationship study we focused on the role of the LEGO-LPPO hydrophobic module directing the molecule insertion into the cytoplasmic membrane. We selected three LEGO-LPPO molecules named C9, C8 and C7 differing in the length of their hydrophobic chain and consisting of an alkenyl group containing one double bond. The molecule with the long hydrophobic chain (C9) was shown to be the most effective with the lowest MIC and highest perforation rate both in vivo and in vitro. We observed high antimicrobial activity against both G+ and G- bacteria with significant differences in LEGO-LPPOs mechanism of action on these two cell types. We observed a highly cooperative mechanism of LEGO-LPPO action on G- bacteria as well as on liposomes resembling G- bacteria. LEGO-LPPO action on G- bacteria was significantly slower compared to G+ bacteria suggesting the role of the outer membrane in affecting the LEGO-LPPOs perforation rate. This notion was supported by the higher sensitivity of the E. coli strain with a compromised outer membrane. Finally, we noted that the composition of the cytoplasmic membrane affects the activity of LEGO-LPPOs since the presence of phosphatidylethanolamine increases their membrane disrupting activity.
Zobrazit více v PubMed
Zasloff M. Nature. 2002;415:389–395. PubMed
Hancock R. E. W. Sahl H.-G. Nat. Biotechnol. 2006;24:1551–1557. PubMed
Andersson D. I. Hughes D. Kubicek-Sutherland J. Z. Drug Resistance Updates. 2016;26:43–57. PubMed
Faust J. E. Yang P.-Y. Huang H. W. Biophys. J. 2017;112:1663–1672. PubMed PMC
Friedrich C. L. Moyles D. Beveridge T. J. Hancock R. E. W. Antimicrob. Agents Chemother. 2000;44:2086–2092. PubMed PMC
Gennaro R. Zanetti M. Biopolymers. 2000;55:31–49. PubMed
Lohner K. Gen. Physiol. Biophys. 2009;28:105–116. PubMed
Boerlin P. Reid-Smith R. J. Anim. Health Res. Rev. 2008;9:115–126. PubMed
Matsuzaki K. Biochim. Biophys. Acta, Biomembr. 1999;1462:1–10. PubMed
Yeaman M. R. Yount N. Y. Pharmacol. Rev. 2003;55:27–55. PubMed
Giuliani A. Pirri G. Bozzi A. Di Giulio A. Aschi M. Rinaldi A. C. Cell. Mol. Life Sci. 2008;65:2450–2460. PubMed PMC
Cooper M. A. Shlaes D. Nature. 2011;472:32. PubMed
Souza P. F. N. Marques L. S. M. Oliveira J. T. A. Lima P. G. Dias L. P. Neto N. A. S. Lopes F. E. S. Sousa J. S. Silva A. F. B. Caneiro R. F. Lopes J. L. S. Ramos M. V. Freitas C. D. T. Biochimie. 2020;175:132–145. PubMed
Pfalzgraff A. Brandenburg K. Weindl G. Front. Pharmacol. 2018;9:281. PubMed PMC
Huang Y. Huang J. Chen Y. Protein Cell. 2010;1:143–152. PubMed PMC
Liu D. Choi S. Chen B. Doerksen R. J. Clements D. J. Winkler J. D. Klein M. L. DeGrado W. F. Angew. Chem., Int. Ed. 2004;43:1158–1162. PubMed
Rejman D. Rabatinová A. Pombinho A. R. Kovačková S. Pohl R. ZbornÍková E. Kolář M. Bogdanová K. Nyč O. Šanderová H. Látal T. Bartůněk P. Krásný L. J. Med. Chem. 2011;54:7884–7898. PubMed
Panova N. Zborníková E. Šimák O. Pohl R. Kolář M. Bogdanová K. Večeřová R. Seydlová G. Fišer R. Hadravová R. Šanderová H. Vítovská D. Šiková M. Látal T. Lovecká P. Barvík I. Krásný L. Rejman D. PLoS One. 2015;10:e0145918. PubMed PMC
Seydlová G. Pohl R. Zborníková E. Ehn M. Šimák O. Panova N. Kolář M. Bogdanová K. Večeřová R. Fišer R. Šanderová H. Vítovská D. Sudzinová P. Pospíšil J. Benada O. Křížek T. Sedlák D. Bartůněk P. Krásný L. Rejman D. J. Med. Chem. 2017;60:6098–6118. PubMed
Látrová K. Havlová N. Večeřová R. Pinkas D. Bogdanová K. Kolář M. Fišer R. Konopásek I. Do Pham D. D. Rejman D. Mikušová G. Sci. Rep. 2021;11:10446. PubMed PMC
Zborníková E. Gallo J. Večeřová R. Bogdanová K. Kolář M. Vítovská D. Do Pham D. D. Pačes O. Mojr V. Šanderová H. Ulrichová J. Galandáková A. Čadek D. Hrdlička Z. Krásný L. Rejman D. ACS Omega. 2020;5:3165–3171. PubMed PMC
Do Pham D. D. Jenčová V. Kaňuchová M. Bayram J. Grossová I. Šuca H. Urban L. Havlíčková K. Novotný V. Mikeš P. Mojr V. Asatiani N. Košťáková E. K. Maixnerová M. Vlková A. Vítovská D. Šanderová H. Nemec A. Krásný L. Zajíček R. Lukáš D. Rejman D. Gál P. Sci. Rep. 2021;11:17688. PubMed PMC
Do Pham D. D. Mojr V. Helusová M. Mikušová G. Pohl R. Dávidová E. Šanderová H. Vítovská D. Bogdanová K. Večeřová R. Sedláková M. H. Fišer R. Sudzinová P. Pospíšil J. Benada O. Křížek T. Galandáková A. Kolář M. Krásný L. Rejman D. J. Med. Chem. 2022;65:10045–10078. PubMed PMC
Braun M. Silhavy T. J. Mol. Microbiol. 2002;45:1289–1302. PubMed
EUCAST, EUCAST reading guide for broth microdilution, version 4.0, https://www.eucast.org/ast_of_bacteria/mic_determination, accessed 1 January 2022
Wojdyr M. J. Appl. Crystallogr. 2010;43:1126–1128.
Rouser G. Fleischer S. Yamamoto A. Lipids. 1970;5:494–496. PubMed
Parasassi T. De Stasio G. d'Ubaldo A. Gratton E. Biophys. J. 1990;57:1179–1186. PubMed PMC
Sampson B. A. Misra R. Benson S. A. Genetics. 1989;122:491–501. PubMed PMC
Eggert U. S. Ruiz N. Falcone B. V. Branstrom A. A. Goldman R. C. Silhavy T. J. Kahne D. Science. 2001;294:361–364. PubMed
Bishop D. G. Rutberg L. Samuelsson B. Eur. J. Biochem. 1967;2:448–453. PubMed
Lohner K. Latal A. Degovics G. Garidel P. Chem. Phys. Lipids. 2001;111:177–192. PubMed
Silva T. Claro B. Silva B. F. B. Vale N. Gomes P. Gomes M. S. Funari S. S. Teixeira J. Uhríková D. Bastos M. Langmuir. 2018;34:2158–2170. PubMed
Silva T. Adão R. Nazmi K. Bolscher J. G. M. Funari S. S. Uhríková D. Bastos M. Biochim. Biophys. Acta, Biomembr. 2013;1828:1329–1339. PubMed
Valcarcel C. A. Dalla Serra M. Potrich C. Bernhart I. Tejuca M. Martinez D. Pazos F. Lanio M. E. Menestrina G. Biophys. J. 2001;80:2761–2774. PubMed PMC
Huang H. W. Biochim. Biophys. Acta, Biomembr. 2006;1758:1292–1302. PubMed
Pinkas D. Fišer R. Kozlík P. Dolejšová T. Hryzáková K. Konopásek I. Mikušová G. Biochim. Biophys. Acta, Biomembr. 2020;1862:183405. PubMed
Kopiasz R. J. Rukasz A. Chreptowicz K. Podgórski R. Kuźmińska A. Mierzejewska J. Tomaszewski W. Ciach T. Jańczewski D. Colloids Surf., B. 2021;207:112016. PubMed
Lessen H. J. Sapp K. C. Beaven A. H. Ashkar R. Sodt A. J. Biophys. J. 2022;121:3188–3199. PubMed PMC
Wei G. Liu X. Yuan L. Ju X.-J. Chu L.-Y. Yang L. J. Biomater. Sci., Polym. Ed. 2011;22:2041–2061. PubMed
Som A. Tew G. N. J. Phys. Chem. B. 2008;112:3495–3502. PubMed PMC
Wang Y. Chi E. Y. Schanze K. S. Whitten D. G. Soft Matter. 2012;8:8547.
Pokorna S. Ventura A. E. Santos T. C. B. Hof M. Prieto M. Futerman A. H. Silva L. C. J. Photochem. Photobiol., B. 2022;228:112404. PubMed
Ermilova I. Swenson J. Phys. Chem. Chem. Phys. 2020;22:28256–28268. PubMed
Maniti O. Alves I. Trugnan G. Ayala-Sanmartin J. PLoS One. 2010;5:e15819. PubMed PMC
McIntosh T. J. Biophys. J. 1980;29:237–245. PubMed PMC
Chen Y. Guarnieri M. T. Vasil A. I. Vasil M. L. Mant C. T. Hodges R. S. Antimicrob. Agents Chemother. 2007;51:1398–1406. PubMed PMC