Novel lipophosphonoxin-loaded polycaprolactone electrospun nanofiber dressing reduces Staphylococcus aureus induced wound infection in mice
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34480072
PubMed Central
PMC8417216
DOI
10.1038/s41598-021-96980-7
PII: 10.1038/s41598-021-96980-7
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky aplikace a dávkování terapeutické užití MeSH
- hojení ran účinky léků MeSH
- infekce v ráně farmakoterapie MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- nanovlákna * MeSH
- obvazy * MeSH
- stafylokokové infekce farmakoterapie MeSH
- Staphylococcus aureus * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
Active wound dressings are attracting extensive attention in soft tissue repair and regeneration, including bacteria-infected skin wound healing. As the wide use of antibiotics leads to drug resistance we present here a new concept of wound dressings based on the polycaprolactone nanofiber scaffold (NANO) releasing second generation lipophosphonoxin (LPPO) as antibacterial agent. Firstly, we demonstrated in vitro that LPPO released from NANO exerted antibacterial activity while not impairing proliferation/differentiation of fibroblasts and keratinocytes. Secondly, using a mouse model we showed that NANO loaded with LPPO significantly reduced the Staphylococcus aureus counts in infected wounds as evaluated 7 days post-surgery. Furthermore, the rate of degradation and subsequent LPPO release in infected wounds was also facilitated by lytic enzymes secreted by inoculated bacteria. Finally, LPPO displayed negligible to no systemic absorption. In conclusion, the composite antibacterial NANO-LPPO-based dressing reduces the bacterial load and promotes skin repair, with the potential to treat wounds in clinical settings.
Zobrazit více v PubMed
Robson MC. Wound infection. A failure of wound healing caused by an imbalance of bacteria. Surg. Clin. N. Am. 1997;77:637–650. doi: 10.1016/S0039-6109(05)70572-7. PubMed DOI
Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016;529:336–343. doi: 10.1038/nature17042. PubMed DOI
Cartotto R. Topical antimicrobial agents for pediatric burns. Burns Trauma. 2017;5:33. doi: 10.1186/s41038-017-0096-6. PubMed DOI PMC
Rejman D, et al. Lipophosphonoxins: New modular molecular structures with significant antibacterial properties. J. Med. Chem. 2011;54:7884–7898. doi: 10.1021/jm2009343. PubMed DOI
Panova N, et al. Insights into the mechanism of action of bactericidal lipophosphonoxins. PLoS ONE. 2015;10:e0145918. doi: 10.1371/journal.pone.0145918. PubMed DOI PMC
Seydlova G, et al. Lipophosphonoxins II: Design, synthesis, and properties of novel broad spectrum antibacterial agents. J. Med. Chem. 2017;60:6098–6118. doi: 10.1021/acs.jmedchem.7b00355. PubMed DOI
Zbornikova E, et al. Evaluation of second-generation lipophosphonoxins as antimicrobial additives in bone cement. ACS Omega. 2020;5:3165–3171. doi: 10.1021/acsomega.9b03072. PubMed DOI PMC
Wang CG, et al. Highly efficient local delivery of endothelial progenitor cells significantly potentiates angiogenesis and full-thickness wound healing. Acta Biomater. 2018;69:156–169. doi: 10.1016/j.actbio.2018.01.019. PubMed DOI
Johnson NR, Wang YD. Controlled delivery of heparin-binding EGF-like growth factor yields fast and comprehensive wound healing. J. Controll. Release. 2013;166:124–129. doi: 10.1016/j.jconrel.2012.11.004. PubMed DOI PMC
Xu Q, et al. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomater. 2018;75:63–74. doi: 10.1016/j.actbio.2018.05.039. PubMed DOI
Henderson PW, et al. Stromal-derived factor-1 delivered via hydrogel drug-delivery vehicle accelerates wound healing in vivo. Wound Repair Regen. 2011;19:420–425. doi: 10.1111/j.1524-475X.2011.00687.x. PubMed DOI
Obagi Z, Damiani G, Grada A, Falanga V. Principles of wound dressings: A review. Surg. Technol. Int. 2019;35:50–57. PubMed
Al-Enizi AM, Zagho MM, Elzatahry AA. Polymer-based electrospun nanofibers for biomedical applications. Nanomaterials (Basel) 2018;8:259. doi: 10.3390/nano8040259. PubMed DOI PMC
Li Z, Tan BH. Towards the development of polycaprolactone based amphiphilic block copolymers: Molecular design, self-assembly and biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2014;45:620–634. doi: 10.1016/j.msec.2014.06.003. PubMed DOI
Lotfi M, Ghasemi N, Rahimi S, Vosoughhosseini S, Saghiri MA, Shahidi A. Resilon: A comprehensive literature review. J. Dent. Res. Dent. Clin. Dent. Prospects. 2013;7:119–130. PubMed PMC
Stocco TD, Bassous NJ, Zhao S, Granato AEC, Webster TJ, Lobo AO. Nanofibrous scaffolds for biomedical applications. Nanoscale. 2018;10:12228–12255. doi: 10.1039/C8NR02002G. PubMed DOI
Koprivova B, et al. Large-scale electrospinning of poly (vinylalcohol) nanofibers incorporated with platelet-derived growth factors. Express Polym. Lett. 2020;14:987–1000. doi: 10.3144/expresspolymlett.2020.80. DOI
Zhang Q, et al. Electrospun polymeric micro/nanofibrous scaffolds for long-term drug release and their biomedical applications. Drug Discov. Today. 2017;22:1351–1366. doi: 10.1016/j.drudis.2017.05.007. PubMed DOI
Adamson AW. The physical chemistry of surfaces. Abstr. Pap. Am. Chem. S. 2001;221:U320–U320.
Patnaik A, Rengasamy RS, Kothari VK, Ghosh A. Wetting and wicking in fibrous materials. Text. Prog. 2006;38:1–105. doi: 10.1533/jotp.2006.38.1.1. DOI
Martinez-Ferrer M, Afshar-Sherif AR, Uwamariya C, de Crombrugghe B, Davidson JM, Bhowmick NA. Dermal transforming growth factor-beta responsiveness mediates wound contraction and epithelial closure. Am. J. Pathol. 2010;176:98–107. doi: 10.2353/ajpath.2010.090283. PubMed DOI PMC
Mikes P, Broz A, Sinica A, Asatiani N, Bacakova L. In vitro and in vivo testing of nanofibrous membranes doped with alaptide and L-arginine for wound treatment. Biomed. Mater. 2020;15:065023. doi: 10.1088/1748-605X/ab950f. PubMed DOI
Beachley V, Wen X. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Prog. Polym. Sci. 2010;35:868–892. doi: 10.1016/j.progpolymsci.2010.03.003. PubMed DOI PMC
Daristotle JL, et al. Sprayable and biodegradable, intrinsically adhesive wound dressing with antimicrobial properties. Bioeng. Transl. Med. 2020;5:e10149. doi: 10.1002/btm2.10149. PubMed DOI PMC
Bikiaris DN. Nanocomposites of aliphatic polyesters: An overview of the effect of different nanofillers on enzymatic hydrolysis and biodegradation of polyesters. Polym. Degrad. Stab. 2013;98:1908–1928. doi: 10.1016/j.polymdegradstab.2013.05.016. DOI
Dong Y, Liao S, Ngiam M, Chan CK, Ramakrishna S. Degradation behaviors of electrospun resorbable polyester nanofibers. Tissue Eng. Part B Rev. 2009;15:333–351. doi: 10.1089/ten.teb.2008.0619. PubMed DOI
Horakova J, et al. The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Mater. Sci. Eng. C. 2018;92:132–142. doi: 10.1016/j.msec.2018.06.041. PubMed DOI
Webb JC, Gbejuade H, Lovering A, Spencer R. Characterisation of in vivo release of gentamicin from polymethyl methacrylate cement using a novel method. Int. Orthop. 2013;37:2031–2036. doi: 10.1007/s00264-013-1914-5. PubMed DOI PMC
Anagnostakos K, Meyer C. Antibiotic elution from hip and knee acrylic bone cement spacers: A systematic review. Biomed. Res. Int. 2017;2017:4657874. doi: 10.1155/2017/4657874. PubMed DOI PMC
Yang S, Li X, Liu P, Zhang M, Wang C, Zhang B. Multifunctional chitosan/polycaprolactone nanofiber scaffolds with varied dual-drug release for wound-healing applications. ACS Biomater. Sci. Eng. 2020;6:4666–4676. doi: 10.1021/acsbiomaterials.0c00674. PubMed DOI
Rodrigues J, et al. Lipolytic activity of Staphylococcus aureus from human wounds, animals, foods, and food-contact surfaces in Brazil. J. Infect. Dev. Ctries. 2014;8:1055–1058. doi: 10.3855/jidc.3697. PubMed DOI
Lichtman MK, Otero-Vinas M, Falanga V. Transforming growth factor beta (TGF-beta) isoforms in wound healing and fibrosis. Wound Repair Regen. 2016;24:215–222. doi: 10.1111/wrr.12398. PubMed DOI
Shi X, Young CD, Zhou H, Wang X. Transforming growth factor-beta signaling in fibrotic diseases and cancer-associated fibroblasts. Biomolecules. 2020;10:1666. doi: 10.3390/biom10121666. PubMed DOI PMC
Hatta M, Miyake Y, Uchida K, Yamazaki J. Keratin 13 gene is epigenetically suppressed during transforming growth factor-beta1-induced epithelial-mesenchymal transition in a human keratinocyte cell line. Biochem. Biophys. Res. Commun. 2018;496:381–386. doi: 10.1016/j.bbrc.2018.01.047. PubMed DOI
Garlick JA, Taichman LB. Effect of TGF-beta 1 on re-epithelialization of human keratinocytes in vitro: An organotypic model. J. Investig. Dermatol. 1994;103:554–559. doi: 10.1111/1523-1747.ep12396847. PubMed DOI
Thompson MG, et al. Validation of a novel murine wound model of Acinetobacterbaumannii infection. Antimicrob. Agents Chemother. 2014;58:1332–1342. doi: 10.1128/AAC.01944-13. PubMed DOI PMC
Jafari A, Amirsadeghi A, Hassanajili S, Azarpira N. Bioactive antibacterial bilayer PCL/gelatin nanofibrous scaffold promotes full-thickness wound healing. Int. J. Pharm. 2020;583:119413. doi: 10.1016/j.ijpharm.2020.119413. PubMed DOI
Chandika P, et al. Electrospun porous bilayer nano-fibrous fish collagen/PCL bio-composite scaffolds with covalently cross-linked chitooligosaccharides for full-thickness wound-healing applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;121:111871. doi: 10.1016/j.msec.2021.111871. PubMed DOI
Chogan F, et al. Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing. Acta Biomater. 2020;113:144–163. doi: 10.1016/j.actbio.2020.06.031. PubMed DOI
Miguel SP, et al. An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. Eur. J. Pharm. Biopharm. 2019;139:1–22. doi: 10.1016/j.ejpb.2019.03.010. PubMed DOI
Dvorankova B, Lacina L, Smetana K., Jr Isolation of normal fibroblasts and their cancer-associated counterparts (CAFs) for biomedical research. Methods Mol. Biol. 2019;1879:393–406. doi: 10.1007/7651_2018_137. PubMed DOI
Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 1988;106:761–771. doi: 10.1083/jcb.106.3.761. PubMed DOI PMC
Brenmoehl J, et al. Transforming growth factor-beta 1 induces intestinal myofibroblast differentiation and modulates their migration. World J. Gastroenterol. 2009;15:1431–1442. doi: 10.3748/wjg.15.1431. PubMed DOI PMC
Rotter BA, Thompson BK, Clarkin S, Owen TC. Rapid colorimetric bioassay for screening of Fusariummycotoxins. Nat. Toxins. 1993;1:303–307. doi: 10.1002/nt.2620010509. PubMed DOI
Kovac I, et al. Aesculushippocastanum L. extract does not induce fibroblast to myofibroblast conversion but increases extracellular matrix production in vitro leading to increased wound tensile strength in rats. Molecules. 2020;25:1917. doi: 10.3390/molecules25081917. PubMed DOI PMC
Gal P, et al. Human galectin3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions in vivo. Mol. Med. Rep. 2021;23:99. doi: 10.3892/mmr.2020.11738. PubMed DOI PMC
Nemec A, et al. Emergence of carbapenem resistance in Acinetobacterbaumannii in the Czech Republic is associated with the spread of multidrug-resistant strains of European clone II. J. Antimicrob. Chemother. 2008;62:484–489. doi: 10.1093/jac/dkn205. PubMed DOI
Brakstad OG, Aasbakk K, Maeland JA. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 1992;30:1654–1660. doi: 10.1128/jcm.30.7.1654-1660.1992. PubMed DOI PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
An epidemiological model of SIR in a nanotechnological innovation environment
Methods for increasing productivity of AC-electrospinning using weir-electrode
Lipophosphonoxins-A Novel Group of Broad Spectrum Antibacterial Compounds
LEGO-Lipophosphonoxins: A Novel Approach in Designing Membrane Targeting Antimicrobials