Novel lipophosphonoxin-loaded polycaprolactone electrospun nanofiber dressing reduces Staphylococcus aureus induced wound infection in mice

. 2021 Sep 03 ; 11 (1) : 17688. [epub] 20210903

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34480072
Odkazy

PubMed 34480072
PubMed Central PMC8417216
DOI 10.1038/s41598-021-96980-7
PII: 10.1038/s41598-021-96980-7
Knihovny.cz E-zdroje

Active wound dressings are attracting extensive attention in soft tissue repair and regeneration, including bacteria-infected skin wound healing. As the wide use of antibiotics leads to drug resistance we present here a new concept of wound dressings based on the polycaprolactone nanofiber scaffold (NANO) releasing second generation lipophosphonoxin (LPPO) as antibacterial agent. Firstly, we demonstrated in vitro that LPPO released from NANO exerted antibacterial activity while not impairing proliferation/differentiation of fibroblasts and keratinocytes. Secondly, using a mouse model we showed that NANO loaded with LPPO significantly reduced the Staphylococcus aureus counts in infected wounds as evaluated 7 days post-surgery. Furthermore, the rate of degradation and subsequent LPPO release in infected wounds was also facilitated by lytic enzymes secreted by inoculated bacteria. Finally, LPPO displayed negligible to no systemic absorption. In conclusion, the composite antibacterial NANO-LPPO-based dressing reduces the bacterial load and promotes skin repair, with the potential to treat wounds in clinical settings.

Zobrazit více v PubMed

Robson MC. Wound infection. A failure of wound healing caused by an imbalance of bacteria. Surg. Clin. N. Am. 1997;77:637–650. doi: 10.1016/S0039-6109(05)70572-7. PubMed DOI

Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016;529:336–343. doi: 10.1038/nature17042. PubMed DOI

Cartotto R. Topical antimicrobial agents for pediatric burns. Burns Trauma. 2017;5:33. doi: 10.1186/s41038-017-0096-6. PubMed DOI PMC

Rejman D, et al. Lipophosphonoxins: New modular molecular structures with significant antibacterial properties. J. Med. Chem. 2011;54:7884–7898. doi: 10.1021/jm2009343. PubMed DOI

Panova N, et al. Insights into the mechanism of action of bactericidal lipophosphonoxins. PLoS ONE. 2015;10:e0145918. doi: 10.1371/journal.pone.0145918. PubMed DOI PMC

Seydlova G, et al. Lipophosphonoxins II: Design, synthesis, and properties of novel broad spectrum antibacterial agents. J. Med. Chem. 2017;60:6098–6118. doi: 10.1021/acs.jmedchem.7b00355. PubMed DOI

Zbornikova E, et al. Evaluation of second-generation lipophosphonoxins as antimicrobial additives in bone cement. ACS Omega. 2020;5:3165–3171. doi: 10.1021/acsomega.9b03072. PubMed DOI PMC

Wang CG, et al. Highly efficient local delivery of endothelial progenitor cells significantly potentiates angiogenesis and full-thickness wound healing. Acta Biomater. 2018;69:156–169. doi: 10.1016/j.actbio.2018.01.019. PubMed DOI

Johnson NR, Wang YD. Controlled delivery of heparin-binding EGF-like growth factor yields fast and comprehensive wound healing. J. Controll. Release. 2013;166:124–129. doi: 10.1016/j.jconrel.2012.11.004. PubMed DOI PMC

Xu Q, et al. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomater. 2018;75:63–74. doi: 10.1016/j.actbio.2018.05.039. PubMed DOI

Henderson PW, et al. Stromal-derived factor-1 delivered via hydrogel drug-delivery vehicle accelerates wound healing in vivo. Wound Repair Regen. 2011;19:420–425. doi: 10.1111/j.1524-475X.2011.00687.x. PubMed DOI

Obagi Z, Damiani G, Grada A, Falanga V. Principles of wound dressings: A review. Surg. Technol. Int. 2019;35:50–57. PubMed

Al-Enizi AM, Zagho MM, Elzatahry AA. Polymer-based electrospun nanofibers for biomedical applications. Nanomaterials (Basel) 2018;8:259. doi: 10.3390/nano8040259. PubMed DOI PMC

Li Z, Tan BH. Towards the development of polycaprolactone based amphiphilic block copolymers: Molecular design, self-assembly and biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2014;45:620–634. doi: 10.1016/j.msec.2014.06.003. PubMed DOI

Lotfi M, Ghasemi N, Rahimi S, Vosoughhosseini S, Saghiri MA, Shahidi A. Resilon: A comprehensive literature review. J. Dent. Res. Dent. Clin. Dent. Prospects. 2013;7:119–130. PubMed PMC

Stocco TD, Bassous NJ, Zhao S, Granato AEC, Webster TJ, Lobo AO. Nanofibrous scaffolds for biomedical applications. Nanoscale. 2018;10:12228–12255. doi: 10.1039/C8NR02002G. PubMed DOI

Koprivova B, et al. Large-scale electrospinning of poly (vinylalcohol) nanofibers incorporated with platelet-derived growth factors. Express Polym. Lett. 2020;14:987–1000. doi: 10.3144/expresspolymlett.2020.80. DOI

Zhang Q, et al. Electrospun polymeric micro/nanofibrous scaffolds for long-term drug release and their biomedical applications. Drug Discov. Today. 2017;22:1351–1366. doi: 10.1016/j.drudis.2017.05.007. PubMed DOI

Adamson AW. The physical chemistry of surfaces. Abstr. Pap. Am. Chem. S. 2001;221:U320–U320.

Patnaik A, Rengasamy RS, Kothari VK, Ghosh A. Wetting and wicking in fibrous materials. Text. Prog. 2006;38:1–105. doi: 10.1533/jotp.2006.38.1.1. DOI

Martinez-Ferrer M, Afshar-Sherif AR, Uwamariya C, de Crombrugghe B, Davidson JM, Bhowmick NA. Dermal transforming growth factor-beta responsiveness mediates wound contraction and epithelial closure. Am. J. Pathol. 2010;176:98–107. doi: 10.2353/ajpath.2010.090283. PubMed DOI PMC

Mikes P, Broz A, Sinica A, Asatiani N, Bacakova L. In vitro and in vivo testing of nanofibrous membranes doped with alaptide and L-arginine for wound treatment. Biomed. Mater. 2020;15:065023. doi: 10.1088/1748-605X/ab950f. PubMed DOI

Beachley V, Wen X. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Prog. Polym. Sci. 2010;35:868–892. doi: 10.1016/j.progpolymsci.2010.03.003. PubMed DOI PMC

Daristotle JL, et al. Sprayable and biodegradable, intrinsically adhesive wound dressing with antimicrobial properties. Bioeng. Transl. Med. 2020;5:e10149. doi: 10.1002/btm2.10149. PubMed DOI PMC

Bikiaris DN. Nanocomposites of aliphatic polyesters: An overview of the effect of different nanofillers on enzymatic hydrolysis and biodegradation of polyesters. Polym. Degrad. Stab. 2013;98:1908–1928. doi: 10.1016/j.polymdegradstab.2013.05.016. DOI

Dong Y, Liao S, Ngiam M, Chan CK, Ramakrishna S. Degradation behaviors of electrospun resorbable polyester nanofibers. Tissue Eng. Part B Rev. 2009;15:333–351. doi: 10.1089/ten.teb.2008.0619. PubMed DOI

Horakova J, et al. The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Mater. Sci. Eng. C. 2018;92:132–142. doi: 10.1016/j.msec.2018.06.041. PubMed DOI

Webb JC, Gbejuade H, Lovering A, Spencer R. Characterisation of in vivo release of gentamicin from polymethyl methacrylate cement using a novel method. Int. Orthop. 2013;37:2031–2036. doi: 10.1007/s00264-013-1914-5. PubMed DOI PMC

Anagnostakos K, Meyer C. Antibiotic elution from hip and knee acrylic bone cement spacers: A systematic review. Biomed. Res. Int. 2017;2017:4657874. doi: 10.1155/2017/4657874. PubMed DOI PMC

Yang S, Li X, Liu P, Zhang M, Wang C, Zhang B. Multifunctional chitosan/polycaprolactone nanofiber scaffolds with varied dual-drug release for wound-healing applications. ACS Biomater. Sci. Eng. 2020;6:4666–4676. doi: 10.1021/acsbiomaterials.0c00674. PubMed DOI

Rodrigues J, et al. Lipolytic activity of Staphylococcus aureus from human wounds, animals, foods, and food-contact surfaces in Brazil. J. Infect. Dev. Ctries. 2014;8:1055–1058. doi: 10.3855/jidc.3697. PubMed DOI

Lichtman MK, Otero-Vinas M, Falanga V. Transforming growth factor beta (TGF-beta) isoforms in wound healing and fibrosis. Wound Repair Regen. 2016;24:215–222. doi: 10.1111/wrr.12398. PubMed DOI

Shi X, Young CD, Zhou H, Wang X. Transforming growth factor-beta signaling in fibrotic diseases and cancer-associated fibroblasts. Biomolecules. 2020;10:1666. doi: 10.3390/biom10121666. PubMed DOI PMC

Hatta M, Miyake Y, Uchida K, Yamazaki J. Keratin 13 gene is epigenetically suppressed during transforming growth factor-beta1-induced epithelial-mesenchymal transition in a human keratinocyte cell line. Biochem. Biophys. Res. Commun. 2018;496:381–386. doi: 10.1016/j.bbrc.2018.01.047. PubMed DOI

Garlick JA, Taichman LB. Effect of TGF-beta 1 on re-epithelialization of human keratinocytes in vitro: An organotypic model. J. Investig. Dermatol. 1994;103:554–559. doi: 10.1111/1523-1747.ep12396847. PubMed DOI

Thompson MG, et al. Validation of a novel murine wound model of Acinetobacterbaumannii infection. Antimicrob. Agents Chemother. 2014;58:1332–1342. doi: 10.1128/AAC.01944-13. PubMed DOI PMC

Jafari A, Amirsadeghi A, Hassanajili S, Azarpira N. Bioactive antibacterial bilayer PCL/gelatin nanofibrous scaffold promotes full-thickness wound healing. Int. J. Pharm. 2020;583:119413. doi: 10.1016/j.ijpharm.2020.119413. PubMed DOI

Chandika P, et al. Electrospun porous bilayer nano-fibrous fish collagen/PCL bio-composite scaffolds with covalently cross-linked chitooligosaccharides for full-thickness wound-healing applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;121:111871. doi: 10.1016/j.msec.2021.111871. PubMed DOI

Chogan F, et al. Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing. Acta Biomater. 2020;113:144–163. doi: 10.1016/j.actbio.2020.06.031. PubMed DOI

Miguel SP, et al. An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. Eur. J. Pharm. Biopharm. 2019;139:1–22. doi: 10.1016/j.ejpb.2019.03.010. PubMed DOI

Dvorankova B, Lacina L, Smetana K., Jr Isolation of normal fibroblasts and their cancer-associated counterparts (CAFs) for biomedical research. Methods Mol. Biol. 2019;1879:393–406. doi: 10.1007/7651_2018_137. PubMed DOI

Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 1988;106:761–771. doi: 10.1083/jcb.106.3.761. PubMed DOI PMC

Brenmoehl J, et al. Transforming growth factor-beta 1 induces intestinal myofibroblast differentiation and modulates their migration. World J. Gastroenterol. 2009;15:1431–1442. doi: 10.3748/wjg.15.1431. PubMed DOI PMC

Rotter BA, Thompson BK, Clarkin S, Owen TC. Rapid colorimetric bioassay for screening of Fusariummycotoxins. Nat. Toxins. 1993;1:303–307. doi: 10.1002/nt.2620010509. PubMed DOI

Kovac I, et al. Aesculushippocastanum L. extract does not induce fibroblast to myofibroblast conversion but increases extracellular matrix production in vitro leading to increased wound tensile strength in rats. Molecules. 2020;25:1917. doi: 10.3390/molecules25081917. PubMed DOI PMC

Gal P, et al. Human galectin3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions in vivo. Mol. Med. Rep. 2021;23:99. doi: 10.3892/mmr.2020.11738. PubMed DOI PMC

Nemec A, et al. Emergence of carbapenem resistance in Acinetobacterbaumannii in the Czech Republic is associated with the spread of multidrug-resistant strains of European clone II. J. Antimicrob. Chemother. 2008;62:484–489. doi: 10.1093/jac/dkn205. PubMed DOI

Brakstad OG, Aasbakk K, Maeland JA. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 1992;30:1654–1660. doi: 10.1128/jcm.30.7.1654-1660.1992. PubMed DOI PMC

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...