An epidemiological model of SIR in a nanotechnological innovation environment
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39959497
PubMed Central
PMC11830325
DOI
10.1016/j.heliyon.2025.e42309
PII: S2405-8440(25)00689-9
Knihovny.cz E-zdroje
- Klíčová slova
- Bass model, Diffusion of innovation, Nanotechnology, SIR model,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Today, when nanotechnological innovation, in particular, faces stringent regulations, the question arises concerning a tool that can quantify individual interventions and thus complement current knowledge in the diffusion theory of innovation. This paper examines the complex nature of innovation diffusion in a rapidly evolving technological environment. The research presents current knowledge in the field linking diffusion of innovation theory and the basic epidemiological model of SIR (Susceptible, Infected, Recovered). Epidemiological models, originally developed to study the spread of infectious diseases, offer intriguing parallels to innovation diffusion due to shared characteristics in propagation dynamics. Integrating the SIR epidemiological model into the current theoretical framework allows the SIR model to be considered as a tool capable of filling current gaps in the literature. Nanotechnological innovations are chosen because of their significant impact on society, which faces unique market entry challenges. Within the framework of high interdisciplinarity, nanotechnologies, like viruses, tend to 'mutate' into different industries where their 'infectivity' varies. The case of nanotechnology serves to illustrate the usefulness of the proposed model and shows how factors that influence the spread of viruses can similarly affect the adoption of technological innovations. Similar characteristics in the propagation framework between innovations and viruses can serve as one of many arguments for the use of the SIR model in this field. Using an integrative review, aspects that have the potential to add to the SIR model in the current literature are identified. By combining epidemiological findings with innovation theory, the paper contributes to a richer and more integrated understanding of the phenomena of diffusion of nanotechnological innovations. The motivation is to open a debate regarding the ability of the epidemiological model of SIR to reveal the impact of interventions affecting the diffusion of innovations.
Zobrazit více v PubMed
Engblom S., Widgren S. In: Srinivasa Rao A.S.R., Pyne S., Rao C.R., editors. Vol. 36. Elsevier; 2017. Chapter 11 - data-driven computational disease spread modeling: from measurement to parametrization and control; pp. 305–328. (Handbook of Statistics). in Disease Modelling and Public Health, Part A, vol. 36. DOI
Rogers E.M. third ed. Free Press ; Collier Macmillan; New York : London: 1983. Diffusion of Innovations.
Koul B., Poonia A.K., Yadav D., Jin J.-O. Microbe-Mediated biosynthesis of nanoparticles: applications and future prospects. Biomolecules. 2021;11(6) doi: 10.3390/biom11060886. PubMed DOI PMC
Auplat C. Radical innovation and policy-making: nanotechnology public R&D funding in the USA and the EU. Int. J. Innovat. Reg. Dev. 2012;4:281–292. doi: 10.1504/IJIRD.2012.047562. DOI
Agrawal A., Chopra R., Sharma G.D., Rao A., Vasa L., Budhwar P. Work from home practices as corporate strategy- an integrative review. Heliyon. 2023;9(9) doi: 10.1016/j.heliyon.2023.e19894. PubMed DOI PMC
de Souza M.T., da Silva M.D., de Carvalho R. Integrative review: what is it? How to do it? einstein (São Paulo) Mar. 2010;8:102–106. doi: 10.1590/S1679-45082010RW1134. PubMed DOI
Whittemore R., Knafl K. The integrative review: updated methodology. J. Adv. Nurs. 2005;52(5):546–553. doi: 10.1111/j.1365-2648.2005.03621.x. PubMed DOI
Scully-Russ E., Torraco R. The changing nature and organization of work: an integrative review of the literature. Hum. Resour. Dev. Rev. Mar. 2020;19(1):66–93. doi: 10.1177/1534484319886394. DOI
Azungah T. Qualitative research: deductive and inductive approaches to data analysis. Qual. Res. J. Jan. 2018;18(4):383–400. doi: 10.1108/QRJ-D-18-00035. DOI
Blum E.R., Stenfors T., Palmgren P.J. Benefits of massive open online course participation: deductive thematic analysis. J. Med. Internet Res. Jul. 2020;22(7) doi: 10.2196/17318. PubMed DOI PMC
Stacey P.A. Academic Conferences and publishing limited; 2019. ECRM 2019 18th European Conference on Research Methods in Business and Management.
Rogers E.M., Medina U.E., Rivera M.A., Wiley C.J. Vol. 10. 2005. (COMPLEX ADAPTIVE SYSTEMS AND THE DIFFUSION OF INNOVATIONS).
Jabareen Y. A new conceptual framework for sustainable development. Environ. Dev. Sustain. Apr. 2008;10(2):179–192. doi: 10.1007/s10668-006-9058-z. DOI
Leshem S., Trafford V. Overlooking the conceptual framework. Innovat. Educ. Teach. Int. Feb. 2007;44(1):93–105. doi: 10.1080/14703290601081407. DOI
Angstmann C.N., Henry B.I., McGann A.V. A fractional-order infectivity SIR model. Phys. Stat. Mech. Appl. Jun. 2016;452:86–93. doi: 10.1016/j.physa.2016.02.029. DOI
Bhadauria A.S., Dhungana H.N. In: Methods of Mathematical Modeling. Singh H., Srivastava H.M., Baleanu D., editors. Academic Press; 2022. 1 - epidemic theory: studying the effective and basic reproduction numbers, epidemic thresholds and techniques for the analysis of infectious diseases with particular emphasis on tuberculosis; pp. 1–21. DOI
Cooper I., Mondal A., Antonopoulos C.G. A SIR model assumption for the spread of COVID-19 in different communities. Chaos, Solit. Fractals. Oct. 2020;139 doi: 10.1016/j.chaos.2020.110057. PubMed DOI PMC
Szapudi I. Heterogeneity in SIR epidemics modeling: superspreaders and herd immunity. Appl Netw Sci. 2020;5(1):93. doi: 10.1007/s41109-020-00336-5. PubMed DOI PMC
Melikechi O., Young A.L., Tang T., Bowman T., Dunson D., Johndrow J. Limits of epidemic prediction using SIR models. J. Math. Biol. 2022;85(4):36. doi: 10.1007/s00285-022-01804-5. PubMed DOI PMC
Senel K., Ozdinc M., Ozturkcan S. Single parameter estimation approach for robust estimation of SIR model with limited and noisy data: the case for COVID-19. Disaster Med. Public Health Prep. Jun. 2021;15(3):e8–e22. doi: 10.1017/dmp.2020.220. PubMed DOI PMC
Lee T.J., Kakehashi M., Srinivasa Rao A.S.R. In: Handbook of Statistics. Srinivasa Rao A.S.R., Rao C.R., editors. Vol. 44. Elsevier; 2021. Chapter 8 - network models in epidemiology; pp. 235–256. in Data Science: Theory and Applications, vol. 44. DOI
Prodanov D. Analytical solutions and parameter estimation of the SIR epidemic model. Mathematical Analysis of Infectious Diseases. 2022:163–189. doi: 10.1016/B978-0-32-390504-6.00015-2. DOI
Ganyani T., Faes C., Chowell G., Hens N. Assessing inference of the basic reproduction number in an SIR model incorporating a growth-scaling parameter. Stat. Med. 2018;37(29):4490–4506. doi: 10.1002/sim.7935. PubMed DOI
Navarro Valencia V.A., Díaz Y., Pascale J.M., Boni M.F., Sanchez-Galan J.E. Using compartmental models and Particle Swarm Optimization to assess Dengue basic reproduction number R0 for the Republic of Panama in the 1999-2022 period. Heliyon. Apr. 2023;9(4) doi: 10.1016/j.heliyon.2023.e15424. PubMed DOI PMC
Ryabov E.V. Invertebrate RNA virus diversity from a taxonomic point of view. J. Invertebr. Pathol. Jul. 2017;147:37–50. doi: 10.1016/j.jip.2016.10.002. PubMed DOI PMC
Thompson A.J., Paulson J.C. Adaptation of influenza viruses to human airway receptors. J. Biol. Chem. 2021;296(Jan) doi: 10.1074/jbc.REV120.013309. PubMed DOI PMC
Khot V., Strous M., Dong X., Kiesser A.K. Viral diversity and dynamics, and CRISPR-Cas mediated immunity in a robust alkaliphilic Cyanobacterial consortium. bioRxiv. Mar. 04, 2023 doi: 10.1101/2023.03.03.531066. PubMed DOI PMC
Stauft C.B., Sangare K., Wang T.T. Differences in new variant of concern replication at physiological temperatures in vitro. J. Infect. Dis. Jan. 2023;227(2):202–205. doi: 10.1093/infdis/jiac264. PubMed DOI PMC
McMahan K., et al. bioRxiv; Jan. 03, 2022. Reduced Pathogenicity of the SARS-CoV-2 Omicron Variant in Hamsters. PubMed DOI PMC
Lazarevic I. Clinical implications of hepatitis B virus mutations: recent advances. World J. Gastroenterol. Jun. 2014;20(24):7653–7664. doi: 10.3748/wjg.v20.i24.7653. PubMed DOI PMC
Regoes R.R., Hamblin S., Tanaka M.M. Viral mutation rates: modelling the roles of within-host viral dynamics and the trade-off between replication fidelity and speed. Proc. Biol. Sci. Jan. 2013;280(1750) doi: 10.1098/rspb.2012.2047. PubMed DOI PMC
Zitzmann C., Kaderali L. Mathematical analysis of viral replication dynamics and antiviral treatment strategies: from basic models to age-based multi-scale modeling. Front. Microbiol. 2018;9(Jul) doi: 10.3389/fmicb.2018.01546. PubMed DOI PMC
van Kampen J.J.A., et al. Shedding of infectious virus in hospitalized patients with coronavirus disease-2019 (COVID-19): duration and key determinants. medRxiv. Jun. 09, 2020 doi: 10.1101/2020.06.08.20125310. PubMed DOI PMC
Azuma K., Yanagi U., Kagi N., Kim H., Ogata M., Hayashi M. Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environ. Health Prev. Med. Nov. 2020;25(1):66. doi: 10.1186/s12199-020-00904-2. PubMed DOI PMC
Coşkun H., Yıldırım N., Gündüz S. The spread of COVID-19 virus through population density and wind in Turkey cities. Sci. Total Environ. Jan. 2021;751 doi: 10.1016/j.scitotenv.2020.141663. PubMed DOI PMC
Ma J., Wang P., Xiang T. Traffic-driven epidemic spreading in community networks. Phys. Lett. A. Aug. 2024;517 doi: 10.1016/j.physleta.2024.129660. DOI
Rocklöv J., Sjödin H. High population densities catalyse the spread of COVID-19. J. Trav. Med. May 2020;27(3):taaa038. doi: 10.1093/jtm/taaa038. PubMed DOI PMC
Kasilingam D., Sathiya Prabhakaran S.P., Rajendran D.K., Rajagopal V., Santhosh Kumar T., Soundararaj A. Exploring the growth of COVID-19 cases using exponential modelling across 42 countries and predicting signs of early containment using machine learning. Transboundary and Emerging Diseases. 2021;68(3):1001–1018. doi: 10.1111/tbed.13764. PubMed DOI PMC
Iriarte-Alonso M.A., Bittner A.M., Chiantia S. bioRxiv; Nov. 22, 2021. Influenza A Virus Hemagglutinin Prevents Extensive Membrane Damage upon Dehydration. PubMed DOI PMC
Britton T., Ball F., Trapman P. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science. Aug. 2020;369(6505):846–849. doi: 10.1126/science.abc6810. PubMed DOI PMC
Bruggeman L. Common mechanisms of viral injury to the kidney - advances in chronic kidney disease. https://www.akdh.org/article/S1548-5595(18)30244-1/fulltext [Online]. Available: PubMed PMC
Hall R.A., Hall-Mendelin S., Hobson-Peters J., Prow N.A., Mackenzie J.S. Caister Academic Press; 2016. Ecological and Epidemiological Factors Influencing Arbovirus Diversity, Evolution and Spread; pp. 135–166. DOI
Liu H., Han X., Lin X., Zhu X., Wei Y. Impact of vaccine measures on the transmission dynamics of COVID-19. PLoS One. Aug. 2023;18(8) doi: 10.1371/journal.pone.0290640. PubMed DOI PMC
Diakonova S., Artyshchenko S., Sysoeva D., Surovtsev I., Karpovich M. On the application of the thermal conductivity equation to describe the diffusion process. E3S Web Conf. 2020;175 doi: 10.1051/e3sconf/202017505050. DOI
Schumpeter J.A. first ed., 3rd impr. McGraw-Hill Book Co; New York: 1939. Business Cycles: a Theoretical, Historical and Statistical Analysis of the Capitalist Process.
Yunus M. 2014. Diffusion of Innovation, Consumer Attitudes and Intentions to Use Mobile Banking.
Almaiah M.A., et al. Measuring institutions' adoption of artificial intelligence applications in online learning environments: integrating the innovation diffusion theory with technology adoption rate. Electronics. Jan. 2022;11(20) doi: 10.3390/electronics11203291. DOI
Babatunde S., Mohammed A., Isa K., Kuye O., Omolehinwa E., Muritala A. Ease of doing business index: an analysis of investors practical view. Jurnal Economia. Apr. 2021;17:101–123. doi: 10.21831/economia.v17i1.33941. DOI
Guidolin M., Manfredi P. Innovation diffusion processes: concepts, models, and predictions. Annual Review of Statistics and Its Application. 2023;10(1):451–473. doi: 10.1146/annurev-statistics-040220-091526. DOI
Rogers E.M., Singhal A., Quinlan M.M. An Integrated Approach to Communication Theory and Research. second ed. Routledge; 2008. Diffusion of innovations.
Vespignani A. Modelling dynamical processes in complex socio-technical systems. Nat. Phys. Jan. 2012;8(1) doi: 10.1038/nphys2160. DOI
Call D.R., Herber D.R. Applicability of the diffusion of innovation theory to accelerate model-based systems engineering adoption. Syst. Eng. 2022;25(6):574–583. doi: 10.1002/sys.21638. DOI
Bertotti M.L., Brunner J., Modanese G. The Bass diffusion model on networks with correlations and inhomogeneous advertising. Chaos, Solit. Fractals. Sep. 2016;90:55–63. doi: 10.1016/j.chaos.2016.02.039. DOI
Miller R.L. Information Seeking Behavior and Technology Adoption: Theories and Trends. IGI Global; 2015. Rogers' innovation diffusion theory (1962, 1995) pp. 261–274. DOI
Murphrey T.P., Dooley K.E. Perceived strengths, weaknesses, opportunities, and threats impacting the diffusion of distance education technologies in a college of agriculture and life sciences. J. Agric. Educ. Dec. 2000;41(4) doi: 10.5032/jae.2000.04039. DOI
Zhang X., Wang Z., Ma C., Duan N. 2015 IEEE International Conference on Web Services. Jun. 2015. A diffusion model with constant source and sinks for social graph partitioning; pp. 113–120. DOI
Bass F.M. Comments on ‘A new product growth for model consumer durables the Bass model. Manag. Sci. Dec. 2004;50(12_supplement):1833–1840. doi: 10.1287/mnsc.1040.0300. DOI
Horvat A., Fogliano V., Luning P.A. Modifying the Bass diffusion model to study adoption of radical new foods–The case of edible insects in The Netherlands. PLoS One. Jun. 2020;15(6) doi: 10.1371/journal.pone.0234538. PubMed DOI PMC
Jiang Z., Bass F.M., Bass P.I. Virtual Bass Model and the left-hand data-truncation bias in diffusion of innovation studies. Int. J. Res. Market. Mar. 2006;23(1):93–106. doi: 10.1016/j.ijresmar.2006.01.008. DOI
Eryarsoy E., Delen D., Davazdahemami B., Topuz K. A novel diffusion-based model for estimating cases, and fatalities in epidemics: the case of COVID-19. J. Bus. Res. Jan. 2021;124:163–178. doi: 10.1016/j.jbusres.2020.11.054. PubMed DOI PMC
Jeyaraj A., Sabherwal R. The Bass model of diffusion: recommendations for use in information systems research and practice. J. Inf. Technol. Theor. Appl. Aug. 2014;15(1) https://aisel.aisnet.org/jitta/vol15/iss1/2 [Online]. Available:
Kijek A., Kijek T. Modelling of innovation diffusion. | operations research & decisions | EBSCOhost. https://openurl.ebsco.com/contentitem/gcd:85409374?sid=ebsco:plink:crawler&id=ebsco:gcd:85409374 [Online]. Available:
Chu K.H., Hashim M.A. Can the Bass innovation diffusion model describe adsorption breakthrough curves of pharmaceutical contaminants? Green Chemical Engineering. Jun. 2024;5(2):145–149. doi: 10.1016/j.gce.2023.07.001. DOI
Carayannis E.G., Evangelatos N.G. The role of epidemiology in the study of innovation diffusion. Technology Transfer and Entrepreneurship (Discontinued) 2014;1(1):67–76.
Zhou L., Lin J., Wang Y., Li Y., Miao R. Critical phenomena of spreading dynamics on complex networks with diverse activity of nodes. Phys. Stat. Mech. Appl. Nov. 2018;509:439–447. doi: 10.1016/j.physa.2018.06.046. DOI
Mandl C.E. Management for Professionals; 2023. Diffusion of Innovations: Spreading New Ideas and Technology; pp. 173–180.
Ota Y., Mizutani N. Estimating parameters in mathematical model for societal booms through bayesian inference approach. Math. Comput. Appl. Sep. 2020;25(3) doi: 10.3390/mca25030042. DOI
Wang Z.-Y., Han J.-T., Zhao J. Identifying node spreading influence for tunable clustering coefficient networks. Phys. Stat. Mech. Appl. Nov. 2017;486:242–250. doi: 10.1016/j.physa.2017.05.037. DOI
Evangelatos N., Carayannis E. Innovation diffusion: an epidemiological perspective. Int. J. Soc. Ecol. Sustain. Dev. 2014;5(1):22–30. doi: 10.4018/ijsesd.2014010103. DOI
Soheili F., Rahimi S., Mansouri A., Tousi Z. Studying the application of epidemic theory in transmission cycle of technology: a case study of nanotechnology patent. Int. J. Integrated Supply Manag. Jun. 2017;15(2) https://ijism.isc.ac/article_698262.html [Online]. Available:
Iacopini I. Queen Mary University of London; Thesis: 2021. Modelling the Social Dynamics of Contagion and Discovery Using Dynamical Processes on Complex Networks.https://qmro.qmul.ac.uk/xmlui/handle/123456789/70668 [Online]. Available:
Jiang T., Luo R.G. In: PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING, VOLS 1 AND 2. Hua L., editor. Harbin Institute Technology Publishers; Harbin: 2004. The study on fusion model of innovation based on infectious disease model; pp. 2294–2298.https://www.webofscience.com/wos/woscc/full-record/WOS [Online]. Available: 000224824000426.
Li Z., Ren T., Xu Y., Chang B., Chen D., Sun S. Identifying influential spreaders based on adaptive weighted link model. IEEE Access. 2020;8:66068–66073. doi: 10.1109/ACCESS.2020.2985713. DOI
Yang D., Xian J., Pan L., Wang W., Zhou T. Effective edge-based approach for promoting the spreading of information. IEEE Access. 2020;8:83745–83753. doi: 10.1109/ACCESS.2020.2992058. DOI
M. Sobhanie, “How do virus mutations happen, and what do they mean? | Ohio State Medical Center.” Accessed: February. 17, 2024. [Online]. Available: https://wexnermedical.osu.edu/blog/virus-mutations-what-do-they-mean.
Kauffman S., Macready W.G. Technological evolution and adaptive organizations: Ideas from biology may find applications in economics. Complexity. 1995;1(2) doi: 10.1002/cplx.6130010208. DOI
Lyu W., O'Connor G.C., Thompson N.C. Unleash the unexpected for radical innovation. MIT SMR. Sep. 2023;65(1) https://sloanreview.mit.edu/article/unleash-the-unexpected-for-radical-innovation/ [Online]. Available:
Ganesh Pillai R., Bezbaruah A.N. Perceptions and attitude effects on nanotechnology acceptance: an exploratory framework. J. Nanoparticle Res. Jan. 2017;19(2):41. doi: 10.1007/s11051-016-3733-2. DOI
Smismans S., Stokes E. Innovation types and regulation: the regulatory framing of nanotechnology as ‘incremental’ or ‘radical’ innovation. Eur. J. Risk. Regul. 2017;8(2):364–386.
Giordani S. Moving nanotechnology toward the market: business strategy and IP management in the value chain. MRS Online Proc. Libr. Feb. 2010;1209(1):503. doi: 10.1557/PROC-1209-P05-03. DOI
Hassani S.S., Daraee M., Sobat Z. Advanced development in upstream of petroleum industry using nanotechnology. Chin. J. Chem. Eng. Jun. 2020;28(6):1483–1491. doi: 10.1016/j.cjche.2020.02.030. DOI
Pokrajac L., et al. Nanotechnology for a sustainable future: addressing global challenges with the international Network4Sustainable nanotechnology. ACS Nano. Dec. 2021;15(12):18608–18623. doi: 10.1021/acsnano.1c10919. PubMed DOI
Zhou Y., Liu Y., Zhang M., Feng Z., Yu D.-G., Wang K. Electrospun nanofiber membranes for air filtration: a review. Nanomaterials. Mar. 2022;12(7):1077. doi: 10.3390/nano12071077. PubMed DOI PMC
Do Pham D.D., et al. Novel lipophosphonoxin-loaded polycaprolactone electrospun nanofiber dressing reduces Staphylococcus aureus induced wound infection in mice. Sci. Rep. Sep. 2021;11(1) doi: 10.1038/s41598-021-96980-7. PubMed DOI PMC
Guzman J., Stern S. Where is silicon valley? Science. Feb. 2015;347(6222):606–609. doi: 10.1126/science.aaa0201. PubMed DOI
Kessler E.H., Chakrabarti A.K. Innovation speed: a conceptual model of context, antecedents, and outcomes. Acad. Manag. Rev. 1996;21(4):1143–1191. doi: 10.2307/259167. DOI
Ferreira M., Ribeiro Serra F., Kramer Costa B., Maccari E.A., Ritor Couto H. Impact of the types of clusters on the innovation output and the appropriation of rents from innovation. J. Technol. Manag. Innovat. Dec. 2012;7(4):70–80. doi: 10.4067/S0718-27242012000400006. DOI
Cresswell K., Williams R., Carlile N., Sheikh A. Accelerating innovation in health care: insights from a qualitative inquiry into United Kingdom and United States innovation centers. J. Med. Internet Res. Sep. 2020;22(9) doi: 10.2196/19644. PubMed DOI PMC
Innovation Quarter, “What Is an Innovation Hub?,” Innovation Quarter. Accessed: March. 23, 2024. [Online]. Available: https://www.innovationquarter.com/articles/what-is-an-innovation-hub/.
Nasiri M., Saunila M., Rantala T., Ukko J. Sustainable innovation among small businesses: the role of digital orientation, the external environment, and company characteristics. Sustain. Dev. 2022;30(4):703–712. doi: 10.1002/sd.2267. DOI
Agan B., Balcilar M. On the determinants of green technology diffusion: an empirical analysis of economic, social, political, and environmental factors. Sustainability. Jan. 2022;14(4) doi: 10.3390/su14042008. DOI
Essa W.K., Yasin S.A., Saeed I.A., Ali G.A.M. Nanofiber-based face masks and respirators as COVID-19 protection: a review. Membranes. Mar. 2021;11(4):250. doi: 10.3390/membranes11040250. PubMed DOI PMC
Svoboda D., Kraft J., Holendova J. TEM Journal; Aug. 2024. Impact of State Intervention during the Pandemic Crisis on the Implementation of Nanotechnological Innovations in the Czech Republic; pp. 2297–2309. DOI
Ross P.A., Turelli M., Hoffmann A.A. Evolutionary ecology of wolbachia releases for disease control. Annu. Rev. Genet. Dec. 2019;53:93–116. doi: 10.1146/annurev-genet-112618-043609. PubMed DOI PMC
Lukáš D. Gerstner. Academia; Praha: 2023. Nanovlákna: teorie, technologie a použití, Vydání první. sv. 15. ISBN: 978-80-200-3400-7.
Naseri K., Aliashrafzadeh H., Otadi M., Ebrahimzadeh F., Badfar H., Alipourfard I. Human responses in public health emergencies for infectious disease control: an overview of controlled topologies for biomedical applications. Contrast Media Mol. Imaging. 2022;2022 doi: 10.1155/2022/6324462. PubMed DOI PMC
Havelka O., et al. Sustainable and scalable development of PVDF-OH Ag/TiOx nanocomposites for simultaneous oil/water separation and pollutant degradation. Environ. Sci.: Nano. Sep. 2023;10(9):2359–2373. doi: 10.1039/D3EN00335C. DOI
Schulz K., Conraths F.J., Blome S., Staubach C., Sauter-Louis C. African swine fever: fast and furious or slow and steady? Viruses. Sep. 2019;11(9):866. doi: 10.3390/v11090866. PubMed DOI PMC
Xin Y., Gao C., Wang Z., Zhen X., Li X. Discerning influential spreaders in complex networks by accounting the spreading heterogeneity of the nodes. IEEE Access. 2019;7:92070–92078. doi: 10.1109/ACCESS.2019.2927775. DOI
Mather D. A simulation model of the spread of hepatitis C within a closed cohort. J. Oper. Res. Soc. 2000;51(6):656–665. doi: 10.2307/254009. DOI
Vasickova P., Pavlik I., Verani M., Carducci A. Issues concerning survival of viruses on surfaces. Food Environ Virol. 2010;2(1):24–34. doi: 10.1007/s12560-010-9025-6. DOI
Pioz M., et al. Did vaccination slow the spread of bluetongue in France? PLoS One. 2014;9(1) doi: 10.1371/journal.pone.0085444. PubMed DOI PMC