Invasive Fascioloides magna infections impact gut microbiota in a definitive host in Europe
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
39687766
PubMed Central
PMC11648883
DOI
10.1016/j.ijppaw.2024.101024
PII: S2213-2244(24)00120-2
Knihovny.cz E-resources
- Keywords
- Bohemian forest ecosystem, Gut microbiota, Invasive parasite, Liver fluke Fascioloides magna, Wildlife health monitoring,
- Publication type
- Journal Article MeSH
Invasive parasites that expand their natural range can be a threat to wildlife biodiversity and may pose a health risk to non-adapted, naive host species. The invasive giant liver fluke, Fascioloides magna, native to North America, has extended its range in Europe and uses mainly red deer (Cervus elaphus) as definitive hosts. The penetration of the intestinal barrier by the young flukes to reach the liver via the abdominal cavity as well as the release of fluke metabolism products and excreta with the bile and/or changes in the microbial community of the biliary system may enable the translocation of intestinal bacteria across the intestinal barrier and, in turn, could be associated with inflammation and changes in the intestinal bacterial community. The gut commensal community plays a key role in host nutrition and interacts with cells of the immune system to maintain host health. For this study, the gut bacterial community of red deer infected with F. magna and of non-infected red deer from one of the largest forest ecosystems in Central Europe, located on the border between the Czech Republic and Germany, was investigated. The individual fluke burden was associated with changes in the gut microbial composition of the gut of infected individuals, whereas the diversity and composition of the gut bacteria were only slightly different between fluke-infected and uninfected deer. Several bacterial taxa at the genus level were unique to individuals carrying either one or many liver flukes. Our results suggest that the microbiota of red deer is stable to perturbation by low numbers of F. magna. However, a larger parasite burden may cause changes in the gut microbial composition in definitive hosts implying that non-invasive fecal microbiome assessments could serve as indicator for wildlife health monitoring.
Bavarian State Institute of Forestry Research Unit Wildlife Biology and Management Freising Germany
Boehringer Ingelheim Vetmedica GmbH Rohrdorf Germany
Department of National Park Monitoring and Animal Management Bavarian Forest National Park Germany
Faculty of Environment and Natural Resources University of Freiburg Germany
Institute of Evolutionary Ecology and Conservation Genomics University of Ulm Germany
See more in PubMed
Act No 449/200 Coll: Zákon č. 449/2001 Sb, o myslivosti [Act No 449/200 Coll, Game Management Act]. Parliament of the Czech Republic, Collection of Laws of the Czech Republic. Online https://www.zakonyprolidi.cz/cs/2001-449 (accessed on 25 April 2024) (in Czech).
Alberdi A., Aizpurua O., Bohmann K., Zepeda-Mendoza M.L., Gilbert M.T.P. Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends Ecol. Evol. 2016;31(9):689–699. doi: 10.1016/j.tree.2016.06.008. PubMed DOI
Banerjee S., Schlaeppi K., van der Heijden M.G.A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 2018;16(9):567–576. doi: 10.1038/s41579-018-0024-1. PubMed DOI
Barko P.C., McMichael M.A., Swanson K.S., Williams D.A. The gastrointestinal microbiome: a review. J. Vet. Med. 2018;32(1):9–25. doi: 10.1111/JVIM.14875. PubMed DOI PMC
Bassi R. Sulla cachessia ittero-verminosa, o marciaia dei Cervi, causata dal Distomum magnum. Giorn. Med. Vet. [Giornale di Medicina Veterinaria] 1875;4:497–515.
Belotti E., Kreisinger J., Romportl D., Heurich M., Bufka L. Eurasian lynx hunting red deer: is there an influence of a winter enclosure system? Eur. J. Wildl. Res. 2014;60(3):441–457. doi: 10.1007/s10344-014-0801-8. DOI
Boggs A.D., Deperno C.S., Flowers J.R. Range expansion of Fascioloides magna in North Carolina. Southeas. Nat. 2018;17(2):365–370. doi: 10.1656/058.017.0218. DOI
Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A., Alexander H., Alm E.J., Arumugam M., Asnicar F., Bai Y., Bisanz J.E., Bittinger K., Brejnrod A., Brislawn C.J., Brown C.T., Callahan B.J., Caraballo-Rodríguez A.M., Chase J., et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37(8):852–857. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13(7):581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Carding S., Verbeke K., Vipond D.T., Corfe B.M., Owen L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2015;26(0) doi: 10.3402/MEHD.V26.26191. PubMed DOI PMC
Charlier J., Rinaldi L., Musella V., Ploeger H.W., Chartier C., Vineer H.R., Hinney B., von Samson-Himmelstjerna G., Băcescu B., Mickiewicz M., Mateus T.L., Martinez-Valladares M., Quealy S., Azaizeh H., Sekovska B., Akkari H., Petkevicius S., Hektoen L., Höglund J., Morgan E.R., Bartley D.J., Claerebout E. Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe. Prev. Vet. Med. 2020;182 doi: 10.1016/J.PREVETMED.2020.105103. PubMed DOI
Chaudhary A., Qazi J.I. Probiotic antagonism of Sphingomonas sp. against Vibrio anguillarum exposed Labeo rohita fingerlings. Adv. Life Sci. 2014;2014(3):156–165. doi: 10.5923/j.als.20140403.11. DOI
Chopyk D.M., Grakoui A. Contribution of the intestinal microbiome and gut barrier to hepatic disorders. Gastroenterology. 2020;159(3):849–863. doi: 10.1053/J.GASTRO.2020.04.077. PubMed DOI PMC
Clerc M., Fenton A., Babayan S.A., Pedersen A.B. Parasitic nematodes simultaneously suppress and benefit from coccidian coinfection in their natural mouse host. Parasitology. 2019;146(8):1096–1106. doi: 10.1017/S0031182019000192. PubMed DOI PMC
Dao M.C., Everard A., Aron-Wisnewsky J., Sokolovska N., Prifti E., Verger E.O., Kayser B.D., Levenez F., Chilloux J., Hoyles L., Dumas M.E., Rizkalla S.W., Doré J., Cani P.D., Clément K., Le Mouhaër S., Cotillard A., Kennedy S.P., Pons N., et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65(3):426–436. doi: 10.1136/GUTJNL-2014-308778. PubMed DOI
Daszak P., Cunningham A.A., Hyatt A.D. Emerging infectious diseases of wildlife - threats to biodiversity and human health. Science. 2000;287(5452):443–449. https://www.science.org/doi/10.1126/science.287.5452.443 PubMed DOI
Ezenwa V.O., Etienne R.S., Luikart G., Beja-Pereira A., Jolles A.E. Hidden consequences of living in a wormy world: nematode‐induced immune suppression facilitates tuberculosis invasion in African Buffalo. Am. Nat. 2015;176(5):613–624. doi: 10.1086/656496. PubMed DOI
Fackelmann G., Pham C.K., Rodríguez Y., Mallory M.L., Provencher J.F., Baak J.E., Sommer S. Current levels of microplastic pollution impact wild seabird gut microbiomes. Nat. Ecol. Evol. 2023;7(5):698–706. doi: 10.1038/s41559-023-02013-z. PubMed DOI PMC
Fernandes A.D., Macklaim J.M., Linn T.G., Reid G., Gloor G.B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-seq. PLoS One. 2013;8(7) doi: 10.1371/JOURNAL.PONE.0067019. PubMed DOI PMC
Ford S.A., Kao D., Williams D., King K.C. Microbe-mediated host defence drives the evolution of reduced pathogen virulence. Nat. Commun. 2016;7(1) doi: 10.1038/ncomms13430. PubMed DOI PMC
Groussin M., Mazel F., Sanders J.G., Smillie C.S., Lavergne S., Thuiller W., Alm E.J. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 2017;8(1) doi: 10.1038/ncomms14319. PubMed DOI PMC
Guzman-Bautista E.R., Suzuki K., Asami S., Fagarasan S. Bacteria-immune cells dialog and the homeostasis of the systems. Curr. Opin. Immunol. 2020;66:82–89. doi: 10.1016/j.coi.2020.05.010. PubMed DOI
Heurich M., Brand T.T.G., Kaandorp M.Y., Šustr P., Müller J., Reineking B. Country, cover or protection: what shapes the distribution of red deer and roe deer in the Bohemian Forest ecosystem? PLoS One. 2015;10(3) doi: 10.1371/JOURNAL.PONE.0120960. PubMed DOI PMC
Hoarau A.O.G., Mavingui P., Lebarbenchon C. Coinfections in wildlife: focus on a neglected aspect of infectious disease epidemiology. PLoS Pathog. 2020;16(9) doi: 10.1371/JOURNAL.PPAT.1008790. PubMed DOI PMC
Janík T. Bavarian Forest and Šumava National Parks: on the way to transboundary wildlife management and conservation? Silva Gabreta. 2020;26:51–63.
Janík T., Romportl D. Complex comparison of Bavarian and Bohemian Forest Natinal Parks from geographical perspective: is there more similarity or difference? J. Landsc. Ecol. 2017;10(1) doi: 10.1515/jlecol-2017-0010. DOI
Juhász A., Stothard J.R. The giant liver fluke in Europe: a review of Fascioloides magna within cervids and livestock with considerations on an expanding snail-fluke transmission risk. Adv. Parasitol. 2023;119:223–257. PubMed
Kamada N., Chen G.Y., Inohara N., Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013;14(7):685–690. doi: 10.1038/ni.2608. PubMed DOI PMC
Kartzinel T.R., Hsing J.C., Musili P.M., Brown B.R.P., Pringle R.M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl. Acad. Sci. U.S.A. 2019 doi: 10.1073/pnas.1905666116. PubMed DOI PMC
Khan I., Bai Y., Zha L., Ullah N., Ullah H., Shah S.R.H., Sun H., Zhang C. Mechanism of the gut microbiota colonization resistance and enteric pathogen infection. Front. Cell. Infect. Microbiol. 2021;11 doi: 10.3389/FCIMB.2021.716299/BIBTEX. PubMed DOI PMC
Králová-Hromadová I., Bazsalovicsová E., Štefka J., Špakulová M., Vávrová S., Szemes T., Tkach V., Trudgett A., Pybus M. Multiple origins of European populations of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae), a liver parasite of ruminants. Int. J. Parasitol. 2011;41(3–4):373–383. doi: 10.1016/J.IJPARA.2010.10.010. PubMed DOI
Králová-Hromadová I., Juhásová Ľ., Bazsalovicsová E. The giant liver fluke, Fascioloides magna: past, present and future research. SpringerBriefs Anim. Sci. 2016 doi: 10.1007/978-3-319-29508-4. Springer Cham. DOI
Krojerova-Prokesova J., Barančeková M., Šustr P., Heurich M. Feeding patterns of red deer Cervus elaphus along an altitudinal gradient in the Bohemian Forest: effect of habitat and season. Wildl. Biol. 2010;16(2):173–184. doi: 10.2981/09-004. DOI
Krzystek P., Serebryanyk A., Schnörr C., Červenka J., Heurich M. Large-scale mapping of tree species and dead trees in Šumava National Park and Bavarian Forest National Park using lidar and multispectral imagery. Rem. Sens. 2020;12(4):661. doi: 10.3390/RS12040661. DOI
Levy M., Kolodziejczyk A.A., Thaiss C.A., Elinav E. Dysbiosis and the immune system. Nat. Rev. Immunol. 2017;17(4):219–232. doi: 10.1038/nri.2017.7. PubMed DOI
Lin L., Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017;18(1):1–25. doi: 10.1186/S12865-016-0187-3. PubMed DOI PMC
Lozupone C., Lladser M.E., Knights D., Stombaugh J., Knight R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 2011;5(2):169–172. doi: 10.1038/ismej.2010.133. PubMed DOI PMC
Mackiewicz P., Matosiuk M., Świsłocka M., Zachos F.E., Hajji G.M., Saveljev A.P., Seryodkin I.V., Farahvash T., Rezaei H.R., Torshizi R.V., Mattioli S., Ratkiewicz M. Phylogeny and evolution of the genus Cervus (Cervidae, Mammalia) as revealed by complete mitochondrial genomes. Sci. Rep. 2022;12(1):1–17. doi: 10.1038/s41598-022-20763-x. PubMed DOI PMC
Menke S., Heurich M., Henrich M., Wilhelm K., Sommer S., Menke S., Wilhelm K., Sommer S., Heurich M., Henrich M. Impact of winter enclosures on the gut bacterial microbiota of red deer in the Bavarian Forest National Park. Wildl. Biol. 2019;2019(1):1–10. doi: 10.2981/WLB.00503. DOI
Möst L., Hothorn T., Müller J., Heurich M. Creating a landscape of management: unintended effects on the variation of browsing pressure in a national park. For. Ecol. Manage. 2015;338:46–56. doi: 10.1016/J.FORECO.2014.11.015. DOI
Novobilský A., Horáčková E., Hirtová L., Modrý D., Koudela B. The giant liver fluke Fascioloides magna (Bassi 1875) in cervids in the Czech Republic and potential of its spreading to Germany. Parasitol. Res. 2007;100(3):549–553. doi: 10.1007/s00436-006-0299-4. PubMed DOI
Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., Mcglinn D., Minchin P.R., O’hara R.B., Simpson G.L., Solymos P., Henry M., Stevens H., Szoecs E., Maintainer H.W. “vegan” Community Ecology Package. R package version. 2019;2:5–6.
Pakharukova M.Y., Lishai E.A., Zaparina O., Baginskaya N.V., Hong S.J., Sripa B., Mordvinov V.A. Opisthorchis viverrini, Clonorchis sinensis and Opisthorchis felineus liver flukes affect mammalian host microbiome in a species-specific manner. PLoS Neglected Trop. Dis. 2023;17(2) doi: 10.1371/JOURNAL.PNTD.0011111. PubMed DOI PMC
Peters W., Hebblewhite M., Mysterud A., Eacker D., Hewison A.J.M., Linnell J.D.C., Focardi S., Urbano F., De Groeve J., Gehr B., Heurich M., Jarnemo A., Kjellander P., Kröschel M., Morellet N., Pedrotti L., Reinecke H., Sandfort R., Sönnichsen L., et al. Large herbivore migration plasticity along environmental gradients in Europe: life-history traits modulate forage effects. Oikos. 2019;128(3):416–429. doi: 10.1111/OIK.05588. DOI
Plieskatt J.L., Deenonpoe R., Mulvenna J.P., Krause L., Sripa B., Bethony J.M., Brindley P.J. Infection with the carcinogenic liver fluke Opisthorchis viverrini modifies intestinal and biliary microbiome. Faseb. J. 2013;27(11):4572. doi: 10.1096/FJ.13-232751. PubMed DOI PMC
Randi E., Mucci N., Claro-Hergueta F., Bonnet A., Douzery E.J.P. A mitochondrial DNA control region phylogeny of the Cervinae: speciation in Cervus and implications for conservation. Anim. Conserv. forum. 2001;4(1):1–11. doi: 10.1017/S1367943001001019. DOI
Rehbein S., Visser M., Hamel D., Reindl H. Occurrence of the giant liver fluke, Fascioloides magna, in sympatric wild ungulates in one area in the Upper Palatinate Forest (northeastern Bavaria, Germany) Parasitol. Res. 2021;120(2):553–561. doi: 10.1007/S00436-020-06996-7/FIGURES/7. PubMed DOI
Risely A., Müller-Klein N., Schmid D.W., Wilhelm K., Clutton-Brock T.H., Manser M.B., Sommer S. Climate change drives loss of bacterial gut mutualists at the expense of host survival in wild meerkats. Global Change Biol. 2023;29(20):1–13. doi: 10.1111/GCB.16877. PubMed DOI
Rivrud I.M., Heurich M., Krupczynski P., Müller J., Mysterud A. Green wave tracking by large herbivores: an experimental approach. Ecology. 2016;97(12):3547–3553. doi: 10.1002/ECY.1596. PubMed DOI
Round J.L., Mazmanian S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009;9(5):313–323. doi: 10.1038/nri2515. PubMed DOI PMC
Ryan M.P., Adley C.C. Sphingomonas paucimobilis: a persistent Gram-negative nosocomial infectious organism. J. Hosp. Infect. 2010;75(3):153–157. doi: 10.1016/J.JHIN.2010.03.007. PubMed DOI
Sabey K.A., Song S.J., Jolles A., Knight R., Ezenwa V.O. Coinfection and infection duration shape how pathogens affect the African buffalo gut microbiota. ISME J. 2020;15(5):1359–1371. doi: 10.1038/s41396-020-00855-0. PubMed DOI PMC
Saltykova I.V., Petrov V.A., Logacheva M.D., Ivanova P.G., Merzlikin N.V., Sazonov A.E., Ogorodova L.M., Brindley P.J. Biliary microbiota, gallstone disease and infection with Opisthorchis felineus. PLoS Neglected Trop. Dis. 2016;10(7) PubMed PMC
Schluter J., Peled J.U., Taylor B.P., Markey K.A., Smith M., Taur Y., Niehus R., Staffas A., Dai A., Fontana E., Amoretti L.A., Wright R.J., Morjaria S., Fenelus M., Pessin M.S., Chao N.J., Lew M., Bohannon L., Bush A., et al. The gut microbiota is associated with immune cell dynamics in humans. Nature. 2020;588(7837):303–307. doi: 10.1038/s41586-020-2971-8. PubMed DOI PMC
Schmid D.W., Fackelmann G., Wasimuddin, Rakotondranary J., Ratovonamana Y.R., Montero B.K., Ganzhorn J.U., Sommer S. A framework for testing the impact of co-infections on host gut microbiomes. Anim. Microbiome. 2022;4(1):1–15. doi: 10.1186/S42523-022-00198-5. PubMed DOI PMC
Shi Z., Zou J., Zhang Z., Zhao X., Noriega J., Zhang B., Zhao C., Ingle H., Bittinger K., Mattei L.M., Pruijssers A.J., Plemper R.K., Nice T.J., Baldridge M.T., Dermody T.S., Chassaing B., Gewirtz A.T. Segmented filamentous bacteria prevent and cure rotavirus infection. Cell. 2019;179(3):644–658.e13. doi: 10.1016/J.CELL.2019.09.028. PubMed DOI PMC
Šimonji K., Konjević D., Bujanić M., Rubić I., Farkaš V., Beletić A., Grbavac L., Kuleš J. Liver proteome alterations in red deer (Cervus elaphus) infected by the giant liver fluke Fascioloides magna. Pathogens. 2022;11(12):1503. doi: 10.3390/pathogens11121503. PubMed DOI PMC
Sommer M.F., Drdlicek J., Müller M., Thelemann A., Just F.T. Fascioloides magna and other liver parasites in cloven-hoofed game from northeastern Bavaria, Germany: occurrence and pathological findings with special emphasis on red deer (Cervus elaphus) Eur. J. Wildl. Res. 2022;68(6):1–12. doi: 10.1007/s10344-022-01616-4. PubMed DOI
Spragge F., Bakkeren E., Jahn M.T., Araujo E.B.N., Pearson C.F., Wang X., Pankhurst L., Cunrath O., Foster K.R. Microbiome diversity protects against pathogens by nutrient blocking. Science. 2023;382(6676) doi: 10.1126/SCIENCE.ADJ3502. PubMed DOI PMC
Stevens E.J., Bates K.A., King K.C. Host microbiota can facilitate pathogen infection. PLoS Pathog. 2021;17(5) doi: 10.1371/JOURNAL.PPAT.1009514. PubMed DOI PMC
Trevelline B.K., Fontaine S.S., Hartup B.K., Kohl K.D. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. A B. 2019;286(1895) doi: 10.1098/RSPB.2018.2448. PubMed DOI PMC
Ullrich K. Über das Vorkommen von seltenen oder wenig bekannten Parasiten der Säugetiere und Vögel in Böhmen und Mähren. Prager Arch. Tiermed. 1930;A10:19–43.
van der Knaap W.O., van Leeuwen J.F.N., Fahse L., Szidat S., Studer T., Baumann J., Heurich M., Tinner W. Vegetation and disturbance history of the bavarian forest national park, Germany. Veg. Hist. Archaeobotany. 2020;29(2):277–295. doi: 10.1007/s00334-019-00742-5. DOI
Vujkovic-Cvijin I., Welles H.C., Ha C.W.Y., Huq L., Mistry S., Brenchley J.M., Trinchieri G., Devkota S., Belkaid Y. The systemic anti-microbiota IgG repertoire can identify gut bacteria that translocate across gut barrier surfaces. Sci. Transl. Med. 2022;14(658):3927. https://www.science.org/doi/10.1126/scitranslmed.abl3927 PubMed DOI PMC
Wang Y., Xu B., Chen H., Yang F., Huang J., Jiao X., Zhang Y. Environmental factors and gut microbiota: toward better conservation of deer species. Front. Microbiol. 2023;14 doi: 10.3389/fmicb.2023.1136413. PubMed DOI PMC
Wasimuddin, Brändel S.D., Tschapka M., Page R., Rasche A., Corman V.M., Drosten C., Sommer S. Astrovirus infections induce age-dependent dysbiosis in gut microbiomes of bats. ISME J. 2018 doi: 10.1038/s41396-018-0239-1. PubMed DOI PMC
Wasimuddin, Corman V.M., Ganzhorn J.U., Rakotondranary J., Ratovonamana Y.R., Drosten C., Sommer S. Adenovirus infection is associated with altered gut microbial communities in a non-human primate. Sci. Rep. 2019;9(1):1–12. doi: 10.1038/s41598-019-49829-z. PubMed DOI PMC
Weiss A.S., Niedermeier L.S., von Strempel A., Burrichter A.G., Ring D., Meng C., Kleigrewe K., Lincetto C., Hübner J., Stecher B. Nutritional and host environments determine community ecology and keystone species in a synthetic gut bacterial community. Nat. Commun. 2023;14(1):1–16. doi: 10.1038/s41467-023-40372-0. PubMed DOI PMC
Weiss S., Xu Z.Z., Peddada S., Amir A., Bittinger K., Gonzalez A., Lozupone C., Zaneveld J.R., Vázquez-Baeza Y., Birmingham A., Hyde E.R., Knight R. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5:1–18. doi: 10.1186/s40168-017-0237-y. PubMed DOI PMC
West A.G., Waite D.W., Deines P., Bourne D.G., Digby A., McKenzie V.J., Taylor M.W. The microbiome in threatened species conservation. Biol. Conserv. 2019;229:85–98. doi: 10.1016/J.BIOCON.2018.11.016. DOI
Wilkins L.J., Monga M., Miller A.W. Defining dysbiosis for a cluster of chronic diseases. Sci. Rep. 2019;9(1) doi: 10.1038/s41598-019-49452-y. PubMed DOI PMC
Youngblut N.D., Reischer G.H., Walters W., Schuster N., Walzer C., Stalder G., Ley R.E., Farnleitner A.H. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 2019;10(1):1–15. doi: 10.1038/s41467-019-10191-3. PubMed DOI PMC
Yuan Z. ao, Zhong L., qiang Du H. rong, Feng J. nan, Liu, xin X., Yuan H. yi, Guo J. hao, Liu P., Zhang M. hai. Effects of vegetation type differences induced by human disturbance on the nutrition strategy and gut microbiota of Siberian roe deer. Mol. Ecol. 2023;32(10):2534–2550. doi: 10.1111/MEC.16775. PubMed DOI
Zeng M.Y., Cisalpino D., Varadarajan S., Hellman J., Warren H.S., Cascalho M., Inohara N., Núñez G. Gut microbiota-induced Immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity. 2016;44(3):647–658. doi: 10.1016/J.IMMUNI.2016.02.006. PubMed DOI PMC
Zhang R., Zhong Z., Ma H., Lin L., Xie F., Mao S., Irwin D.M., Wang Z., Zhang S. Mucosal microbiota and metabolome in the ileum of hu sheep offered a low-grain, pelleted or non-pelleted high-grain diet. Front. Microbiol. 2021;12 doi: 10.3389/fmicb.2021.718884. PubMed DOI PMC