Insights into the Mechanism of Action of Bactericidal Lipophosphonoxins

. 2015 ; 10 (12) : e0145918. [epub] 20151230

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26716439

The advantages offered by established antibiotics in the treatment of infectious diseases are endangered due to the increase in the number of antibiotic-resistant bacterial strains. This leads to a need for new antibacterial compounds. Recently, we discovered a series of compounds termed lipophosphonoxins (LPPOs) that exhibit selective cytotoxicity towards Gram-positive bacteria that include pathogens and resistant strains. For further development of these compounds, it was necessary to identify the mechanism of their action and characterize their interaction with eukaryotic cells/organisms in more detail. Here, we show that at their bactericidal concentrations LPPOs localize to the plasmatic membrane in bacteria but not in eukaryotes. In an in vitro system we demonstrate that LPPOs create pores in the membrane. This provides an explanation of their action in vivo where they cause serious damage of the cellular membrane, efflux of the cytosol, and cell disintegration. Further, we show that (i) LPPOs are not genotoxic as determined by the Ames test, (ii) do not cross a monolayer of Caco-2 cells, suggesting they are unable of transepithelial transport, (iii) are well tolerated by living mice when administered orally but not peritoneally, and (iv) are stable at low pH, indicating they could survive the acidic environment in the stomach. Finally, using one of the most potent LPPOs, we attempted and failed to select resistant strains against this compound while we were able to readily select resistant strains against a known antibiotic, rifampicin. In summary, LPPOs represent a new class of compounds with a potential for development as antibacterial agents for topical applications and perhaps also for treatment of gastrointestinal infections.

Zobrazit více v PubMed

Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov. 2007;6(1):29–40. WOS:000243255700013. PubMed

Kesselheim AS, Outterson K. Fighting Antibiotic Resistance: Marrying New Financial Incentives To Meeting Public Health Goals. Health Affairs. 2010;29(9):1689–96. 10.1377/hlthaff.2009.0439 WOS:000281601300021. PubMed DOI

Gleckman R, Blagg N, Joubert DW. Trimethoprim: mechanisms of action, antimicrobial activity, bacterial resistance, pharmacokinetics, adverse reactions, and therapeutic indications. Pharmacotherapy. 1981;1(1):14–20. Epub 1981/07/01. . PubMed

Henry RJ. THE MODE OF ACTION OF SULFONAMIDES. Bacteriological Reviews. 1943;7(4):175–262. PMC440870. PubMed PMC

Edwards DI. Mechanisms of selective toxicity of metronidazole and other nitroimidazole drugs. British Journal of Venereal Diseases. 1980;56(5):285–90. PMC1045807. PubMed PMC

Smith JT. [Mechanism of action of quinolones]. Infection. 1986;14 Suppl 1:S3–15. Epub 1986/01/01. . PubMed

Yotsuji A, Mitsuyama J, Hori R, Yasuda T, Saikawa I, Inoue M, et al. Mechanism of action of cephalosporins and resistance caused by decreased affinity for penicillin-binding proteins in Bacteroides fragilis. Antimicrob Agents Ch. 1988;32(12):1848–53. PMC176031. PubMed PMC

Yocum RR, Rasmussen JR, Strominger JL. The mechanism of action of penicillin. Penicillin acylates the active site of Bacillus stearothermophilus D-alanine carboxypeptidase. The Journal of biological chemistry. 1980;255(9):3977–86. Epub 1980/05/10. . PubMed

Morar M, Bhullar K, Hughes DW, Junop M, Wright GD. Structure and Mechanism of the Lincosamide Antibiotic Adenylyltransferase LinB. Structure. 2009;17(12):1649–59. 10.1016/j.str.2009.10.013 PubMed DOI

Kanoh S, Rubin BK. Mechanisms of Action and Clinical Application of Macrolides as Immunomodulatory Medications. Clinical Microbiology Reviews. 2010;23(3):590–615. 10.1128/CMR.00078-09 PMC2901655. PubMed DOI PMC

Hahn FE, Wisseman CL, Hopps HE. MODE OF ACTION OF CHLORAMPHENICOL III.: Action of Chloramphenicol on Bacterial Energy Metabolism. J Bacteriol. 1955;69(2):215–23. PMC357505. PubMed PMC

Chopra I, Roberts M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiology and Molecular Biology Reviews. 2001;65(2):232–60. PMC99026. PubMed PMC

Davis BD. Mechanism of bactericidal action of aminoglycosides. Microbiological Reviews. 1987;51(3):341–50. PMC373115. PubMed PMC

Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase. Cell. 2001;104(6):901–12. 10.1016/S0092-8674(01)00286-0 PubMed DOI

Kevin DA, Meujo DAF, Hamann MT. Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites. Expert Opin Drug Dis. 2009;4(2):109–46. WOS:000263663200002. PubMed PMC

Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24(12):1551–7. WOS:000242795800033. PubMed

Seaton RA. Daptomycin: rationale and role in the management of skin and soft tissue infections. J Antimicrob Chemoth. 2008;62:15–23. 10.1093/Jac/Dkn368 WOS:000262829300004. PubMed DOI

Zhanel GG, Calic D, Schweizer F, Zelenitsky S, Adam H, Lagace-Wiens PRS, et al. New Lipoglycopeptides A Comparative Review of Dalbavancin, Oritavancin and Telavancin. Drugs. 2010;70(7):859–86. WOS:000278090100005. 10.2165/11534440-000000000-00000 PubMed DOI

Wu X, Hurdle JG. Antibiotics: Targets, Mechanisms and Resistance,. First Edition. ed: Wiley-VCH Verlag GmbH & Co; KGaA; 2014.

Van Bambeke F, Mingeot-Leclercq MP, Struelens MJ, Tulkens PM. The bacterial envelope as a target for novel anti-MRSA antibiotics. Trends Pharmacol Sci. 2008;29(3):124–34. WOS:000254721900003. PubMed

Rejman D, Rabatinova A, Pombinho AR, Kovackova S, Pohl R, Zbornikova E, et al. Lipophosphonoxins: new modular molecular structures with significant antibacterial properties. Journal of medicinal chemistry. 2011;54(22):7884–98. 10.1021/jm2009343 . PubMed DOI

Performance standards for antimicrobial susceptibility testing. Approved standard-eighth edition ed2003.

The European Committee on Antimicrobial Susceptibility Testing—EUCAST. Available: http://www.eucast.org. PubMed

Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science. 335 United States2012. p. 1103–6. 10.1126/science.1206848 PubMed DOI

Krasny L, Tiserova H, Jonak J, Rejman D, Sanderova H. The identity of the transcription+1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Molecular Microbiology. 2008;69(1):42–54. 10.1111/j.1365-2958.2008.06256.x WOS:000256732400006. PubMed DOI

Harris WJ. The occurence of two types of synthesis of deoxiribonucleic acid during normal growth in Bacillus subtilis. Biochemistry Journal. 1973;135:315–25. PubMed PMC

Mandelstam J, Waites WM. Sporulation in Bacillus subtilis. The role of exoprotease. Biochem J. 1968;109(5):793–801. PubMed PMC

Wille W, Eisenstadt E, Willecke K. Inhibition of de novo fatty acid synthesis by the antibiotic cerulenin in Bacillus subtilis: effects on citrate-Mg2+ transport and synthesis of macromolecules. Antimicrob Agents Chemother. 1975;8(3):231–7. 810081; PubMed Central PMCID: PMC429299. PubMed PMC

Goldberg I, Walker JR, Bloch K. Inhibition of lipid synthesis in Escherichia coli cells by the antibiotic cerulenin. Antimicrob Agents Chemother. 1973;3(5):549–54. PubMed PMC

Tuomanen E. Newly Made Enzymes Determine Ongoing Cell-Wall Synthesis and the Antibacterial Effects of Cell-Wall Synthesis Inhibitors. J Bacteriol. 1986;167(2):535–43. WOS:A1986D423800018. PubMed PMC

Bisschop A, Konings WN. Reconstitution of Reduced Nicotinamide Adenine-Dinucleotide Oxidase Activity with Menadione in Membrane-Vesicles from Menaquinone-Deficient Bacillus-Subtilis-Arod—Relation between Electron-Transfer and Active-Transport. European Journal of Biochemistry. 1976;67(2):357–65. WOS:A1976CD30700006. PubMed

Fityk software http://fityk.nieto.pl. Available: http://fityk.nieto.pl.

Masin J, Fiser R, Linhartova I, Osicka R, Bumba L, Hewlett EL, et al. Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the role of pore size. Infection and immunity. 2013;81(12):4571–82. Epub 2013/10/02. 10.1128/iai.00711-13 ; PubMed Central PMCID: PMCPmc3837988. PubMed DOI PMC

QuB software http://www.qub.buffalo.edu. Available: http://www.qub.buffalo.edu.

Marcolongo JP, Mirenda M. Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment. Journal of Chemical Education. 2011;88(5):629–33.

Available: http://www.acdlabs.com/home/.

Maron DM, Ames BN. Revised Methods for the Salmonella Mutagenicity Test. Mutat Res. 1983;113(3–4):173–215. 10.1016/0165-1161(83)90010-9 WOS:A1983QN33600001. PubMed DOI

Mortelmans K. Z F. The Ames salmonela/microsome mutagenicity assay. Mutat Res. 2000;455:29–60. PubMed

Interim Procedures for conducting the Salmonella/Microsomal Mutagenicity Assay (Ames Test). In: U.S. Environmental Protection Agency WD, editor.: U.S. EPA; 1983.

Sojka L, Kouba T, Barvik I, Sanderova H, Maderova Z, Jonak J, et al. Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis. Nucleic Acids Research. 2011;39(11):4598–611. 10.1093/nar/gkr032 WOS:000291755000013. PubMed DOI PMC

Goldstein BP. Resistance to rifampicin: a review. J Antibiot. 2014;67(9):625–30. 10.1038/ja.2014.107 PubMed DOI

Ashrafuzzaman M, Andersen OS, McElhaney RN. The antimicrobial peptide gramicidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels. Biochim Biophys Acta. 2008;1778(12):2814–22. 10.1016/j.bbamem.2008.08.017 PubMed DOI PMC

Kovacs F, Quine J, Cross TA. Validation of the single-stranded channel conformation of gramicidin A by solid-state NMR. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(14):7910–5. WOS:000081342100058. PubMed PMC

Raghuraman H, Chattopadhyay A. Melittin: a membrane-active peptide with diverse functions. Bioscience reports. 2007;27(4–5):189–223. Epub 2006/12/02. 10.1007/s10540-006-9030-z . PubMed DOI

Konopásek I, Vecer J, Strzalka K, Amler E. Short-lived fluorescence component of DPH reports on lipid—water interface of biological membranes. Chem Phys Lipids. 2004;130(2):135–44. . PubMed

Lundbaek JA, Collingwood SA, Ingolfsson HI, Kapoor R, Andersen OS. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J R Soc Interface. 2010;7(44):373–95. 10.1098/rsif.2009.0443 PubMed DOI PMC

Randall CP, Mariner KR, Chopra I, O'Neill AJ. The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens. Antimicrob Agents Chemother. 2013;57(1):637–9. 10.1128/AAC.02005-12 PubMed DOI PMC

Savage PB, Li CH, Taotafa U, Ding BW, Guan QY. Antibacterial properties of cationic steroid antibiotics. Fems Microbiol Lett. 2002;217(1):1–7. WOS:000179536900001. PubMed

Epand RF, Savage PB, Epand RM. Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Bba-Biomembranes. 2007;1768(10):2500–9. WOS:000250663400017. PubMed

Ding B, Guan QY, Walsh JP, Boswell JS, Winter TW, Winter ES, et al. Correlation of the antibacterial activities of cationic peptide antibiotics and cationic steroid antibiotics. Journal of medicinal chemistry. 2002;45(3):663–9. 10.1021/Jm0105070 WOS:000173615600012. PubMed DOI

Konai MM, Ghosh C, Yarlagadda V, Samaddar S, Haldar J. Membrane Active Phenylalanine Conjugated Lipophilic Norspermidine Derivatives with Selective Antibacterial Activity. Journal of medicinal chemistry. 2014;57(22):9409–23. 10.1021/Jm5013566 WOS:000345722200013. PubMed DOI

Koh JJ, Lin SM, Aung TT, Lim F, Zou HX, Bai Y, et al. Amino Acid Modified Xanthone Derivatives: Novel, Highly Promising Membrane-Active Antimicrobials for Multidrug-Resistant Gram-Positive Bacterial Infections. Journal of medicinal chemistry. 2015;58(2):739–52. 10.1021/Jm501285x WOS:000348492100017. PubMed DOI

Eun YJ, Foss MH, Kiekebusch D, Pauw DA, Westler WM, Thanbichler M, et al. DCAP: A Broad-Spectrum Antibiotic That Targets the Cytoplasmic Membrane of Bacteria. J Am Chem Soc. 2012;134(28):11322–5. 10.1021/Ja302542j WOS:000306457900007. PubMed DOI PMC

Mensa B, Kim YH, Choi S, Scott R, Caputo GA, DeGrado WF. Antibacterial Mechanism of Action of Arylamide Foldamers. Antimicrob Agents Ch. 2011;55(11):5043–53. 10.1128/Aac.05009-11 WOS:000296375600014. PubMed DOI PMC

Liu DH, Choi S, Chen B, Doerksen RJ, Clements DJ, Winkler JD, et al. Nontoxic membrane-active antimicrobial arylamide oligomers. Angew Chem Int Edit. 2004;43(9):1158–62. 10.1002/anie.200352791 WOS:000220007600030. PubMed DOI

LTX-109 http://www.lytixbiopharma.com/antibacterials/ltx109. Available: http://www.lytixbiopharma.com/antibacterials/ltx109.

Tan LK, Eccersley LR, Sriskandan S. Current views of haemolytic streptococcal pathogenesis. Curr Opin Infect Dis. 2014;27(2):155–64. 10.1097/QCO.0000000000000047 PubMed DOI

Fujitani S, George WL, Morgan MA, Nichols S, Murthy AR. Implications for vancomycin-resistant Enterococcus colonization associated with Clostridium difficile infections. Am J Infect Control. 2011;39(3):188–93. WOS:000289060600004. 10.1016/j.ajic.2010.10.024 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

LEGO-Lipophosphonoxin membrane activity is enhanced by presence of phosphatidylethanolamine but hindered by outer membrane

. 2025 Jan 07 ; 15 (1) : 1206. [epub] 20250107

Assessment of Agrimonia eupatoria L. and Lipophosphonoxin (DR-6180) Combination for Wound Repair: Bridging the Gap Between Phytomedicine and Organic Chemistry

. 2024 Dec 12 ; 14 (12) : . [epub] 20241212

LEGO-lipophosphonoxins: length of hydrophobic module affects permeabilizing activity in target membranes of different phospholipid composition

. 2024 Jan 10 ; 14 (4) : 2745-2756. [epub] 20240117

Lipophosphonoxins-A Novel Group of Broad Spectrum Antibacterial Compounds

. 2023 Sep 28 ; 15 (10) : . [epub] 20230928

LEGO-Lipophosphonoxins: A Novel Approach in Designing Membrane Targeting Antimicrobials

. 2022 Jul 28 ; 65 (14) : 10045-10078. [epub] 20220715

Ex Vivo Effect of Novel Lipophosphonoxins on Root Canal Biofilm Produced by Enterococcus faecalis: Pilot Study

. 2022 Jan 17 ; 12 (1) : . [epub] 20220117

Novel lipophosphonoxin-loaded polycaprolactone electrospun nanofiber dressing reduces Staphylococcus aureus induced wound infection in mice

. 2021 Sep 03 ; 11 (1) : 17688. [epub] 20210903

Outer membrane and phospholipid composition of the target membrane affect the antimicrobial potential of first- and second-generation lipophosphonoxins

. 2021 May 17 ; 11 (1) : 10446. [epub] 20210517

Effects of DNA Topology on Transcription from rRNA Promoters in Bacillus subtilis

. 2021 Jan 01 ; 9 (1) : . [epub] 20210101

Evaluation of Second-Generation Lipophosphonoxins as Antimicrobial Additives in Bone Cement

. 2020 Feb 25 ; 5 (7) : 3165-3171. [epub] 20200212

The torpedo effect in Bacillus subtilis: RNase J1 resolves stalled transcription complexes

. 2020 Feb 03 ; 39 (3) : e102500. [epub] 20191216

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...