Insights into the Mechanism of Action of Bactericidal Lipophosphonoxins
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26716439
PubMed Central
PMC4696656
DOI
10.1371/journal.pone.0145918
PII: PONE-D-15-31295
Knihovny.cz E-zdroje
- MeSH
- aktivní transport MeSH
- antibakteriální látky chemie farmakokinetika farmakologie MeSH
- Bacillus subtilis účinky léků růst a vývoj metabolismus MeSH
- buněčná membrána účinky léků metabolismus MeSH
- Caco-2 buňky MeSH
- Enterococcus faecalis účinky léků růst a vývoj MeSH
- grampozitivní bakterie účinky léků metabolismus MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- molekulární struktura MeSH
- myši inbrední ICR MeSH
- myši MeSH
- objevování léků MeSH
- permeabilita buněčné membrány účinky léků MeSH
- pyrimidinové nukleosidy chemie farmakokinetika farmakologie MeSH
- stabilita léku MeSH
- Streptococcus agalactiae účinky léků růst a vývoj MeSH
- transmisní elektronová mikroskopie MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- pyrimidinové nukleosidy MeSH
The advantages offered by established antibiotics in the treatment of infectious diseases are endangered due to the increase in the number of antibiotic-resistant bacterial strains. This leads to a need for new antibacterial compounds. Recently, we discovered a series of compounds termed lipophosphonoxins (LPPOs) that exhibit selective cytotoxicity towards Gram-positive bacteria that include pathogens and resistant strains. For further development of these compounds, it was necessary to identify the mechanism of their action and characterize their interaction with eukaryotic cells/organisms in more detail. Here, we show that at their bactericidal concentrations LPPOs localize to the plasmatic membrane in bacteria but not in eukaryotes. In an in vitro system we demonstrate that LPPOs create pores in the membrane. This provides an explanation of their action in vivo where they cause serious damage of the cellular membrane, efflux of the cytosol, and cell disintegration. Further, we show that (i) LPPOs are not genotoxic as determined by the Ames test, (ii) do not cross a monolayer of Caco-2 cells, suggesting they are unable of transepithelial transport, (iii) are well tolerated by living mice when administered orally but not peritoneally, and (iv) are stable at low pH, indicating they could survive the acidic environment in the stomach. Finally, using one of the most potent LPPOs, we attempted and failed to select resistant strains against this compound while we were able to readily select resistant strains against a known antibiotic, rifampicin. In summary, LPPOs represent a new class of compounds with a potential for development as antibacterial agents for topical applications and perhaps also for treatment of gastrointestinal infections.
TRIOS Ltd Zakouřilova 142 Prague 4 149 00 Prague Czech Republic
University of Chemistry and Technology Technická 5 166 28 Prague Czech Republic
Zobrazit více v PubMed
Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov. 2007;6(1):29–40. WOS:000243255700013. PubMed
Kesselheim AS, Outterson K. Fighting Antibiotic Resistance: Marrying New Financial Incentives To Meeting Public Health Goals. Health Affairs. 2010;29(9):1689–96. 10.1377/hlthaff.2009.0439 WOS:000281601300021. PubMed DOI
Gleckman R, Blagg N, Joubert DW. Trimethoprim: mechanisms of action, antimicrobial activity, bacterial resistance, pharmacokinetics, adverse reactions, and therapeutic indications. Pharmacotherapy. 1981;1(1):14–20. Epub 1981/07/01. . PubMed
Henry RJ. THE MODE OF ACTION OF SULFONAMIDES. Bacteriological Reviews. 1943;7(4):175–262. PMC440870. PubMed PMC
Edwards DI. Mechanisms of selective toxicity of metronidazole and other nitroimidazole drugs. British Journal of Venereal Diseases. 1980;56(5):285–90. PMC1045807. PubMed PMC
Smith JT. [Mechanism of action of quinolones]. Infection. 1986;14 Suppl 1:S3–15. Epub 1986/01/01. . PubMed
Yotsuji A, Mitsuyama J, Hori R, Yasuda T, Saikawa I, Inoue M, et al. Mechanism of action of cephalosporins and resistance caused by decreased affinity for penicillin-binding proteins in Bacteroides fragilis. Antimicrob Agents Ch. 1988;32(12):1848–53. PMC176031. PubMed PMC
Yocum RR, Rasmussen JR, Strominger JL. The mechanism of action of penicillin. Penicillin acylates the active site of Bacillus stearothermophilus D-alanine carboxypeptidase. The Journal of biological chemistry. 1980;255(9):3977–86. Epub 1980/05/10. . PubMed
Morar M, Bhullar K, Hughes DW, Junop M, Wright GD. Structure and Mechanism of the Lincosamide Antibiotic Adenylyltransferase LinB. Structure. 2009;17(12):1649–59. 10.1016/j.str.2009.10.013 PubMed DOI
Kanoh S, Rubin BK. Mechanisms of Action and Clinical Application of Macrolides as Immunomodulatory Medications. Clinical Microbiology Reviews. 2010;23(3):590–615. 10.1128/CMR.00078-09 PMC2901655. PubMed DOI PMC
Hahn FE, Wisseman CL, Hopps HE. MODE OF ACTION OF CHLORAMPHENICOL III.: Action of Chloramphenicol on Bacterial Energy Metabolism. J Bacteriol. 1955;69(2):215–23. PMC357505. PubMed PMC
Chopra I, Roberts M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiology and Molecular Biology Reviews. 2001;65(2):232–60. PMC99026. PubMed PMC
Davis BD. Mechanism of bactericidal action of aminoglycosides. Microbiological Reviews. 1987;51(3):341–50. PMC373115. PubMed PMC
Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase. Cell. 2001;104(6):901–12. 10.1016/S0092-8674(01)00286-0 PubMed DOI
Kevin DA, Meujo DAF, Hamann MT. Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites. Expert Opin Drug Dis. 2009;4(2):109–46. WOS:000263663200002. PubMed PMC
Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24(12):1551–7. WOS:000242795800033. PubMed
Seaton RA. Daptomycin: rationale and role in the management of skin and soft tissue infections. J Antimicrob Chemoth. 2008;62:15–23. 10.1093/Jac/Dkn368 WOS:000262829300004. PubMed DOI
Zhanel GG, Calic D, Schweizer F, Zelenitsky S, Adam H, Lagace-Wiens PRS, et al. New Lipoglycopeptides A Comparative Review of Dalbavancin, Oritavancin and Telavancin. Drugs. 2010;70(7):859–86. WOS:000278090100005. 10.2165/11534440-000000000-00000 PubMed DOI
Wu X, Hurdle JG. Antibiotics: Targets, Mechanisms and Resistance,. First Edition. ed: Wiley-VCH Verlag GmbH & Co; KGaA; 2014.
Van Bambeke F, Mingeot-Leclercq MP, Struelens MJ, Tulkens PM. The bacterial envelope as a target for novel anti-MRSA antibiotics. Trends Pharmacol Sci. 2008;29(3):124–34. WOS:000254721900003. PubMed
Rejman D, Rabatinova A, Pombinho AR, Kovackova S, Pohl R, Zbornikova E, et al. Lipophosphonoxins: new modular molecular structures with significant antibacterial properties. Journal of medicinal chemistry. 2011;54(22):7884–98. 10.1021/jm2009343 . PubMed DOI
Performance standards for antimicrobial susceptibility testing. Approved standard-eighth edition ed2003.
The European Committee on Antimicrobial Susceptibility Testing—EUCAST. Available: http://www.eucast.org. PubMed
Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science. 335 United States2012. p. 1103–6. 10.1126/science.1206848 PubMed DOI
Krasny L, Tiserova H, Jonak J, Rejman D, Sanderova H. The identity of the transcription+1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Molecular Microbiology. 2008;69(1):42–54. 10.1111/j.1365-2958.2008.06256.x WOS:000256732400006. PubMed DOI
Harris WJ. The occurence of two types of synthesis of deoxiribonucleic acid during normal growth in Bacillus subtilis. Biochemistry Journal. 1973;135:315–25. PubMed PMC
Mandelstam J, Waites WM. Sporulation in Bacillus subtilis. The role of exoprotease. Biochem J. 1968;109(5):793–801. PubMed PMC
Wille W, Eisenstadt E, Willecke K. Inhibition of de novo fatty acid synthesis by the antibiotic cerulenin in Bacillus subtilis: effects on citrate-Mg2+ transport and synthesis of macromolecules. Antimicrob Agents Chemother. 1975;8(3):231–7. 810081; PubMed Central PMCID: PMC429299. PubMed PMC
Goldberg I, Walker JR, Bloch K. Inhibition of lipid synthesis in Escherichia coli cells by the antibiotic cerulenin. Antimicrob Agents Chemother. 1973;3(5):549–54. PubMed PMC
Tuomanen E. Newly Made Enzymes Determine Ongoing Cell-Wall Synthesis and the Antibacterial Effects of Cell-Wall Synthesis Inhibitors. J Bacteriol. 1986;167(2):535–43. WOS:A1986D423800018. PubMed PMC
Bisschop A, Konings WN. Reconstitution of Reduced Nicotinamide Adenine-Dinucleotide Oxidase Activity with Menadione in Membrane-Vesicles from Menaquinone-Deficient Bacillus-Subtilis-Arod—Relation between Electron-Transfer and Active-Transport. European Journal of Biochemistry. 1976;67(2):357–65. WOS:A1976CD30700006. PubMed
Fityk software http://fityk.nieto.pl. Available: http://fityk.nieto.pl.
Masin J, Fiser R, Linhartova I, Osicka R, Bumba L, Hewlett EL, et al. Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the role of pore size. Infection and immunity. 2013;81(12):4571–82. Epub 2013/10/02. 10.1128/iai.00711-13 ; PubMed Central PMCID: PMCPmc3837988. PubMed DOI PMC
QuB software http://www.qub.buffalo.edu. Available: http://www.qub.buffalo.edu.
Marcolongo JP, Mirenda M. Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment. Journal of Chemical Education. 2011;88(5):629–33.
Available: http://www.acdlabs.com/home/.
Maron DM, Ames BN. Revised Methods for the Salmonella Mutagenicity Test. Mutat Res. 1983;113(3–4):173–215. 10.1016/0165-1161(83)90010-9 WOS:A1983QN33600001. PubMed DOI
Mortelmans K. Z F. The Ames salmonela/microsome mutagenicity assay. Mutat Res. 2000;455:29–60. PubMed
Interim Procedures for conducting the Salmonella/Microsomal Mutagenicity Assay (Ames Test). In: U.S. Environmental Protection Agency WD, editor.: U.S. EPA; 1983.
Sojka L, Kouba T, Barvik I, Sanderova H, Maderova Z, Jonak J, et al. Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis. Nucleic Acids Research. 2011;39(11):4598–611. 10.1093/nar/gkr032 WOS:000291755000013. PubMed DOI PMC
Goldstein BP. Resistance to rifampicin: a review. J Antibiot. 2014;67(9):625–30. 10.1038/ja.2014.107 PubMed DOI
Ashrafuzzaman M, Andersen OS, McElhaney RN. The antimicrobial peptide gramicidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels. Biochim Biophys Acta. 2008;1778(12):2814–22. 10.1016/j.bbamem.2008.08.017 PubMed DOI PMC
Kovacs F, Quine J, Cross TA. Validation of the single-stranded channel conformation of gramicidin A by solid-state NMR. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(14):7910–5. WOS:000081342100058. PubMed PMC
Raghuraman H, Chattopadhyay A. Melittin: a membrane-active peptide with diverse functions. Bioscience reports. 2007;27(4–5):189–223. Epub 2006/12/02. 10.1007/s10540-006-9030-z . PubMed DOI
Konopásek I, Vecer J, Strzalka K, Amler E. Short-lived fluorescence component of DPH reports on lipid—water interface of biological membranes. Chem Phys Lipids. 2004;130(2):135–44. . PubMed
Lundbaek JA, Collingwood SA, Ingolfsson HI, Kapoor R, Andersen OS. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J R Soc Interface. 2010;7(44):373–95. 10.1098/rsif.2009.0443 PubMed DOI PMC
Randall CP, Mariner KR, Chopra I, O'Neill AJ. The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens. Antimicrob Agents Chemother. 2013;57(1):637–9. 10.1128/AAC.02005-12 PubMed DOI PMC
Savage PB, Li CH, Taotafa U, Ding BW, Guan QY. Antibacterial properties of cationic steroid antibiotics. Fems Microbiol Lett. 2002;217(1):1–7. WOS:000179536900001. PubMed
Epand RF, Savage PB, Epand RM. Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Bba-Biomembranes. 2007;1768(10):2500–9. WOS:000250663400017. PubMed
Ding B, Guan QY, Walsh JP, Boswell JS, Winter TW, Winter ES, et al. Correlation of the antibacterial activities of cationic peptide antibiotics and cationic steroid antibiotics. Journal of medicinal chemistry. 2002;45(3):663–9. 10.1021/Jm0105070 WOS:000173615600012. PubMed DOI
Konai MM, Ghosh C, Yarlagadda V, Samaddar S, Haldar J. Membrane Active Phenylalanine Conjugated Lipophilic Norspermidine Derivatives with Selective Antibacterial Activity. Journal of medicinal chemistry. 2014;57(22):9409–23. 10.1021/Jm5013566 WOS:000345722200013. PubMed DOI
Koh JJ, Lin SM, Aung TT, Lim F, Zou HX, Bai Y, et al. Amino Acid Modified Xanthone Derivatives: Novel, Highly Promising Membrane-Active Antimicrobials for Multidrug-Resistant Gram-Positive Bacterial Infections. Journal of medicinal chemistry. 2015;58(2):739–52. 10.1021/Jm501285x WOS:000348492100017. PubMed DOI
Eun YJ, Foss MH, Kiekebusch D, Pauw DA, Westler WM, Thanbichler M, et al. DCAP: A Broad-Spectrum Antibiotic That Targets the Cytoplasmic Membrane of Bacteria. J Am Chem Soc. 2012;134(28):11322–5. 10.1021/Ja302542j WOS:000306457900007. PubMed DOI PMC
Mensa B, Kim YH, Choi S, Scott R, Caputo GA, DeGrado WF. Antibacterial Mechanism of Action of Arylamide Foldamers. Antimicrob Agents Ch. 2011;55(11):5043–53. 10.1128/Aac.05009-11 WOS:000296375600014. PubMed DOI PMC
Liu DH, Choi S, Chen B, Doerksen RJ, Clements DJ, Winkler JD, et al. Nontoxic membrane-active antimicrobial arylamide oligomers. Angew Chem Int Edit. 2004;43(9):1158–62. 10.1002/anie.200352791 WOS:000220007600030. PubMed DOI
LTX-109 http://www.lytixbiopharma.com/antibacterials/ltx109. Available: http://www.lytixbiopharma.com/antibacterials/ltx109.
Tan LK, Eccersley LR, Sriskandan S. Current views of haemolytic streptococcal pathogenesis. Curr Opin Infect Dis. 2014;27(2):155–64. 10.1097/QCO.0000000000000047 PubMed DOI
Fujitani S, George WL, Morgan MA, Nichols S, Murthy AR. Implications for vancomycin-resistant Enterococcus colonization associated with Clostridium difficile infections. Am J Infect Control. 2011;39(3):188–93. WOS:000289060600004. 10.1016/j.ajic.2010.10.024 PubMed DOI
Lipophosphonoxins-A Novel Group of Broad Spectrum Antibacterial Compounds
LEGO-Lipophosphonoxins: A Novel Approach in Designing Membrane Targeting Antimicrobials
Effects of DNA Topology on Transcription from rRNA Promoters in Bacillus subtilis
Evaluation of Second-Generation Lipophosphonoxins as Antimicrobial Additives in Bone Cement
The torpedo effect in Bacillus subtilis: RNase J1 resolves stalled transcription complexes