Effects of DNA Topology on Transcription from rRNA Promoters in Bacillus subtilis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-12109S
Grantová Agentura České Republiky
PubMed
33401387
PubMed Central
PMC7824091
DOI
10.3390/microorganisms9010087
PII: microorganisms9010087
Knihovny.cz E-zdroje
- Klíčová slova
- Bacillus subtilis, DNA topology, ribosomal RNA, transcription,
- Publikační typ
- časopisecké články MeSH
The expression of rRNA is one of the most energetically demanding cellular processes and, as such, it must be stringently controlled. Here, we report that DNA topology, i.e., the level of DNA supercoiling, plays a role in the regulation of Bacillus subtilis σA-dependent rRNA promoters in a growth phase-dependent manner. The more negative DNA supercoiling in exponential phase stimulates transcription from rRNA promoters, and DNA relaxation in stationary phase contributes to cessation of their activity. Novobiocin treatment of B. subtilis cells relaxes DNA and decreases rRNA promoter activity despite an increase in the GTP level, a known positive regulator of B. subtilis rRNA promoters. Comparative analyses of steps during transcription initiation then reveal differences between rRNA promoters and a control promoter, Pveg, whose activity is less affected by changes in supercoiling. Additional data then show that DNA relaxation decreases transcription also from promoters dependent on alternative sigma factors σB, σD, σE, σF, and σH with the exception of σN where the trend is the opposite. To summarize, this study identifies DNA topology as a factor important (i) for the expression of rRNA in B. subtilis in response to nutrient availability in the environment, and (ii) for transcription activities of B. subtilis RNAP holoenzymes containing alternative sigma factors.
Zobrazit více v PubMed
Gourse R.L., Gaal T., Bartlett M.S., Appleman J.A., Ross W. rRNA Transcription and growth rate–dependent regulation of ribosome synthesis in Escherichia Coli. Annu. Rev. Microbiol. 1996;50:645–677. doi: 10.1146/annurev.micro.50.1.645. PubMed DOI
Lee J., Borukhov S. Bacterial RNA Polymerase-DNA interaction-the driving force of gene expression and the target for drug action. Front. Mol. Biosci. 2016;3:73. doi: 10.3389/fmolb.2016.00073. PubMed DOI PMC
Helmann J.D. Where to begin? Sigma factors and the selectivity of transcription initiation in bacteria. Mol. Microbiol. 2019;112:335–347. doi: 10.1111/mmi.14309. PubMed DOI PMC
Gross C.A., Chan C., Dombroski A., Gruber T., Sharp M., Tupy J., Young B. The functional and regulatory roles of sigma factors in transcription. Cold Spring Harb. Symp. Quant. Biol. 1998;63:141–155. doi: 10.1101/sqb.1998.63.141. PubMed DOI
Paget M.S. Bacterial sigma factors and anti-sigma factors: Structure, function and distribution. Biomolecules. 2015;5:1245–1265. doi: 10.3390/biom5031245. PubMed DOI PMC
Feklistov A., Darst S.A. Structural basis for promoter -10 element recognition by the bacterial RNA polymerase σ subunit. Cell. 2011;147:1257–1269. doi: 10.1016/j.cell.2011.10.041. PubMed DOI PMC
Mustaev A., Roberts J., Gottesman M. Transcription elongation. Transcription. 2017;8:150–161. doi: 10.1080/21541264.2017.1289294. PubMed DOI PMC
Schneider D.A., Murray H.D., Gourse R.L. Measuring control of transcription initiation by changing concentrations of nucleotides and their derivatives. Methods Enzymol. 2003;370:606–617. doi: 10.1016/S0076-6879(03)70051-2. PubMed DOI
Turnbough C.L. Regulation of bacterial gene expression by the NTP substrates of transcription initiation. Mol. Microbiol. 2008;69:10–14. doi: 10.1111/j.1365-2958.2008.06272.x. PubMed DOI
Murray H.D., Schneider D.A., Gourse R.L. Control of rRNA expression by small molecules is dynamic and nonredundant. Mol. Cell. 2003;12:125–134. doi: 10.1016/S1097-2765(03)00266-1. PubMed DOI
Krásný L., Gourse R.L. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J. 2004;23:4473–4483. doi: 10.1038/sj.emboj.7600423. PubMed DOI PMC
Bittner A.N., Kriel A., Wang J.D. Lowering GTP Level increases survival of amino acid starvation but slows growth rate for Bacillus subtilis cells lacking (p)ppGpp. J. Bacteriol. 2014;196:2067–2076. doi: 10.1128/JB.01471-14. PubMed DOI PMC
Kriel A., Bittner A.N., Kim S.H., Liu K., Tehranchi A.K., Zou W.Y., Rendon S., Chen R., Tu B.P., Wang J.D. Direct regulation of GTP homeostasis by (p)ppGpp: A critical component of viability and stress resistance. Mol. Cell. 2012;48:231–241. doi: 10.1016/j.molcel.2012.08.009. PubMed DOI PMC
Henkin T.M., Yanofsky C. Regulation by transcription attenuation in bacteria: How RNA provides instructions for transcription termination/antitermination decisions. BioEssays. 2002;24:700–707. doi: 10.1002/bies.10125. PubMed DOI
Krásný L., Tišerová H., Jonák J., Rejman D., Šanderová H. The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol. Microbiol. 2008;69:42–54. doi: 10.1111/j.1365-2958.2008.06256.x. PubMed DOI
Natori Y., Tagami K., Murakami K., Yoshida S., Tanigawa O., Moh Y., Masuda K., Wada T., Suzuki S., Nanamiya H., et al. Transcription activity of individual rrn operons in Bacillus subtilis mutants deficient in (p)ppGpp synthetase genes, relA, yjbM, and ywaC. J. Bacteriol. 2009;191:4555–4561. doi: 10.1128/JB.00263-09. PubMed DOI PMC
Kästle B., Geiger T., Gratani F.L., Reisinger R., Goerke C., Borisova M., Mayer C., Wolz C. rRNA regulation during growth and under stringent conditions in S taphylococcus aureus. Environ. Microbiol. 2015;17:4394–4405. doi: 10.1111/1462-2920.12867. PubMed DOI
Zechiedrich E.L., Khodursky A.B., Bachellier S., Schneider R., Chen D., Lilley D.M.J., Cozzarelli N.R. Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J. Biol. Chem. 2000;275:8103–8113. doi: 10.1074/jbc.275.11.8103. PubMed DOI
Higgins C.F., Dorman C.J., Stirling D.A., Waddell L., Booth I.R., May G., Bremer E. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell. 1988;52:569–584. doi: 10.1016/0092-8674(88)90470-9. PubMed DOI
Richardson S.M., Higgins C.F., Lilley D.M. The genetic control of DNA supercoiling in Salmonella typhimurium. EMBO J. 1984;3:1745–1752. doi: 10.1002/j.1460-2075.1984.tb02041.x. PubMed DOI PMC
McClure W.R. Mechanism and control of transcription initiation in prokaryotes. Annu. Rev. Biochem. 1985;54:171–204. doi: 10.1146/annurev.bi.54.070185.001131. PubMed DOI
Schnetz K., Wang J.C. Silencing of the Escherichia Coli bgl promoter: Effects of template supercoiling and cell extracts on promoter activity in vitro. Nucleic Acids Res. 1996;24:2422–2428. doi: 10.1093/nar/24.12.2422. PubMed DOI PMC
Sioud M., Boudabous A., Cekaite L. Transcriptional responses of Bacillus subtillis and thuringiensis to antibiotics and anti-tumour drugs. Int. J. Mol. Med. 2009;23:33–39. doi: 10.3892/ijmm_00000098. PubMed DOI
Myagmarjav B.-E., Konkol M.A., Ramsey J., Mukhopadhyay S., Kearns D.B. ZpdN, a Plasmid-encoded sigma factor homolog, induces pBS32-dependent cell death in Bacillus subtilis. J. Bacteriol. 2016;198:2975–2984. doi: 10.1128/JB.00213-16. PubMed DOI PMC
Burton A.T., DeLoughery A., Li G.W., Kearns D.B. Transcriptional regulation and mechanism of sigN (ZpdN), a pBS32-encoded sigma factor in bacillus subtilis. MBio. 2019;10:e01899-19. doi: 10.1128/mBio.01899-19. PubMed DOI PMC
Qi Y., Hulett F.M. PhoP~P and RNA polymerase sigma(A) holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP~P activator sites within the coding region stimulate transcription in vitro. Mol. Microbiol. 1998;28:1187–1197. doi: 10.1046/j.1365-2958.1998.00882.x. PubMed DOI
Chang B.-Y., Doi R.H. Overproduction, Purification, and Characterization of Bacillus subtilis RNA Polymerase SigA Factor. J. Bacteriol. 1990;172:3257–3263. doi: 10.1128/JB.172.6.3257-3263.1990. PubMed DOI PMC
Chen Y.-F., Helmann J.D. The Bacillus subtilis Flagellar Regulatory Protein SigmaD: Overproduction, Domain Analysis and DNA-binding Properties. J. Mol. Biol. 1995;249:743–753. doi: 10.1006/jmbi.1995.0333. PubMed DOI
Paul B.J., Ross W., Gaal T., Gourse R.L. rRNA Transcription in Escherichia coli. Annu. Rev. Genet. 2004;38:749–770. doi: 10.1146/annurev.genet.38.072902.091347. PubMed DOI
Panova N., Zborníková E., Šimák O., Pohl R., Kolář M., Bogdanová K., Večeřová R., Seydlová G., Fišer R., Hadravová R., et al. Insights into the mechanism of action of bactericidal Lipophosphonoxins. PLoS ONE. 2015;10:e0145918. doi: 10.1371/journal.pone.0145918. PubMed DOI PMC
Imamura D., Zhou R., Feig M., Kroos L. Evidence that the Bacillus subtilis SpoIIGA protein is a novel type of signal-transducing aspartic protease. J. Biol. Chem. 2008;283:15287–15299. doi: 10.1074/jbc.M708962200. PubMed DOI PMC
LaBell T.L., Trempy J.E., Haldenwang W.G. Sporulation-specific σ factor σ29 of Bacillus subtilis is synthesized from a precursors protein, P31. Proc. Natl. Acad. Sci. USA. 1987;84:1784–1788. doi: 10.1073/pnas.84.7.1784. PubMed DOI PMC
Ross W., Thompson J.F., Newlands J.T., Gourse R.L.E. E. coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J. 1990;9:3733–3742. doi: 10.1002/j.1460-2075.1990.tb07586.x. PubMed DOI PMC
Deneer H.G., Spiegelman G.B. Bacillus subtilis rRNA promoters are growth rate regulated in Escherichia coli. J. Bacteriol. 1987;169:995–1002. doi: 10.1128/JB.169.3.995-1002.1987. PubMed DOI PMC
Samarrai W., Liu D.X., White A.M., Studamire B., Edelstein J., Srivastava A., Widom R.L., Rudner R. Differential responses of Bacillus subtilis rRNA promoters to nutritional stress. J. Bacteriol. 2011;193:723–733. doi: 10.1128/JB.00708-10. PubMed DOI PMC
Wellington S.R., Spiegelman G.B. The kinetics of formation of complexes between Escherichia coli RNA polymerase and the rrnB P1 and P2 promoters of Bacillus subtilis. Effects of guanosine tetraphosphate on select steps of transcription initiation. J. Biol. Chem. 1993;268:7205–7214. PubMed
Fukushima T., Ishikawa S., Yamamoto H., Ogasawara N., Sekiguchi J. Transcriptional, functional and cytochemical analyses of the veg gene in Bacillus subtilis. J. Biochem. 2003;133:475–483. doi: 10.1093/jb/mvg062. PubMed DOI
Lei Y., Oshima T., Ogasawara N., Ishikawa S. Functional analysis of the protein veg, which stimulates biofilm formation in Bacillus subtilis. J. Bacteriol. 2013;195:1697–1705. doi: 10.1128/JB.02201-12. PubMed DOI PMC
Conter A., Menchon C., Gutierrez C. Role of DNA supercoiling and RpoS sigma factor in the osmotic and growth phase-dependent induction of the gene osmE of Escherichia coli K12. J. Mol. Biol. 1997;273:75–83. doi: 10.1006/jmbi.1997.1308. PubMed DOI
Nicholson W.L., Setlow P. Dramatic increase in negative superhelicity of plasmid DNA in the forespore compartment of sporulating cells of Bacillus subtilis. J. Bacteriol. 1990;172:7–14. doi: 10.1128/JB.172.1.7-14.1990. PubMed DOI PMC
Alice A.F., Sanchez-Rivas C. DNA supercoiling and osmoresistance in Bacillus subtilis 168. Curr. Microbiol. 1997;35:309–315. doi: 10.1007/s002849900260. PubMed DOI
Lewis R.J., Singh O.M.P., Smith C.V., Skarzynski T., Maxwell A., Wonacott A.J., Wigley D.B. The nature of inhibition of DNA Gyrase by the Coumarins and the Cyclothialidines revealed by X-ray crystallography. Embo J. 1996;15:1412–1420. doi: 10.1002/j.1460-2075.1996.tb00483.x. PubMed DOI PMC
Sugino A., Higginst N.P., Brownt P.O., Peeblesf C.L., Cozzarellitf N.R. Energy coupling in DNA gyrase and the mechanism of action of novobiocin. Biochemistry. 1978;75:4838–4842. doi: 10.1073/pnas.75.10.4838. PubMed DOI PMC
Gellert M., O’Dea M.H., Itoh T., Tomizawa J.I. Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc. Natl. Acad. Sci. USA. 1976;73:4474–4478. doi: 10.1073/pnas.73.12.4474. PubMed DOI PMC
Dennis P.P., Bremer H. Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal Plus. 2008;3:1553–1569. doi: 10.1128/ecosal.5.2.3. PubMed DOI
Sojka L., Kouba T., Barvík I., Šanderová H., Maderová Z., Jonák J., Krásný L. Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis. Nucleic Acids Res. 2011;39:4598–4611. doi: 10.1093/nar/gkr032. PubMed DOI PMC
Estrem S.T., Gaal T., Ross W., Gourse R.L. Identification of an UP element consensus sequence for bacterial promoters. Proc. Natl. Acad. Sci. USA. 1998;95:9761–9766. doi: 10.1073/pnas.95.17.9761. PubMed DOI PMC
Meng W., Belyaeva T., Savery N.J., Busby S.J.W., Ross W.E., Gaal T., Gourse R.L., Thomas M.S. UP element-dependent transcription at the Escherichia coli rrnB P1 promoter: Positional requirements and role of the RNA polymerase α subunit linker. Nucleic Acids Res. 2001;29:4166–4178. doi: 10.1093/nar/29.20.4166. PubMed DOI PMC
Rao L., Ross W., Appleman J.A., Gaal T., Leirmo S., Schlax J.P., Record M., Thomas J., Gourse R.L. Factor independent activation of rrnB P1: An “extended” promoter with an upstream element that dramatically increases promoter strength. J. Mol. Biol. 1994;235:1421–1435. doi: 10.1006/jmbi.1994.1098. PubMed DOI
Klumpp S., Hwa T. Growth-rate-dependent partitioning of RNA polymerases in bacteria. Proc. Natl. Acad. Sci. USA. 2008;105:20245–20250. doi: 10.1073/pnas.0804953105. PubMed DOI PMC
Liang S.T., Bipatnath M., Xu Y.C., Chen S.L., Dennis P., Ehrenberg M., Bremer H. Activities of constitutive promoters in Escherichia coli. J. Mol. Biol. 1999;292:19–37. doi: 10.1006/jmbi.1999.3056. PubMed DOI
Haldenwang W.G., Losick R. Novel RNA polymerase σ factor from Bacillus subtilis. Proc. Natl. Acad. Sci. USA. 1980;77:7000–7004. doi: 10.1073/pnas.77.12.7000. PubMed DOI PMC
Hecker M., Völker U. General stress response of Bacillus subtilis and other bacteria. Adv. Microb. Physiol. 2001;44:35–91. doi: 10.1016/S0065-2911(01)44011-2. PubMed DOI
Jaehning J.A., Wiggs J.L., Chamberlin M.J. Altered promoter selection by a novel form of Bacillus subtilis RNA polymerase. Proc. Natl. Acad. Sci. USA. 1979;76:5470–5474. doi: 10.1073/pnas.76.11.5470. PubMed DOI PMC
Haldenwang W.G., Lang N., Losick R. A sporulation-induced sigma-like regulatory protein from b. subtilis. Cell. 1981;23:615–624. doi: 10.1016/0092-8674(81)90157-4. PubMed DOI
Partridge S.R., Foulger D., Errington J. The role of σF in prespore-specific transcription in Bacillus subtilis. Mol. Microbiol. 1991;5:757–767. doi: 10.1111/j.1365-2958.1991.tb00746.x. PubMed DOI
Johnson W.C., Moran C.P., Losick R. Two RNA polymerase sigma factors from Bacillus subtilis discriminate between overlapping promoters for a developmentally regulated gene. Nature. 1983;302:800–804. doi: 10.1038/302800a0. PubMed DOI
Earl A.M., Losick R., Kolter R. Bacillus subtilis genome diversity. J. Bacteriol. 2007;189:1163–1170. doi: 10.1128/JB.01343-06. PubMed DOI PMC
Burby P.E., Simmons L.A. A bacterial DNA repair pathway specific to a natural antibiotic. Mol. Microbiol. 2019;111:338–353. doi: 10.1111/mmi.14158. PubMed DOI PMC
Lee Y.J., Park S.J., Ciccone S.L.M., Kim C.R., Lee S.H. An in vivo analysis of MMC-induced DNA damage and its repair. Carcinogenesis. 2006;27:446–453. doi: 10.1093/carcin/bgi254. PubMed DOI
Ueda K., Morita J., Komano T. Phage inactivation and DNA strand scission activities of 7-N-(p-hydroxyphenyl)mitomycin C. J. Antibiot. 1982;35:1380–1386. doi: 10.7164/antibiotics.35.1380. PubMed DOI
Rosenberg A., Sinai L., Smith Y., Ben-Yehuda S. Dynamic expression of the translational machinery during Bacillus subtilis life cycle at a single cell level. PLoS ONE. 2012;7:41921. doi: 10.1371/journal.pone.0041921. PubMed DOI PMC
Burenina O.Y., Hoch P.G., Damm K., Salas M., Zatsepin T.S., Lechner M., Oretskaya T.S., Kubareva E.A., Hartmann R.K. Mechanistic comparison of Bacillus subtilis 6S-1 and 6S-2 RNAs-commonalities and differences. RNA. 2014;20:348–359. doi: 10.1261/rna.042077.113. PubMed DOI PMC
Glaser G., Sarmientos P., Cashel M. Functional interrelationship between two tandem E. coli ribosomal RNA promoters. Nature. 1983;302:74–76. doi: 10.1038/302074a0. PubMed DOI
Schultz M.C., Brill S.J., Ju Q., Sternglanz R., Reeder R.H. Topoisomerases and yeast rRNA transcription: Negative supercoiling stimulates initiation and topoisomerase activity is required for elongation. Genes Dev. 1992;6:1332–1341. doi: 10.1101/gad.6.7.1332. PubMed DOI
Bird T., Burbulys D., Wu J., Strauch M., Hoch J., Spiegelman G. The effect of supercoiling on the in vitro transcription of the spoIIA operon from Bacillus subtilis. Biochimie. 1992;74:627–634. doi: 10.1016/0300-9084(92)90134-Z. PubMed DOI
Helmann J.D. Compilation and analysus of Bacillus Subtilis σA-dependent promoter sequences: Evidence for extended contact between RNA polymerse and upstream promoter DNA. Nucleic Acids Res. 1995;23:2351–2360. doi: 10.1093/nar/23.13.2351. PubMed DOI PMC
Typas A., Hengge R. Role of the spacer between the -35 and -10 regions in sigmaS promoter selectivity in Escherichia coli. Mol. Microbiol. 2006;59:1037–1051. doi: 10.1111/j.1365-2958.2005.04998.x. PubMed DOI
Bordes P., Conter A., Morales V., Bouvier J., Kolb A., Gutierrez C. DNA supercoiling contributes to disconnect σS accumulation from σS-dependent transcription in Escherichia coli. Mol. Microbiol. 2003;48:561–571. doi: 10.1046/j.1365-2958.2003.03461.x. PubMed DOI
Kusano S., Ding Q., Fujita N., Ishihama A. Promoter selectivity of Escherichia coli RNA Polymerase E and E Holoenzymes. J. Biol. Chem. 1996;271:1998–2004. doi: 10.1074/jbc.271.4.1998. PubMed DOI
Stochastic nature and physiological implications of 5'-NAD RNA cap in bacteria
The alternative sigma factor SigN of Bacillus subtilis is intrinsically toxic