The alternative sigma factor SigN of Bacillus subtilis is intrinsically toxic

. 2023 Oct 26 ; 205 (10) : e0011223. [epub] 20230920

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37728605

Grantová podpora
R35 GM131783 NIGMS NIH HHS - United States

Sigma factors bind and direct the RNA polymerase core to specific promoter sequences, and alternative sigma factors direct transcription of different regulons of genes. Here, we study the pBS32 plasmid-encoded sigma factor SigN of Bacillus subtilis to determine how it contributes to DNA damage-induced cell death. We find that SigN causes cell death when expressed at high levels and does so in the absence of its regulon suggesting it is intrinsically toxic. One way toxicity was relieved was by curing the pBS32 plasmid, which eliminated a positive feedback loop that led to SigN hyper-accumulation. Another way toxicity was relieved was through mutating the chromosomally encoded transcriptional repressor protein AbrB, thereby derepressing a potent antisense transcript that antagonized SigN expression. SigN efficiently competed with the vegetative sigma factor SigA in vitro, and SigN accumulation in the absence of positive feedback reduced SigA-dependent transcription suggesting that toxicity may be due to competitive inhibition of one or more essential transcripts. Why B. subtilis encodes a toxic sigma factor is unclear but SigN may function in host-inhibition during lytic conversion, as phage lysogen genes are also encoded on pBS32. IMPORTANCE Alternative sigma factors activate entire regulons of genes to improve viability in response to environmental stimuli. The pBS32 plasmid-encoded alternative sigma factor SigN of Bacillus subtilis however, is activated by the DNA damage response and leads to cellular demise. Here we find that SigN impairs viability by hyper-accumulating and outcompeting the vegetative sigma factor for the RNA polymerase core. Why B. subtilis retains a plasmid with a deleterious alternative sigma factor is unknown.

Před aktualizací

PubMed

Komentář v

PubMed

Zobrazit více v PubMed

Burkholder PR, Giles NH. 1947. Induced biochemical mutations in Bacillus subtilis. Am J Bot 34:345–348. doi:10.1002/j.1537-2197.1947.tb12999.x PubMed DOI

Dubnau D. 1991. Genetic competence in Bacillus subtilis. Microbiol Rev 55:395–424. doi:10.1128/mr.55.3.395-424.1991 PubMed DOI PMC

YOUNG FE, SPIZIZEN J. 1961. Physiological and genetic factors affecting transformation of Bacillus subtilis. J Bacteriol 81:823–829. doi:10.1128/jb.81.5.823-829.1961 PubMed DOI PMC

Conn HJ. 1930. The identity of Bacillus subtilis. J Infect Dis 46:341–350. doi:10.1093/infdis/46.4.341 DOI

Zeigler DR, Prágai Z, Rodriguez S, Chevreux B, Muffler A, Albert T, Bai R, Wyss M, Perkins JB. 2008. The origins of 168, W23, and other Bacillus subtilis legacy strains. J Bacteriol 190:6983–6995. doi:10.1128/JB.00722-08 PubMed DOI PMC

Burton AT, Kearns DB. 2020. The large PBs32/PLs32 plasmid of ancestral Bacillus subtilis. J Bacteriol 202:e00290-20. doi:10.1128/JB.00290-20 PubMed DOI PMC

Konkol MA, Blair KM, Kearns DB. 2013. Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J Bacteriol 195:4085–4093. doi:10.1128/JB.00696-13 PubMed DOI PMC

Parashar V, Konkol MA, Kearns DB, Neiditch MB. 2013. A plasmid-encoded phosphatase regulates Bacillus subtilis biofilm architecture, sporulation, and genetic competence. J Bacteriol 195:2437–2448. doi:10.1128/JB.02030-12 PubMed DOI PMC

Nye TM, McLean EK, Burrage AM, Dennison DD, Kearns DB, Simmons LA. 2021. RnhP is a plasmid-borne RNase HI that contributes to genome maintenance in the ancestral strain Bacillus subtilis NCIB 3610. Mol Microbiol 115:99–115. doi:10.1111/mmi.14601 PubMed DOI PMC

Myagmarjav B-E, Konkol MA, Ramsey J, Mukhopadhyay S, Kearns DB. 2016. ZpdN, a plasmid-encoded sigma factor homolog, induces pBS32-dependent cell death in Bacillus subtilis. J Bacteriol 198:2975–2984. doi:10.1128/JB.00213-16 PubMed DOI PMC

Burton AT, DeLoughery A, Li G-W, Kearns DB. 2019. Transcriptional regulation and mechanism of SigN (ZpdN), a pBS32-encoded sigma factor in Bacillus subtilis. mBio 10:e01899-19. doi:10.1128/mBio.01899-19 PubMed DOI PMC

Groban ES, Johnson MB, Banky P, Burnett P-GG, Calderon GL, Dwyer EC, Fuller SN, Gebre B, King LM, Sheren IN, Von Mutius LD, O’Gara TM, Lovett CM. 2005. Binding of the Bacillus subtilis LexA protein to the SOS operator. Nucleic Acids Res 33:6287–6295. doi:10.1093/nar/gki939 PubMed DOI PMC

Au N, Kuester-Schoeck E, Mandava V, Bothwell LE, Canny SP, Chachu K, Colavito SA, Fuller SN, Groban ES, Hensley LA, O’Brien TC, Shah A, Tierney JT, Tomm LL, O’Gara TM, Goranov AI, Grossman AD, Lovett CM. 2005. Genetic composition of the Bacillus subtilis SOS system. J Bacteriol 187:7655–7666. doi:10.1128/JB.187.22.7655-7666.2005 PubMed DOI PMC

Kearns DB, Chu F, Branda SS, Kolter R, Losick R. 2005. A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55:739–749. doi:10.1111/j.1365-2958.2004.04440.x PubMed DOI

Winkelman JT, Bree AC, Bate AR, Eichenberger P, Gourse RL, Kearns DB. 2013. RemA is a DNA-binding protein that activates biofilm matrix gene expression in Bacillus subtilis. Mol Microbiol 88:984–997. doi:10.1111/mmi.12235 PubMed DOI PMC

Bai U, Mandic-Mulec I, Smith I. 1993. SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction. Genes Dev 7:139–148. doi:10.1101/gad.7.1.139 PubMed DOI

Gaur NK, Cabane K, Smith I. 1988. Structure and expression of the Bacillus subtilis sin operon. J Bacteriol 170:1046–1053. doi:10.1128/jb.170.3.1046-1053.1988 PubMed DOI PMC

Becker E, Herrera NC, Gunderson FQ, Derman AI, Dance AL, Sims J, Larsen RA, Pogliano J. 2006. DNA segregation by the bacterial actin Alfa during Bacillus subtilis growth and development. EMBO J 25:5919–5931. doi:10.1038/sj.emboj.7601443 PubMed DOI PMC

Ross W, Thompson JF, Newlands JT, Gourse RL. 1990. E. coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J 9:3733–3742. doi:10.1002/j.1460-2075.1990.tb07586.x PubMed DOI PMC

Rollenhagen C, Antelmann H, Kirstein J, Delumeau O, Hecker M, Yudkin MD. 2003. Binding of σA and σB to core RNA polymerase after environmental stress in Bacillus subtilis. J Bacteriol 185:35–40. doi:10.1128/JB.185.1.35-40.2003 PubMed DOI PMC

Vohradsky J, Schwarz M, Ramaniuk O, Ruiz-Larrabeiti O, Vaňková Hausnerová V, Šanderová H, Krásný L. 2021. Kinetic modeling and meta-analysis of the Bacillus subtilis SigB regulon during spore germination and outgrowth. Microorganisms 9:112. doi:10.3390/microorganisms9010112 PubMed DOI PMC

Strauch MA, Spiegelman GB, Perego M, Johnson WC, Burbulys D, Hoch JA. 1989. The transition state transcription regulator AbrB of Bacillus subtilis is a DNA binding protein. EMBO J 8:1615–1621. doi:10.1002/j.1460-2075.1989.tb03546.x PubMed DOI PMC

Olson AL, Tucker AT, Bobay BG, Soderblom EJ, Moseley MA, Thompson RJ, Cavanagh J. 2014. Structure and DNA-binding traits of the transition state regulator AbrB. Structure 22:1650–1656. doi:10.1016/j.str.2014.08.018 PubMed DOI PMC

Hamon MA, Stanley NR, Britton RA, Grossman AD, Lazazzera BA. 2004. Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol Microbiol 52:847–860. doi:10.1111/j.1365-2958.2004.04023.x PubMed DOI PMC

Strauch MA, Bobay BG, Cavanagh J, Yao F, Wilson A, Le Breton Y. 2007. Abh and AbrB control of Bacillus subtilis antimicrobial gene expression. J Bacteriol 189:7720–7732. doi:10.1128/JB.01081-07 PubMed DOI PMC

Chumsakul O, Takahashi H, Oshima T, Hishimoto T, Kanaya S, Ogasawara N, Ishikawa S. 2011. Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation. Nucleic Acids Res 39:414–428. doi:10.1093/nar/gkq780 PubMed DOI PMC

DeLoughery A, Lalanne J-B, Losick R, Li G-W. 2018. Maturation of polycistronic mRNAs by the endoribonuclease RNase Y and its associated Y-complex in Bacillus Subtilis. Proc Natl Acad Sci U S A 115:E5585–E5594. doi:10.1073/pnas.1803283115 PubMed DOI PMC

Kearns DB, Losick R. 2005. Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev 19:3083–3094. doi:10.1101/gad.1373905 PubMed DOI PMC

Pozsgai ER, Blair KM, Kearns DB. 2012. Modified mariner transposons for random inducible-expression insertions and transcriptional reporter fusion insertions in Bacillus subtilis. Appl Environ Microbiol 78:778–785. doi:10.1128/AEM.07098-11 PubMed DOI PMC

Polka JK, Kollman JM, Agard DA, Mullins RD. 2009. The structure and assembly dynamics of plasmid actin AlfA Inply a novel mechanism of DNA segregation. J Bacteriol 191:6219–6230. doi:10.1128/JB.00676-09 PubMed DOI PMC

Tanaka T. 2010. Functional analysis of the stability determinant AlfB of pBET131, a miniplasmid derivative of Bacillus subtilis (natto) plasmid pLS32. J Bacteriol 192:1221–1230. doi:10.1128/JB.01312-09 PubMed DOI PMC

Strauch M, Webb V, Spiegelman G, Hoch JA. 1990. The Spo0A protein of Bacillus subtilis is a repressor of the abrB gene. Proc Natl Acad Sci U S A 87:1801–1805. doi:10.1073/pnas.87.5.1801 PubMed DOI PMC

Banse AV, Chastanet A, Rahn-Lee L, Hobbs EC, Losick R. 2008. Parallel pathways of repression and antirepression governing the transition to stationary phase in Bacillus subtilis. Proc Natl Acad Sci U S A 105:15547–15552. doi:10.1073/pnas.0805203105 PubMed DOI PMC

Tucker AT, Bobay BG, Banse AV, Olson AL, Soderblom EJ, Moseley MA, Thompson RJ, Varney KM, Losick R, Cavanagh J. 2014. A DNA mimic: the structure and mechanism of action for the anti-repressor protein AbbA. J Mol Biol 426:1911–1924. doi:10.1016/j.jmb.2014.02.010 PubMed DOI PMC

Mearls EB, Jackter J, Colquhoun JM, Farmer V, Matthews AJ, Murphy LS, Fenton C, Camp AH. 2018. Transcription and translation of the sigG gene is tuned for proper execution of the switch from early to late gene expression in the developing Bacillus subtilis spore. PLoS Genet 14:e1007350. doi:10.1371/journal.pgen.1007350 PubMed DOI PMC

Zhao H, Roistacher DM, Helmann JD. 2019. Deciphering the essentiality and function of the anti-σM factors in Bacillus subtilis. Mol Microbiol 112:482–497. doi:10.1111/mmi.14216 PubMed DOI PMC

Grigorova IL, Phleger NJ, Mutalik VK, Gross CA. 2006. Insights into transcriptional regulation and s competition from an equilibrium model of RNA polymerase binding to DNA. Proc Natl Acad Sci U S A 103:5332–5337. doi:10.1073/pnas.0600828103 PubMed DOI PMC

Ganguly A, Chatterji D. 2012. A comparative kinetic and thermodynamic perspective of the σ-competition model in Escherichia coli. Biophys J 103:1325–1333. doi:10.1016/j.bpj.2012.08.013 PubMed DOI PMC

Park J, Dies M, Lin Y, Hormoz S, Smith-Unna SE, Quinodoz S, Hernández-Jiménez MJ, Garcia-Ojalvo J, Locke JCW, Elowitz MB. 2018. Molecular time sharing through dynamic pulsing in single cells. Cell Syst 6:216–229. doi:10.1016/j.cels.2018.01.011 PubMed DOI PMC

Helmann JD. 2002. The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47–110. doi:10.1016/s0065-2911(02)46002-x PubMed DOI

Paget MS. 2015. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules 5:1245–1265. doi:10.3390/biom5031245 PubMed DOI PMC

Sineva E, Savkina M, Ades SE. 2017. Themes and variations in gene regulation by extracytoplasmic function (ECF) sigma factors. Curr Opin Microbiol 36:128–137. doi:10.1016/j.mib.2017.05.004 PubMed DOI PMC

Tomizawa J, Itoh T, Selzer G, Som T. 1981. Inhibition of cole1 RNA primer formation by a plasmid-specified small RNA. Proc Natl Acad Sci U S A 78:1421–1425. doi:10.1073/pnas.78.3.1421 PubMed DOI PMC

Gerdes K, Bech FW, Jørgensen ST, Løbner-Olesen A, Rasmussen PB, Atlung T, Boe L, Karlstrom O, Molin S, von Meyenburg K. 1986. Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. EMBO J 5:2023–2029. doi:10.1002/j.1460-2075.1986.tb04459.x PubMed DOI PMC

Liao SM, Wu TH, Chiang CH, Susskind MM, McClure WR. 1987. Control of gene expression in bacteriophage P22 by a small antisense RNA. I. characterization in vitro of the P Sar promoter and the sar RNA transcript. Genes Dev 1:197–203. doi:10.1101/gad.1.2.197 PubMed DOI

Brantl S, Tolmasky ME, Alonso JC. 2014. Plasmid replication control by antisense RNAs. Microbiol Spectr 2:PLAS-0001-2013. doi:10.1128/microbiolspec.PLAS-0001-2013 PubMed DOI

Georg J, Hess WR, Storz G, Papenfort K. 2018. Widespread antisense transcription in prokaryotes. Microbiol Spectr 6:RWR-0029-2018. doi:10.1128/microbiolspec.RWR-0029-2018 PubMed DOI PMC

Sternberg N, Hoess R. 1983. The molecular genetics of bacteriophage P1. Annu Rev Genet 17:123–154. doi:10.1146/annurev.ge.17.120183.001011 PubMed DOI

Yasbin RE, Young FE. 1974. Transduction in Bacillus subtilis by bacteriophage SPP1. J Virol 14:1343–1348. doi:10.1128/JVI.14.6.1343-1348.1974 PubMed DOI PMC

Koo B-M, Kritikos G, Farelli JD, Todor H, Tong K, Kimsey H, Wapinski I, Galardini M, Cabal A, Peters JM, Hachmann A-B, Rudner DZ, Allen KN, Typas A, Gross CA. 2017. Construction and analysis of two genome-scale deletion libraries for Bacillus subtilis. Cell Syst 4:291–305. doi:10.1016/j.cels.2016.12.013 PubMed DOI PMC

Qi Y, Hulett FM. 1998. Phop-P and RNA polymerase A holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol Microbiol 28:1187–1197. doi:10.1046/j.1365-2958.1998.00882.x PubMed DOI

Juang YL, Helmann JD. 1994. A promoter melting region in the primary sigma factor of Bacillus subtilis. identification of functionally important aromatic amino acids. J Mol Biol 235:1470–1488. doi:10.1006/jmbi.1994.1102 PubMed DOI

Sudzinová P, Kambová M, Ramaniuk O, Benda M, Šanderová H, Krásný L. 2021. Effects of DNA topology on transcription from rrn promoters in Bacillus subtilis Microorganisms 9:1–17. doi:10.3390/microorganisms9010087 PubMed DOI PMC

Guérout-Fleury A-M, Frandsen N, Stragier P. 1996. Plasmids for ectopic integration in Bacillus subtilis. Gene 180:57–61. doi:10.1016/s0378-1119(96)00404-0 PubMed DOI

Roux D, Cywes-Bentley C, Zhang Y-F, Pons S, Konkol M, Kearns DB, Little DJ, Howell PL, Skurnik D, Pier GB. 2015. Identification of poly-N-acetylglucosamine as a major polysaccharide component of the Bacillus subtilis biofilm matrix. J Biol Chem 290:19261–19272. doi:10.1074/jbc.M115.648709 PubMed DOI PMC

Patrick JE, Kearns DB. 2008. MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. Mol Microbiol 70:1166–1179. doi:10.1111/j.1365-2958.2008.06469.x PubMed DOI

Chang BY, Doi RH. 1990. Overproduction, purification, and characterization of Bacillus subtilis RNA polymerase SigA factor. J Bacteriol 172:3257–3263. doi:10.1128/jb.172.6.3257-3263.1990 PubMed DOI PMC

Šiková M, Wiedermannová J, Převorovský M, Barvík I, Sudzinová P, Kofroňová O, Benada O, Šanderová H, Condon C, Krásný L. 2020. The torpedo effect in Bacillus subtilis: rNase J1 resolves stalled transcription complexes. EMBO J 39:e102500. doi:10.15252/embj.2019102500 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...