Lipophosphonoxins-A Novel Group of Broad Spectrum Antibacterial Compounds
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
22-08857S
Czech Science Foundation
Project No. LX22NPO5103
The Project National Institute Virology and Bacteriology, (Programme EXCELES) funded by the European Union-Next Generation EU
IGA_LF_2023_004 and IGA_LF_2023_012
Palacky University projects
PubMed
37896155
PubMed Central
PMC10610469
DOI
10.3390/pharmaceutics15102395
PII: pharmaceutics15102395
Knihovny.cz E-resources
- Keywords
- LPPOs, Lipophosphonoxins, antibiotics, antimicrobial resistance,
- Publication type
- Journal Article MeSH
- Review MeSH
Lipophosphonoxins (LPPOs) represent a new group of membrane-targeting antibiotics. Three generations of LPPOs have been described: First-generation LPPOs, second-generation LPPOs, and LEGO-LPPOs. All three generations have a similar mode of bactericidal action of targeting and disrupting the bacterial cytoplasmic membrane of prokaryotic cells, with limited effect on eukaryotic cells. First-generation LPPOs showed excellent bactericidal activity against Gram-positive species, including multiresistant strains. Second-generation LPPOs broaden the antibiotic effect also against Gram-negative bacteria. However, both first- and second-generation LPPOs lose their antibacterial activity in the presence of serum albumin. LEGO-LPPOs were found to be active against both Gram-positive and Gram-negative bacteria, have better selectivity as compared to first- and second-generation resistance to LEGO-LPPOs was also not observed, and are active even in the presence of serum albumin. Second-generation LPPOs have been studied as antimicrobial additives in bone cement and as nanofiber dressing components in the treatment of wound infections in mice. Second-generation LPPOs and LEGO-LPPOs were also tested to treat ex vivo simulated endodontic infections in dental root canals. The results of all these studies were encouraging and suggested further investigation of LPPOs in these indications. This paper aims to review and compile published data on LPPOs.
See more in PubMed
Aminov R.I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010;1:134. doi: 10.3389/fmicb.2010.00134. PubMed DOI PMC
Levy S.B. From Tragedy the Antibiotic Age Is Born. Springer; Berlin/Heidelberg, Germany: 1992. The Antibiotic Paradox; pp. 1–12.
Davies J. Where have All the Antibiotics Gone? Can. J. Infect. Dis. Med. Microbiol. 2006;17:287–290. doi: 10.1155/2006/707296. PubMed DOI PMC
Fleming A. Nobel Lecture, Alexander Fleming—Nobel Lecture. [(accessed on 11 December 2022)]. Available online: nobelprize.org.
Kesselheim A.S., Outterson K. Fighting Antibiotic Resistance: Marrying New Financial Incentives to Meeting Public Health Goals. Health Aff. 2010;29:1689–1696. doi: 10.1377/hlthaff.2009.0439. PubMed DOI
European Centre for Disease Prevention and Control Press Release, 35,000 Annual Deaths from Antimicrobial Resistance in the EU/EEA. [(accessed on 17 November 2022)]. Available online: europa.eu.
Enabling Breakthroughs in Antimicrobials. [(accessed on 2 January 2023)]. Available online: https://www.amractionfund.com/
Scott W.R., Tew N.G. Mimics of host defense proteins; strategies for translation to therapeutic applications. Curr. Top. Med. Chem. 2017;17:576–589. doi: 10.2174/1568026616666160713130452. PubMed DOI
O’Neill J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Government of the United Kingdom; London, UK: 2016. [(accessed on 24 September 2023)]. pp. 1–84. Available online: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf.
Hurdle J.G., O’neill A.J., Chopra I., Lee R.E. Targeting bacterial membrane function: An underexploited mechanism for treating persistent infections. Nat. Rev. Microbiol. 2011;9:62–75. doi: 10.1038/nrmicro2474. PubMed DOI PMC
Ghosh C., Haldar J. Membrane-active small molecules: Designs inspired by antimicrobial peptides. ChemMedChem. 2015;10:1606–1624. doi: 10.1002/cmdc.201500299. PubMed DOI
Huan Y., Kong Q., Mou H., Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front. Microbiol. 2020;11:582779. doi: 10.3389/fmicb.2020.582779. PubMed DOI PMC
Alavi S.E., Cabot P.J., Moyle P.M. Glucagon-Like Peptide-1 Receptor Agonists and Strategies to Improve Their Efficiency. Mol. Pharm. 2019;16:2278–2295. doi: 10.1021/acs.molpharmaceut.9b00308. PubMed DOI
Do Pham D.D., Mojr V., Helusová M., Mikusova G., Pohl R., Dávidová E., Sanderova H., Vítovská D., Bogdanova K., Vecerova R., et al. LEGO-Lipophosphonoxins: A Novel Approach in Designing Membrane Targeting Antimicrobials. J. Med. Chem. 2022;65:10045–10078. doi: 10.1021/acs.jmedchem.2c00684. PubMed DOI PMC
Nilsson A.C., Janson H., Wold H., Fugelli A., Andersson K., Håkangård C., Olsson P., Olsen W.M. LTX-109 is a novel agent for nasal decolonization of methicillin-resistant and -sensitive Staphylococcus aureus. Antimicrob. Agents Chemother. 2015;59:145. doi: 10.1128/AAC.03513-14. PubMed DOI PMC
Chin J.N., Rybak M.J., Cheung C.M., Savage P.B. Antimicrobial activities of ceragenins against clinical isolates of resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2007;51:1268–1273. doi: 10.1128/AAC.01325-06. PubMed DOI PMC
Bucki R., Niemirowicz K., Wnorowska U., Byfield F.J., Piktel E., Wątek M., Janmey P.A., Savage P.B. Bactericidal activity of ceragenin CSA-13 in cell culture and in an animal model of peritoneal infection. Antimicrob. Agents Chemother. 2015;59:6274. doi: 10.1128/AAC.00653-15. PubMed DOI PMC
Maxwell A., Dj P., Mn G., Dj H., Dl P. Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 2007;6:29–40. PubMed
Rejman D., Rabatinová A., Pombinho A.R., Kovačková S., Pohl R., Zborníková E., Kolář M., Bogdanová K., Nyč O., Šanderová H., et al. Lipophosphonoxins: New Modular Molecular Structures with Significant Antibacterial Properties. J. Med. Chem. 2011;54:7884–7898. doi: 10.1021/jm2009343. PubMed DOI
Panova N., Zborníková E., Šimák O., Pohl R., Kolář M., Bogdanová K., Večeřová R., Seydlová G., Fišer R., Hadravová R., et al. Insights into the mechanism of action of bactericidal lipophosphonoxins. PLoS ONE. 2015;10:e0145918. doi: 10.1371/journal.pone.0145918. PubMed DOI PMC
Glukhov E., Stark M., Burrows L.L., Deber C.M. Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. J. Biol. Chem. 2005;280:33960–33967. doi: 10.1074/jbc.M507042200. PubMed DOI
Seydlová G., Pohl R., Zbornikova E., Ehn M., Šimák O., Panova N., Kolář M., Bogdanová K., Večceřrová R., Fišser R., et al. Lipophosphonoxins II: Design, synthesis, and properties of novel broad spectrum antibacterial agents. J. Med. Chem. 2017;60:6098–6118. doi: 10.1021/acs.jmedchem.7b00355. PubMed DOI
Fernandes A., Dias M. The microbiological profiles of infected prosthetic implants with an emphasis on the organisms which form biofilms. J. Clin. Diagn. Res. 2013;7:219–223. doi: 10.7860/JCDR/2013/4533.2732. PubMed DOI PMC
Ribeiro M., Monteiro F.J., Ferraz M.P. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter. 2012;2:176–194. doi: 10.4161/biom.22905. PubMed DOI PMC
Anagnostakos K., Fink B. Antibiotic-loaded cement spacers-lessons learned from the past 20 years. Expert Rev. Med. Devices. 2018;15:231–245. doi: 10.1080/17434440.2018.1435270. PubMed DOI
Zbornikova E., Gallo J., Vecerova R., Bogdanova K., Kolar M., Vitovska D., Do Pham D.D., Paces O., Mojr V., Sanderova H., et al. Evaluation of second-generation lipophosphonoxins as antimicrobial additives in bone cement. ACS Omega. 2020;5:3165–3171. doi: 10.1021/acsomega.9b03072. PubMed DOI PMC
Cartotto R. Topical antimicrobial agents for pediatric burns. Burn. Trauma. 2017;5:33. doi: 10.1186/s41038-017-0096-6. PubMed DOI PMC
Al-Enizi A.M., Zagho M.M., Elzatahry A.A. Polymer-based electrospun nanofibers for biomedical applications. Nanomaterials. 2018;8:259. doi: 10.3390/nano8040259. PubMed DOI PMC
Do Pham D.D., Jenčová V., Kaňuchová M., Bayram J., Grossová I., Šuca H., Urban L., Havlíčková K., Novotný V., Mikeš P., et al. Novel lipophosphonoxin-loaded polycaprolactone electrospun nanofiber dressing reduces Staphylococcus aureus induced wound infection in mice. Sci. Rep. 2021;11:17688. doi: 10.1038/s41598-021-96980-7. PubMed DOI PMC
Jafari A., Amirsadeghi A., Hassanajili S., Azarpira N. Bioactive antibacterial bilayer PCL/gelatin nanofibrous scaffold promotes full-thickness wound healing. Int. J. Pharm. 2020;583:119413. doi: 10.1016/j.ijpharm.2020.119413. PubMed DOI
Strahl H., Hamoen L.W. Membrane potential is important for bacterial cell division. Proc. Natl. Acad. Sci. USA. 2010;107:12281–12286. doi: 10.1073/pnas.1005485107. PubMed DOI PMC
Haapasalo M., Qian W., Portenier I., Waltimo T. Effects of Dentin on the Antimicrobial Properties of Endodontic Medicaments. J. Endod. 2007;33:917–925. doi: 10.1016/j.joen.2007.04.008. PubMed DOI
Do Q.L., Gaudin A. The Efficiency of the Er: YAG Laser and Photon Induced Photoacoustic Streaming (PIPS) as an Activation Method in Endodontic Irrigation: A Literature Review. J. Lasers Med. Sci. 2020;11:316–334. doi: 10.34172/jlms.2020.53. PubMed DOI PMC
Morozova Y., Voborná I., Žižka R., Bogdanová K., Večeřová R., Rejman D., Kolář M., Pham D.D.D., Holík P., Moštěk R., et al. Ex Vivo Effect of Novel Lipophosphonoxins on Root Canal Biofilm Produced by Enterococcus faecalis: Pilot Study. Life. 2022;12:129. doi: 10.3390/life12010129. PubMed DOI PMC
Guengerich F.P. Inhibition of cytochrome P450 enzymes by drugs—Molecular basis and practical applications. Biomol. Therap. 2022;30:1–18. doi: 10.4062/biomolther.2021.102. PubMed DOI PMC
Guthrie B., Makubate B., Hernandez-Santiago V., Dreischulte T. The rising tide of polypharmacy and drug-drug interactions: Population database analysis 1995–2010. BMC Med. 2015;13:74. doi: 10.1186/s12916-015-0322-7. PubMed DOI PMC