LEGO-Lipophosphonoxins: A Novel Approach in Designing Membrane Targeting Antimicrobials
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35839126
PubMed Central
PMC9580004
DOI
10.1021/acs.jmedchem.2c00684
Knihovny.cz E-zdroje
- MeSH
- albuminy MeSH
- antibakteriální látky * chemie MeSH
- buněčná membrána MeSH
- gramnegativní bakterie MeSH
- grampozitivní bakterie * MeSH
- mikrobiální testy citlivosti MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- albuminy MeSH
- antibakteriální látky * MeSH
The alarming rise of bacterial antibiotic resistance requires the development of new compounds. Such compounds, lipophosphonoxins (LPPOs), were previously reported to be active against numerous bacterial species, but serum albumins abolished their activity. Here we describe the synthesis and evaluation of novel antibacterial compounds termed LEGO-LPPOs, loosely based on LPPOs, consisting of a central linker module with two attached connector modules on either side. The connector modules are then decorated with polar and hydrophobic modules. We performed an extensive structure-activity relationship study by varying the length of the linker and hydrophobic modules. The best compounds were active against both Gram-negative and Gram-positive species including multiresistant strains and persisters. LEGO-LPPOs act by first depleting the membrane potential and then creating pores in the cytoplasmic membrane. Importantly, their efficacy is not affected by the presence of serum albumins. Low cytotoxicity and low propensity for resistance development demonstrate their potential for therapeutic use.
Zobrazit více v PubMed
Newman D. J.; Cragg G. M. Natural products as sources of new drugs over the Last 25 Years. J. Nat. Prod. 2007, 70, 461–477. 10.1021/np068054v. PubMed DOI
Baltz R. H. Renaissance in antibacterial discovery from actinomycetes. Curr. Opin. Pharmacol. 2008, 8, 557–563. 10.1016/j.coph.2008.04.008. PubMed DOI
No time to wait: securing the future from drug-resistant infections, report to the secretary-general of the united nations April 2019. https://www.who.int/antimicrobial-resistance/interagency-coordination-group/final-report/en/ (accessed October 26, 2020).
Hurdle J. G.; O’Neill A. J.; Chopra I.; Lee R. E. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat. Rev. Microbiol. 2011, 9, 62–75. 10.1038/nrmicro2474. PubMed DOI PMC
Ghosh C.; Haldar J. Membrane-active small molecules: Designs inspired by antimicrobial peptides. ChemMedChem 2015, 10, 1606–1624. 10.1002/cmdc.201500299. PubMed DOI
Magana M.; Pushpanathan M.; Santos A. L.; Leanse L.; Fernandez M.; Ioannidis A.; Giulianotti M. A.; Apidianakis Y.; Bradfute S.; Ferguson A. L.; Cherkasov A.; Seleem M. N.; Pinilla C.; de la Fuente-Nunez C.; Lazaridis T.; Dai T.; Houghten R. A.; Hancock R. E. W.; Tegos G. P. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 2020, 20, e216–e230. 10.1016/S1473-3099(20)30327-3. PubMed DOI
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395. 10.1038/415389a. PubMed DOI
Nilsson A. C.; Janson H.; Wold H.; Fugelli A.; Andersson K.; Håkangård C.; Olsson P.; Olsen W. M. LTX-109 is a novel agent for nasal decolonization of methicillin-resistant and -sensitive Staphylococcus aureus. Antimicrob. Agents Chemother. 2015, 59, 145.10.1128/AAC.03513-14. PubMed DOI PMC
Haug B. E.; Stensen W.; Kalaaji M.; Rekdal Ø.; Svendsen J. S. Synthetic antimicrobial peptidomimetics with therapeutic potential. J. Med. Chem. 2008, 51, 4306–4314. 10.1021/jm701600a. PubMed DOI
Chin J. N.; Rybak M. J.; Cheung C. M.; Savage P. B. Antimicrobial activities of ceragenins against clinical isolates of resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2007, 51, 1268–1273. 10.1128/AAC.01325-06. PubMed DOI PMC
Bucki R.; Niemirowicz K.; Wnorowska U.; Byfield F. J.; Piktel E.; Wątek M.; Janmey P. A.; Savage P. B. Bactericidal activity of ceragenin CSA-13 in cell culture and in an animal model of peritoneal infection. Antimicrob. Agents Chemother. 2015, 59, 6274.10.1128/AAC.00653-15. PubMed DOI PMC
Kim W.; Zhu W.; Hendricks G. L.; Van Tyne D.; Steele A. D.; Keohane C. E.; Fricke N.; Conery A. L.; Shen S.; Pan W.; Lee K.; Rajamuthiah R.; Fuchs B. B.; Vlahovska P. M.; Wuest W. M.; Gilmore M. S.; Gao H.; Ausubel F. M.; Mylonakis E. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature 2018, 556, 103–107. 10.1038/nature26157. PubMed DOI PMC
Butler M. S.; Paterson D. L. Antibiotics in the clinical pipeline in October 2019. J. Antibiot. 2020, 73, 329–364. 10.1038/s41429-020-0291-8. PubMed DOI PMC
Ooi N.; Miller K.; Hobbs J.; Rhys-Williams W.; Love W.; Chopra I. XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity. J. Antimicrob. Chemother. 2009, 64, 735–740. 10.1093/jac/dkp299. PubMed DOI
Mensa B.; Howell G. L.; Scott R.; DeGrado W. F. Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16. Antimicrob. Agents Chemother. 2014, 58, 5136.10.1128/AAC.02955-14. PubMed DOI PMC
Mensa B.; Kim Y. H.; Choi S.; Scott R.; Caputo G. A.; DeGrado W. F. Antibacterial mechanism of action of arylamide foldamers. Antimicrob. Agents Chemother. 2011, 55, 5043.10.1128/AAC.05009-11. PubMed DOI PMC
Panova N.; Zborníková E.; Šimák O.; Pohl R.; Kolář M.; Bogdanová K.; Večeřová R.; Seydlová G.; Fišer R.; Hadravová R.; Sanderová H.; Vítovská D.; Šiková M.; Látal T.; Lovecká P.; Barvík I.; Krásný L.; Rejman D. Insights into the mechanism of action of bactericidal lipophosphonoxins. PLoS One 2015, 10, e014591810.1371/journal.pone.0145918. PubMed DOI PMC
Rejman D.; Rabatinová A.; Pombinho A. R.; Kovačková S.; Pohl R.; Zborníková E.; Kolář M.; Bogdanová K.; Nyč O.; Šanderová H.; Látal T.; Bartůněk P.; Krásný L. Lipophosphonoxins: new modular molecular structures with significant antibacterial properties. J. Med. Chem. 2011, 54, 7884–7898. 10.1021/jm2009343. PubMed DOI
Seydlová G.; Pohl R.; Zborníková E.; Ehn M.; Šimák O.; Panova N.; Kolář M.; Bogdanová K.; Večeřová R.; Fišer R.; Šanderová H.; Vítovská D.; Sudzinová P.; Pospíšil J.; Benada O.; Křížek T.; Sedlák D.; Bartůněk P.; Krásný L.; Rejman D. Lipophosphonoxins II: design, synthesis, and properties of novel broad spectrum antibacterial agents. J. Med. Chem. 2017, 60, 6098–6118. 10.1021/acs.jmedchem.7b00355. PubMed DOI
Látrová K.; Havlová N.; Večeřová R.; Pinkas D.; Bogdanová K.; Kolář M.; Fišer R.; Konopásek I.; Do Pham D. D.; Rejman D.; Mikušová G. Outer membrane and phospholipid composition of the target membrane affect the antimicrobial potential of first- and second-generation lipophosphonoxins. Sci. Rep. 2021, 11, 10446.10.1038/s41598-021-89883-0. PubMed DOI PMC
Zborníková E.; Gallo J.; Večeřová R.; Bogdanová K.; Kolář M.; Vítovská D.; Pham D. D. D.; Pačes O.; Mojr V.; Šanderová H.; Ulrichová J.; Galandáková A.; Čadek D.; Hrdlička Z.; Krásný L.; Rejman D. Evaluation of second-generation lipophosphonoxins as antimicrobial additives in bone cement. ACS Omega 2020, 5, 3165–3171. 10.1021/acsomega.9b03072. PubMed DOI PMC
Do Pham D. D.; Jenčová V.; Kačuchová M.; Bayram J.; Grossová I.; Šuca H.; Urban L.; Havlíčková K.; Novotný V.; Mikeš P.; Mojr V.; Asatiani N.; Koš′áková E. K.; Maixnerová M.; Vlková A.; Vítovská D.; Šanderová H.; Nemec A.; Krásný L.; Zajíček R.; Lukáš D.; Rejman D.; Gál P. Novel lipophosphonoxin-loaded polycaprolactone electrospun nanofiber dressing reduces Staphylococcus aureus induced wound infection in mice. Sci. Rep. 2021, 11, 17688.10.1038/s41598-021-96980-7. PubMed DOI PMC
Konai M. M.; Haldar J. Fatty acid comprising lysine conjugates: anti-MRSA agents that display in vivo efficacy by disrupting biofilms with no resistance development. Bioconjugate Chem. 2017, 28, 1194–1204. 10.1021/acs.bioconjchem.7b00055. PubMed DOI
Konai M. M.; Ghosh C.; Yarlagadda V.; Samaddar S.; Haldar J. Membrane active phenylalanine conjugated lipophilic norspermidine derivatives with selective antibacterial activity. J. Med. Chem. 2014, 57, 9409–9423. 10.1021/jm5013566. PubMed DOI
Liu D.; Choi S.; Chen B.; Doerksen R. J.; Clements D. J.; Winkler J. D.; Klein M. L.; DeGrado W. F. Nontoxic membrane-active antimicrobial arylamide oligomers. Angew. Chem., Int. Ed. Engl. 2004, 43, 1158–1162. 10.1002/anie.200352791. PubMed DOI
Scott R. W.; DeGrado W. F.; Tew G. N. De novo designed synthetic mimics of antimicrobial peptides. Curr. Opin. Biotechnol. 2008, 19, 620–627. 10.1016/j.copbio.2008.10.013. PubMed DOI PMC
Sarig H.; Livne L.; Held-Kuznetsov V.; Zaknoon F.; Ivankin A.; Gidalevitz D.; Mor A. A miniature mimic of host defense peptides with systemic antibacterial efficacy. FASEB J. 2010, 24, 1904–1913. 10.1096/fj.09-149427. PubMed DOI PMC
Niu Y.; Wang M.; Cao Y.; Nimmagadda A.; Hu J.; Wu Y.; Cai J.; Ye X.-S. Rational design of dimeric lysine N-alkylamides as potent and broad-spectrum antibacterial agents. J. Med. Chem. 2018, 61, 2865–2874. 10.1021/acs.jmedchem.7b01704. PubMed DOI
Hoque J.; Konai M. M.; Sequeira S. S.; Samaddar S.; Haldar J. Antibacterial and antibiofilm activity of cationic small molecules with spatial positioning of hydrophobicity: an in vitro and in vivo evaluation. J. Med. Chem. 2016, 59, 10750–10762. 10.1021/acs.jmedchem.6b01435. PubMed DOI
Koh J.-J.; Lin S.; Aung T. T.; Lim F.; Zou H.; Bai Y.; Li J.; Lin H.; Pang L. M.; Koh W. L.; Salleh S. M.; Lakshminarayanan R.; Zhou L.; Qiu S.; Pervushin K.; Verma C.; Tan D. T. H.; Cao D.; Liu S.; Beuerman R. W. Amino acid modified xanthone derivatives: novel, highly promising membrane-active antimicrobials for multidrug-resistant gram-positive bacterial infections. J. Med. Chem. 2015, 58, 739–752. 10.1021/jm501285x. PubMed DOI
Shoshtari S. Z.; Wen J.; Alany R. G. Octanol water partition coefficient determination for model steroids using an HPLC method. Lett. Drug Des. Discovery 2008, 5, 394–400. 10.2174/157018008785777333. DOI
Grassi L.; Di Luca M.; Maisetta G.; Rinaldi A. C.; Esin S.; Trampuz A.; Batoni G. Generation of persister cells of Pseudomonas aeruginosa and Staphylococcus aureus by chemical treatment and evaluation of their susceptibility to membrane-targeting agents. Front. Microbiol. 2017, 8, 1917.10.3389/fmicb.2017.01917. PubMed DOI PMC
Pospíšil J.; Vítovská D.; Kofročová O.; Muchová K.; Šanderová H.; Hubálek M.; Šiková M.; Modrák M.; Benada O.; Barák I.; Krásný L. Bacterial nanotubes as a manifestation of cell death. Nat. Commun. 2020, 11, 4963–4963. 10.1038/s41467-020-18800-2. PubMed DOI PMC
Sträuber H.; Müller S. Viability states of bacteria—specific mechanisms of selected probes. Cytometry, Part A 2010, 77A, 623–634. 10.1002/cyto.a.20920. PubMed DOI
Donato M. T.; Tolosa L.; Gómez-Lechón M. J. Culture and functional characterization of human hepatoma HepG2 cells. Methods Mol. Biol. 2015, 1250, 77–93. 10.1007/978-1-4939-2074-7_5. PubMed DOI
Donato M. T.; Tolosa L.; Gómez-Lechón M. J.. Culture and functional characterization of human hepatoma HepG2 cells; Humana Press: New York, NY: 2015; Vol. 1250. PubMed
OECD , Test No. 431: In vitro skin corrosion: reconstructed human epidermis (RHE) test method. 2019, 10.1787/9789264264618-en. DOI
OECD , Test No. 492: Reconstructed human Cornea-like Epithelium (RhCE) test method for identifying chemicals not requiring classification and labelling for eye irritation or serious eye damage. 2019.
Falagas M. E.; Fragoulis K. N.; Karydis I. A comparative study on the cost of new antibiotics and drugs of other therapeutic categories. PLoS One 2006, 1, e1110.1371/journal.pone.0000011. PubMed DOI PMC
Strahl H.; Hamoen L. W. Membrane potential is important for bacterial cell division. Proc. Natl. Acad. Sci. 2010, 107, 12281–12286. 10.1073/pnas.1005485107. PubMed DOI PMC
Côté H.; Pichette A.; Simard F.; Ouellette M.-E.; Ripoll L.; Mihoub M.; Grimard D.; Legault J. Balsacone C, A New antibiotic targeting bacterial cell membranes, inhibits clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) without inducing resistance. Front. Microbiol. 2019, 10, 2341.10.3389/fmicb.2019.02341. PubMed DOI PMC
Hoque J.; Konai M. M.; Gonuguntla S.; Manjunath G. B.; Samaddar S.; Yarlagadda V.; Haldar J. Membrane active small molecules show selective broad spectrum antibacterial activity with no detectable resistance and eradicate biofilms. J. Med. Chem. 2015, 58, 5486–5500. 10.1021/acs.jmedchem.5b00443. PubMed DOI
Lipinski C. A.; Lombardo F.; Dominy B. W.; Feeney P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25.1. Adv. Drug Delivery Rev. 2001, 46, 3–26. PubMed
Saravanakumar A.; Sadighi A.; Ryu R.; Akhlaghi F. Physicochemical properties, biotransformation, and transport pathways of established and newly approved medications: a systematic review of the top 200 most prescribed drugs vs. the FDA-approved drugs between 2005 and 2016. Clin. Pharmacokinet. 2019, 58, 1281–1294. 10.1007/s40262-019-00750-8. PubMed DOI PMC
The European Committee on Antimicrobial Susceptibility Testing – EUCAST; http://www.eucast.org (accessed September 13, 2021).
Drabkin D. L. The standardization of hemoglobin measurement. Am. J. Med. Sci. 1948, 215, 110.10.1097/00000441-194801000-00017. PubMed DOI
Seydlová G.; Sokol A.; Lišková P.; Konopásek I.; Fišer R. Daptomycin pore formation and stoichiometry depend on membrane potential of target membrane. Antimicrob. Agents Chemother. 2019, 63, e01589–e01518. 10.1128/AAC.01589-18. PubMed DOI PMC
te Winkel J. D.; Gray D. A.; Seistrup K. H.; Hamoen L. W.; Strahl H., Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Front. Cell Dev. Biol. 2016,4 (), 10.3389/fcell.2016.00029. PubMed DOI PMC
Biological Controls; http://www.fgu.cas.cz/en/departments/biological-controls (accessed September 13, 2021).
Šiková M.; Wiedermannová J.; Převorovský M.; Barvík I.; Sudzinová P.; Kofročová O.; Benada O.; Šanderová H.; Condon C.; Krásný L. The torpedo effect in Bacillus subtilis: RNase J1 resolves stalled transcription complexes. EMBO J. 2020, 39, e10250010.15252/embj.2019102500. PubMed DOI PMC
SZÚ . http://www.szu.cz/index.php?lang=2 (accessed September 13, 2021).